The dciao-kernelstructs experiment does a trace imported by the
DCiAOKernelImporter:
bin/import-trace -t trace.pb -i DCiAOKernelImporter --elf-file app.elf
Pruned by the basic method:
bin/prune-trace
and does CiAO fault injection experiments, where the results are
stored in the database.
Change-Id: I485dc2e5097b3ebaf354241f474ee3d317213707
This allows the commandline parameter parser to modify argc, as it finds
arguments for the Fail* client. Additionally argv is correctly null
terminated when removing arguments.
This fixes a bug introduced in eb17e9ef82.
Change-Id: Iabe84530790ecb7c587b0af139127015aad868d5
The DatabaseCampaign interacts with the MySQL tables that are created
by the import-trace and prune-trace tools. It does offer all
unfinished experiment pilots from the database to the
fail-clients. Those clients send back a (by the experiment) defined
protobuf message as a result. The custom protobuf message does have to
need the form:
import "DatabaseCampaignMessage.proto";
message ExperimentMsg {
required DatabaseCampaignMessage fsppilot = 1;
repeated group Result = 2 {
// custom fields
required int32 bitoffset = 1;
optional int32 result = 2;
}
}
The DatabaseCampaignMessage is the pilot identifier from the
database. For each of the repeated result entries a row in a table is
allocated. The structure of this table is constructed (by protobuf
reflection) from the description of the message. Each field in the
Result group becomes a column in the result table. For the given
example it would be:
CREATE TABLE result_ExperimentMessage(
pilot_id INT,
bitoffset INT NOT NULL,
result INT,
PRIMARY_KEY(pilot_id)
)
Change-Id: I28fb5488e739d4098b823b42426c5760331027f8
This allows us to generate prerequisites (traces, state snapshots, memory
maps) in parallel, and without the previous shell script hacks.
Change-Id: I05a0321a794b4033d05eed20f5bffbd1e910cf1b
Without --with-all-libs (as documented in doc/how-to-build.txt), at least
the "nogui" GUI does not work anymore -- the default for headless
experiments.
(Note the UNDEFINED->UNDEF enum rename; this was necessary due to a vga.h
include side-effect in bochs/gui/svga.cc.)
Change-Id: I1bc3208e905783505a35bbc48ff29f00eef599d6
It doesn't make sense to override database, hostname or username parameters
coming from ~/.my.cnf with arbitrary own defaults. Instead allow
libmysqlclient to use the builtin default parameter mechanism.
See <https://dev.mysql.com/doc/refman/5.1/en/option-files.html> for what a
~/.my.cnf may look like; example:
[client]
user=hsc
password=secret42
database=fail_demo
Change-Id: I90aadc04375c624d5e906557c8bd4049e5caa17c
The import tool does support the following import strategies:
- BasicImporter: generates def-use equivalence classes for read and
write memory accesses
- DCiAOKernelImporter: generates equivalence classes for read access in
the ciao kernel space.
Change-Id: I8960561d3e14dcf5dffa3ff7a59b61a5e8f7e719
After each simulator break, T32Tracer retrieves the latest (16)
trace records from the T32. Memory address and value can now
be evaluated easily from the trace record.
TODO:Nevertheless we still have to traverse the trace to
find the instruction causing the access.
The full-tracing plugin was used in the DSN paper. It additionally
traces the data that was accessed/written on a memory access and the
contents of some CPU registers.
Change-Id: I61f5230699009ce523aba341985b98148160556d
An experiment talking to a campaign server via the JobClient/JobServer
interface needs the FailControlMessage.proto compiler to run before the
experiment is compiled. A dependency on fail-comm ensures this.
If CommandLine.hpp and (indirectly) optionparser.h is #included in
FailBochsInit.ah, bochs compilation fails (for, e.g., gui/x.cc, at least
on Debian 6).
For the T32 variant we have to evaluate the memory
access instruction to find out, which memory address
was accessed.
Dissassmbly by OpenOCDs arm_disassembler.hpp/.cc:
- fine for ARM / Thumb1
- needs fixes for Thumb2 :( (currently doing that..)
The disassembler disassembles an elf file with
an external objdump tool.
The architecture specific objdump must be configured
via cmake (ARCH_TOOL_PREFIX), e.g. arm-none-eabi- for
arm-none-eabi-objdump.
- getSection/getSymbol now returns an ElfSymbol reference.
Searching by address now searches if address is within
symbol address and symbol address + size.
So we can test, if we are *within* a function, object or
section and not only at the start address.
Currently working:
- Connect/Disconnect, Read CPU info
- CMM Script generation and T32 startup via cmake (make runt32)
- Read/Write Register, Read Program Pointer
- Read/Write Memory
- Single Breakpoint
- Setting Memory Breakpoint
TODO:
- Fix mock aspect for T32_GetRam.
- Fix Thumb2 bit in function addresses from ELFReader
- Evaluate memory breakpoint hit