- Change `WAMR_ENABLE_COPY_CALLSTACK` to `WAMR_BUILD_COPY_CALL_STACK`, as
`WAMR_BUILD` is the prefix for a command line option.
- Change `WAMR_ENABLE_COPY_CALLSTACK` to `WASM_ENABLE_COPY_CALL_STACK`, as
`WASM_ENABLE` is the prefix for a macro in the source code.
- Change `CALLSTACK` to `CALL_STACK` to align with the existing
`DUMP_CALL_STACK` feature.
- Continue using `WASMCApiFrame` instead of `wasm_frame_t` outside of
*wasm_c_api.xxx* to avoid a typedef redefinition warning, which is
identified by Clang.
* wasi-nn: fix context lifetime issues
use the module instance context api instead of trying to roll
our own with a hashmap. this fixes context lifetime problems mentioned in
https://github.com/bytecodealliance/wasm-micro-runtime/issues/4313.
namely,
* wasi-nn resources will be freed earlier now. before this change,
they used to be kept until the runtime shutdown. (wasm_runtime_destroy)
after this change, they will be freed together with the associated
instances.
* wasm_module_inst_t pointer uniqueness assumption (which is wrong
after wasm_runtime_deinstantiate) was lifted.
as a side effect, this change also makes a context shared among threads
within a cluster. note that this is a user-visible api/abi breaking change.
before this change, wasi-nn "handles" like wasi_ephemeral_nn_graph were
thread-local. after this change, they are shared among threads within
a cluster, similarly to wasi file descriptors. spec-wise, either behavior
should be ok simply because wasi officially doesn't have threads yet.
althogh i feel the latter semantics is more intuitive, if your application
depends on the thread-local behavior, this change breaks your application.
tested with wamr-wasi-extensions/samples/nn-cli, modified to
call each wasi-nn operations on different threads. (if you are
interested, you can find the modification at
https://github.com/yamt/wasm-micro-runtime/tree/yamt-nn-wip-20250619.)
cf.
https://github.com/bytecodealliance/wasm-micro-runtime/issues/4313https://github.com/bytecodealliance/wasm-micro-runtime/issues/2430
* runtime_lib.cmake: enable WAMR_BUILD_MODULE_INST_CONTEXT for wasi-nn
as we do for wasi (WAMR_BUILD_LIBC_WASI)
As far as I know, we don't implement the proposal at all.
```
spacetanuki% wasm2wat --enable-all data.28.wasm
(module
(memory (;0;) 1)
(data (;0;) (i32.const 42
i32.const 0
i32.sub) ""))
spacetanuki% toywasm --load data.28.wasm
spacetanuki% ~/git/wasm-micro-runtime/product-mini/platforms/darwin/b.classic/iwasm data.28.wasm
WASM module load failed: illegal opcode or constant expression required or type mismatch
spacetanuki%
```
data.28.wasm in the above example is a binary version of:
8d4f6aa2b0/test/core/data.wast (L184-L187)
3.14 is used and tested by linux mini-product
to fix
```
CMake Error at CMakeLists.txt:4 (cmake_minimum_required):
Compatibility with CMake < 3.5 has been removed from CMake.
Update the VERSION argument <min> value. Or, use the <min>...<max> syntax
to tell CMake that the project requires at least <min> but has been updated
to work with policies introduced by <max> or earlier.
Or, add -DCMAKE_POLICY_VERSION_MINIMUM=3.5 to try configuring anyway.
```
- Utilizes the standard CMake variable BUILD_SHARED_LIBS to simplify the CMake configuration.
- Allows the use of a single library definition for both static and
shared library cases, improving maintainability and readability of the CMake configuration.
- Install vmlib public header files
- Installs the public header files for the vmlib target to the include/iwasm directory.
- Install cmake package
- Adds the necessary CMake configuration files (iwasmConfig.cmake and iwasmConfigVersion.cmake).
- Configures the installation of these files to the appropriate directory (lib/cmake/iwasm).
- Ensures compatibility with the same major version.
- Improve windows product-mini CMakeLists.txt
- Fix missing symbols when linking windows product-mini with shared vmlib
- Improve Darwin product-mini CMakeLists.txt
---------
Signed-off-by: Peter Tatrai <peter.tatrai.ext@siemens.com>
- For Windows, llvm libs need to cache more directories, so use a multi-line
environment variable for paths
- Remove conditionally build directories `win32build`, just use `build` for all platform
- Add Windows wamrc and iwasm(disable lib pthread semaphore and fast jit for now)
build in release CI
Enable dynamic aot debug feature which debugs the aot file
and is able to set the break point and do single step. Refer to
the README for the detailed steps.
Signed-off-by: zhangliangyu3 <zhangliangyu3@xiaomi.com>
Implement multi-memory for classic-interpreter. Support core spec (and bulk memory) opcodes now,
and will support atomic opcodes, and add multi-memory export APIs in the future.
PS: Multi-memory spec test patched a lot for linking test to adapt for multi-module implementation.
The wasm loader is failing when multi-module support is on and the dependent
modules are not found; this enforces the AOT compiler integrations to prepare
dependent modules while it isn't necessary.
This PR allows allows missing imports in wasm loader and report error in wasm
instantiation instead, which enables the integrated AOT compiler to work as if
the multi-module support isn't turned on.
Add WASI support for esp-idf platform:
1. add Kconfig and cmake scripts
2. add API "openat" when using littlefs
3. add clock/rwlock/file/socket OS adapter
Some issues are related with memory fragmentation, which may cause
the linear memory cannot be allocated. In WAMR, the memory managed
by the system is often trivial, but linear memory usually directly allocates
a large block and often remains unchanged for a long time. Their sensitivity
and contribution to fragmentation are different, which is suitable for
different allocation strategies. If we can control the linear memory's allocation,
do not make it from system heap, the overhead of heap management might
be avoided.
Add `mem_alloc_usage_t usage` as the first argument for user defined
malloc/realloc/free functions when `WAMR_BUILD_ALLOC_WITH_USAGE` cmake
variable is set as 1, and make passing `Alloc_For_LinearMemory` to the
argument when allocating the linear memory.