1

implement vector

This commit is contained in:
2022-07-21 02:43:41 +02:00
parent 53cea941f1
commit fa7d9d4d19
2 changed files with 252 additions and 28 deletions

View File

@ -1,40 +1,61 @@
#ifndef __Iterator_Include_H_
#define __Iterator_Include_H_
// This iterator works for structures where the elements are adjacent in memory.
// For things like LinkedList, the operator++ has to be overriden to implement the traversal.
template<typename T>
class Iterator {
public:
using Type = T;
#include <cstddef>
protected:
Type* ptr;
namespace bse {
public:
Iterator(Type* ptr) : ptr(ptr) {}
template<typename T>
class AbstractIterator {
public:
T* ptr;
// I only implement the least necessary operators
virtual Iterator& operator++() {
this->ptr = this->ptr + 1;
return *this;
}
// *this is always <= other
virtual std::size_t dist(const AbstractIterator& other) const = 0;
Type* operator->() {
return this->ptr;
}
AbstractIterator(T* ptr) : ptr(ptr) {}
Type& operator*() {
return *this->ptr;
}
T* operator->() { return this->ptr; }
T& operator*() { return *this->ptr; }
bool operator==(const AbstractIterator& other) const { return this->ptr == other.ptr; }
bool operator!=(const AbstractIterator& other) const { return !(*this == other); }
bool operator==(const Iterator& other) const {
return this->ptr == other.ptr;
}
friend std::size_t distance(const AbstractIterator& first, const AbstractIterator& last) {
return first.dist(last);
}
};
bool operator!=(const Iterator& other) const {
return !(*this == other); // Use our == implementation
}
};
// This iterator works for structures where the elements are adjacent in memory.
template<typename T>
class ContinuousIterator : public AbstractIterator<T> {
public:
std::size_t dist(const AbstractIterator<T>& other) const override {
return other.ptr - this->ptr;
}
ContinuousIterator(T* ptr) : AbstractIterator<T>(ptr) {}
friend ContinuousIterator& operator++(ContinuousIterator& rhs) {
++rhs.ptr;
return rhs;
}
friend ContinuousIterator& operator--(ContinuousIterator& rhs) {
--rhs.ptr;
return rhs;
}
friend ContinuousIterator operator+(ContinuousIterator lhs, std::size_t add) {
lhs.ptr += add;
return lhs;
}
friend ContinuousIterator operator-(ContinuousIterator lhs, std::size_t sub) {
lhs.ptr -= sub;
return lhs;
}
};
} // namespace bse
#endif

203
c_os/user/lib/Vector.h Normal file
View File

@ -0,0 +1,203 @@
#ifndef __VECTOR_INCLUDE_H_
#define __VECTOR_INCLUDE_H_
// NOTE: I decided to implement this because I wanted some sort of dynamic array (for example for the keyeventmanager).
// Also I wanted to template the Queue (for the scheduler) but with this I can just replace the Queue and use the
// ArrayList instead
#include "Iterator.h"
#include <cstddef>
#include <utility>
// https://en.cppreference.com/w/cpp/container/vector
namespace bse {
template<typename T>
class Vector {
public:
using Iterator = ContinuousIterator<T>;
private:
static constexpr const std::size_t default_cap = 10; // Arbitrary but very small because this isn't a real OS :(
static constexpr const std::size_t min_cap = 5; // Slots to allocate extra when array full
T* buf = nullptr; // Heap allocated as size needs to change during runtime
// Can't use Array for the same reason so we use a C Style array
std::size_t buf_pos = 0;
std::size_t buf_cap = 0;
void init() {
buf = new T[Vector::default_cap];
buf_cap = Vector::default_cap;
}
std::size_t get_rem_cap() const {
return buf_cap - size();
}
// Enlarges the buffer if we run out of space
std::size_t expand() {
// Init if necessary
if (buf == nullptr) {
init();
return buf_cap; // Dont have to realloc after init
}
// Since we only ever add single elements this should never get below zero
if (get_rem_cap() < min_cap) {
std::size_t new_cap = buf_cap + min_cap;
// Alloc new array
T* new_buf = new T[new_cap];
// Swap current elements to new array
for (std::size_t i = 0; i < size(); ++i) {
new_buf[i] = std::move(buf[i]);
buf[i].~T();
}
// Move new array to buf, deleting the old array
delete[] buf;
buf = new_buf;
buf_cap = new_cap;
}
return buf_cap;
}
// Returns new pos, both do element copying if necessary, -1 if failed
// Index is location where space should be made/removed
std::size_t copy_right(std::size_t i) {
if (i > size()) {
// Error: No elements here
return 0;
}
expand();
// Otherwise i == pos and we don't need to copy anything
if (i < size()) {
// Enough space to copy elements after pos i
for (std::size_t idx = size(); idx > i; --idx) { // idx > i so idx - 1 is never < 0
buf[idx] = std::move(buf[idx - 1]);
buf[idx - 1].~T();
}
++buf_pos;
}
return size();
}
// Don't realloc here, we don't need to shring the buffer every time
// One could introduce a limit of free space but I don't care for now
// Would be bad if the scheduler triggers realloc everytime a thread is removed (if used as readyqueue)...
std::size_t copy_left(std::size_t i) {
if (i >= size()) {
// Error: No elements here
return -1;
}
// Decrement before loop because we overwrite 1 element (1 copy less than expand)
--buf_pos;
for (std::size_t idx = i; idx < size(); ++idx) { // idx < pos so idx + 1 is never outside of size limit
buf[idx] = std::move(buf[idx + 1]);
buf[idx + 1].~T();
}
return size();
}
public:
~Vector() {
for (std::size_t i; i < size(); ++i) {
buf[i].~T();
}
delete[] buf;
}
// Iterator
Iterator begin() { return Iterator(&buf[0]); }
Iterator end() { return Iterator(&buf[size()]); }
// Add elements
void push_back(const T& copy) {
if (buf == nullptr) {
init();
}
buf[size()] = copy;
++buf_pos;
expand();
}
void push_back(T&& move) {
if (buf == nullptr) {
init();
}
buf[size()] = std::move(move);
++buf_pos;
expand();
}
Iterator insert(Iterator pos, const T& copy) {
std::size_t idx = distance(begin(), pos);
copy_right(idx);
buf[idx] = copy;
return Iterator(&buf[idx]);
}
Iterator insert(Iterator pos, T&& move) {
std::size_t idx = distance(begin(), pos);
copy_right(idx);
buf[idx] = std::move(move);
return Iterator(&buf[idx]);
}
// Remove elements
Iterator erase(Iterator pos) {
std::size_t idx = distance(begin(), pos);
copy_left(idx);
return Iterator(&buf[idx]);
}
// Access
T& front() {
return buf[0];
}
const T& front() const {
return buf[0];
}
T& back() {
return buf[size() - 1];
}
const T& back() const {
return buf[size() - 1];
}
T& operator[](std::size_t pos) {
return buf[pos];
}
const T& operator[](std::size_t pos) const {
return buf[pos];
}
// Information
bool empty() const {
return !size();
}
std::size_t size() const {
return buf_pos;
}
};
} // namespace bse
#endif