The checkpoint which is produced by this save method is a little bit
different to the checkpoint which is produced by the --take-checkpoint
command. It differs in the save-parameters so_state, funcExeInst, intRegs,
_upc, _nupc, _when. Tests have shown that it probably does not affect the
course of the program execution.
Change-Id: I19b3fc809288224532e0ed6b7910a45115cb1c5d
The previous implementation wasn't in a working state because
the register content retrieval was buggy. (For example, RT_FP
does *not* denote a "floating point" register. Instead, it is
the frame pointer!)
Change-Id: I31fd80d374c945adaf35b47958d6437a8e2d48c3
Now, the gem5 implementation equals the Bochs variant. Note that it's
*not* necessary to enable CONFIG_EVENTS_BREAKPOINTS_RANGE in order to
use range breakpoints.
In addition, gem5 distinguishes between macro- and microops. With the
new implementation, onBreakpoint() is only called when a macroop
changes.
Change-Id: Ib86d1802fc70c20d22ca1a1ece0e8d1221b2e7db
This adds an interface for a backend-specific notion of time, e.g. CPU
cycles since simulator start, and a concrete implementation for the
Bochs backend. This is needed to record CPU idle times (e.g., HLT
instruction), and for target backends capable of more timing-accurate
execution.
This change also modifies the tracing plugin to add the time to all
trace events.
Change-Id: I93ac1d54c07f32b0b8f84f333417741d8e9c8288
Encapsulated gem5-specific code into wrapper functions to separate the
build process (Fail: CMake, gem5: scons). Added some gem5-related FIXMEs.
Another CMake related FIXME added. +some cosmetics.
Change-Id: Id84b480127b1f13aed6a0ee97f3583f410d531c5
This allows the commandline parameter parser to modify argc, as it finds
arguments for the Fail* client. Additionally argv is correctly null
terminated when removing arguments.
This fixes a bug introduced in eb17e9ef82.
Change-Id: Iabe84530790ecb7c587b0af139127015aad868d5
After each simulator break, T32Tracer retrieves the latest (16)
trace records from the T32. Memory address and value can now
be evaluated easily from the trace record.
TODO:Nevertheless we still have to traverse the trace to
find the instruction causing the access.
If CommandLine.hpp and (indirectly) optionparser.h is #included in
FailBochsInit.ah, bochs compilation fails (for, e.g., gui/x.cc, at least
on Debian 6).
For the T32 variant we have to evaluate the memory
access instruction to find out, which memory address
was accessed.
Dissassmbly by OpenOCDs arm_disassembler.hpp/.cc:
- fine for ARM / Thumb1
- needs fixes for Thumb2 :( (currently doing that..)
The disassembler disassembles an elf file with
an external objdump tool.
The architecture specific objdump must be configured
via cmake (ARCH_TOOL_PREFIX), e.g. arm-none-eabi- for
arm-none-eabi-objdump.
Currently working:
- Connect/Disconnect, Read CPU info
- CMM Script generation and T32 startup via cmake (make runt32)
- Read/Write Register, Read Program Pointer
- Read/Write Memory
- Single Breakpoint
- Setting Memory Breakpoint
TODO:
- Fix mock aspect for T32_GetRam.
- Fix Thumb2 bit in function addresses from ELFReader
- Evaluate memory breakpoint hit