reimplement first + follow + testing

This commit is contained in:
Christoph
2020-12-06 02:07:00 +01:00
parent 49e047ce56
commit cec76298e8
4 changed files with 362 additions and 293 deletions

View File

@ -96,4 +96,17 @@ public class Grammar {
public Set<GrammarRule> getRules() {
return this.rules;
}
public Set<String> getRightsides(String leftside) {
return this.rules.stream()
.filter(rule -> rule.getLeftside().equals(leftside))
.map(GrammarRule::getRightside)
.collect(Collectors.toUnmodifiableSet());
}
public Set<String> getLeftSides() {
return this.rules.stream()
.map(GrammarRule::getLeftside)
.collect(Collectors.toUnmodifiableSet());
}
}

View File

@ -20,6 +20,10 @@ public class GrammarRule {
return this.rightside;
}
public String[] getSymbols() {
return this.rightside.split(" ");
}
@Override
public boolean equals(Object obj) {
if (obj instanceof GrammarRule) {

View File

@ -4,161 +4,107 @@ import parser.ILL1ParsingTable;
import parser.LL1ParsingTable;
import java.util.AbstractMap;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.function.Predicate;
import java.util.stream.Collectors;
public class LL1GrammarAnalyzer {
private final Set<String> nullable;
private final Grammar grammar;
private final Map<String, Set<String>> first;
private final Map<String, Set<String>> follow;
private final ILL1ParsingTable table;
public LL1GrammarAnalyzer(Grammar grammar) {
this.grammar = grammar;
// Es muss zwingend in der Reihenfolge [Nullable < First < Follow < Table] initialisiert werden
this.nullable = this.initNullable(grammar);
this.first = this.initFirst(grammar);
this.follow = this.initFollow(grammar);
this.first = this.initFirst();
this.follow = this.initFollow();
this.table = this.initParseTable(grammar);
this.table = this.initParseTable();
System.out.println("Nullable:\n" + this.nullable);
System.out.println("First:\n" + this.first);
System.out.println("Follow:\n" + this.follow);
// System.out.println("First:\n" + this.first);
// System.out.println("Follow:\n" + this.follow);
System.out.println("LL-Table:\n" + this.table);
}
private Map<String, Set<String>> getProductionMap(Grammar grammar) {
Map<String, Set<String>> productionOut = new HashMap<>();
private Map<String, Set<String>> initFirst() {
final Map<String, Set<String>> firstOut = new HashMap<>();
for (GrammarRule rule : grammar.getRules()) {
if (!productionOut.containsKey(rule.getLeftside())) {
productionOut.put(rule.getLeftside(), new HashSet<>());
}
// Die Methode funktioniert erst, nachdem first initialisiert ist.
// Deshalb hier doppelt.
final Predicate<String> nullable = sym -> sym.equals(this.grammar.getEpsilonSymbol())
|| sym.isBlank()
|| firstOut.get(sym).contains(this.grammar.getEpsilonSymbol());
final Predicate<String[]> allNullable = split -> split.length == 0
|| Arrays.stream(split).allMatch(nullable);
productionOut.get(rule.getLeftside()).add(rule.getRightside());
// Initialisieren
for (String nterm : this.grammar.getNonterminals()) {
firstOut.put(nterm, new HashSet<>());
}
for (String term : this.grammar.getTerminals()) {
// 1. If X is a terminal, then first(X) = {X}.
firstOut.put(term, new HashSet<>());
firstOut.get(term).add(term);
}
return productionOut;
}
private Set<String> initNullable(Grammar grammar) {
Set<String> nullableOut = new HashSet<>();
boolean change;
final String epsilon = grammar.getEpsilonSymbol();
final Map<String, Set<String>> productions = this.getProductionMap(grammar);
do {
change = false;
for (Map.Entry<String, Set<String>> prods : productions.entrySet()) {
// Für jedes Nichtterminal
for (String leftside : this.grammar.getLeftSides()) {
// 2. (a) If X is a nonterminal...
final String leftX = prods.getKey();
for (String rightside : this.grammar.getRightsides(leftside)) {
// ...and X -> Y1 Y2 ... Yk is a production...
for (String prod : prods.getValue()) {
// Für jede Produktionsregel von diesem Nichtterminal
// Produktionsregel der Form X -> S1 S2 S3 ... Sk
if (!rightside.equals(this.grammar.getEpsilonSymbol())) {
// ...for some k >= 1...
final String[] split = prod.split(" ");
final String[] split = rightside.split(" ");
boolean allNullable = true; // Sind alle rechten Symbole nullable?
for (String rightSi : split) {
// Für jedes rechte Symbol dieser Produktionsregel
// !: Dumm implementiert, alles wird mehrfach auf nullable gecheckt:
// !: nullable(Y1), nullable(Y1 Y2), nullable(Y1 Y2 Y3)...
for (int i = 0; i < split.length; i++) {
if (!(nullableOut.contains(rightSi) || rightSi.equals(epsilon))) {
allNullable = false;
break;
// All Y1 ... Yi-1
final String[] sub = Arrays.copyOfRange(split, 0, i);
if (allNullable.test(sub)) {
// ...then place a in first(X) if a is in first(Yi) for some i...
// ...and epsilon is in all of first(Y1) ... first(Yi-1).
// Because a != epsilon
Set<String> firstYiNoEps = firstOut.get(split[i]).stream()
.filter(sym -> !sym.equals(this.grammar.getEpsilonSymbol()))
.collect(Collectors.toSet());
change = change || firstOut.get(leftside).addAll(firstYiNoEps);
}
if (i == split.length - 1 && allNullable.test(split)) {
// 2. (b) If epsilon is in first(Y1) ... first(Yk), then add epsilon to first(X).
change = change || firstOut.get(leftside).add(this.grammar.getEpsilonSymbol());
}
}
}
if (!(nullableOut.contains(leftX) || leftX.equals(epsilon)) && allNullable) {
// Alle rechten Symbole sind nullable, also ist X nullable
if (rightside.equals(this.grammar.getEpsilonSymbol())) {
// 3. If X -> epsilon is a production, then add epsilon to first(X).
change = nullableOut.add(leftX);
}
}
}
} while (change);
return nullableOut;
}
public boolean nullable(String sym) {
return this.nullable.contains(sym);
}
public boolean stringNullable(String prod) {
for (String rightSi : prod.split(" ")) {
if (!this.nullable.contains(rightSi)) {
return false;
}
}
return true;
}
private Map<String, Set<String>> initFirst(Grammar grammar) {
Map<String, Set<String>> firstOut = new HashMap<>();
boolean change;
final Set<String> terminals = grammar.getTerminals();
final Set<String> nonterminals = grammar.getNonterminals();
final String epsilon = grammar.getEpsilonSymbol();
final Map<String, Set<String>> productions = this.getProductionMap(grammar);
for (String sym : nonterminals) {
// Alle Nichtterminale mit leeren Sets initialisieren
firstOut.put(sym, new HashSet<>());
}
for (String sym : terminals) {
// Alle Terminale mit der Identität initialisieren
firstOut.put(sym, new HashSet<>());
firstOut.get(sym).add(sym);
}
do {
change = false;
for (Map.Entry<String, Set<String>> prods : productions.entrySet()) {
// Für jedes Nichtterminal
final String leftX = prods.getKey();
for (String prod : prods.getValue()) {
// Für jede Produktionsregel von diesem Nichtterminal
// Produktionsregel der Form X -> S1 S2 S3 ... Sk
if (prod.equals(epsilon)) {
// Epsilonregeln überspringen
continue;
}
final String[] split = prod.split(" ");
// Das First des linken Nichtterminals X enthält das first des ersten rechten Symbols dieser
// Produktionsregel S1 (da X -> S1 ... Sk)
change = firstOut.get(leftX).addAll(firstOut.get(split[0]));
for (int i = 1; i < split.length; i++) {
// Für das 2-te bis k-te rechte Symbol dieser Produktionsregel
if (this.nullable(split[i - 1])) {
// Ein rechtes Symbol ist nullable, also zählt das first des nächsten Symbols
change = firstOut.get(leftX).addAll(firstOut.get(split[i]));
} else {
break;
}
change = change || firstOut.get(leftside).add(this.grammar.getEpsilonSymbol());
}
}
}
@ -167,177 +113,185 @@ public class LL1GrammarAnalyzer {
return firstOut;
}
private Map<String, Set<String>> initFollow() {
final Map<String, Set<String>> followOut = new HashMap<>();
// Initialisieren
for (String nterm : this.grammar.getNonterminals()) {
followOut.put(nterm, new HashSet<>());
}
// 1. Place $ in follow(S), where S is the start symbol, and $ is the input right endmarker
followOut.get(this.grammar.getStartSymbol()).add("$");
boolean change;
do {
change = false;
for (String leftside : this.grammar.getLeftSides()) {
for (String rightside : this.grammar.getRightsides(leftside)) {
final String[] split = rightside.split(" ");
for (int i = 1; i < split.length; i++) {
// 2. If there is a production A -> aBb, then everything in first(b) except epsilon
// is in follow(B).
if (!this.grammar.getNonterminals().contains(split[i - 1])) {
// Follow nur für Nichtterminale berechnen
continue;
}
// !: Hier wird wieder alles doppelt geprüft
for (int k = i; k < split.length; k++) {
// Behandelt solche Fälle: X -> Y1 Y2 Y3, wo Y2 nullable ist.
// Dann beinhaltet follow(Y1) auch first(Y3)
final String[] sub = Arrays.copyOfRange(split, i, k);
if (this.allNullable(sub)) {
final Set<String> firstXkNoEps = this.first(split[k]).stream()
.filter(sym -> !sym.equals(this.grammar.getEpsilonSymbol()))
.collect(Collectors.toSet());
change = change || followOut.get(split[i - 1]).addAll(firstXkNoEps);
}
}
// 3. (b) If there is a production A -> aBb, where b is nullable, then everything in
// follow(A) is in follow(B)
final String[] sub = Arrays.copyOfRange(split, i, split.length);
if (this.allNullable(sub)) {
change = change || followOut.get(split[i - 1]).addAll(followOut.get(leftside));
}
}
if (this.grammar.getNonterminals().contains(split[split.length - 1])) {
// 3. (a) If there is a production A -> aB, then everything in follow(A) is in follow(B).
change = change || followOut.get(split[split.length - 1]).addAll(followOut.get(leftside));
}
}
}
} while (change);
return followOut;
}
private ILL1ParsingTable initParseTable() {
Map<Map.Entry<String, String>, String> tableOut = new HashMap<>();
for (String leftside : this.grammar.getLeftSides()) {
for (String rightside : this.grammar.getRightsides(leftside)) {
// For each production A -> a of the grammar, do the following:
final Set<String> firstRightside = this.stringFirst(rightside);
for (String sym : firstRightside) {
// 1. For each terminal t in first(a), add A -> a to table[A, t]
tableOut.put(new AbstractMap.SimpleEntry<>(leftside, sym), rightside);
}
final Set<String> followLeftside = this.follow(leftside);
System.out.println(leftside + " -> " + rightside);
System.out.println("First: " + firstRightside);
if (firstRightside.contains(this.grammar.getEpsilonSymbol())) {
// 2. If epsilon in first(a), then...
for (String sym : followLeftside) {
// ...for each terminal b in follow(A), add A -> a to table[A, b].
tableOut.put(new AbstractMap.SimpleEntry<>(leftside, sym), rightside);
}
if (followLeftside.contains("$")) {
// If epsilon is in first(a) and $ is in follow(A), add A -> a to table[A, $].
tableOut.put(new AbstractMap.SimpleEntry<>(leftside, "$"), rightside);
}
}
}
}
return new LL1ParsingTable(this.grammar, tableOut);
}
public boolean nullable(String sym) {
return sym.isBlank()
|| sym.equals(this.grammar.getEpsilonSymbol())
|| this.first.get(sym).contains(this.grammar.getEpsilonSymbol());
}
public boolean allNullable(String rightside) {
return rightside.isBlank()
|| Arrays.stream(rightside.split(" ")).allMatch(this::nullable);
}
public boolean allNullable(String[] split) {
return split.length == 0
|| Arrays.stream(split).allMatch(this::nullable);
}
public Set<String> first(String sym) {
return this.first.get(sym);
}
public Set<String> stringFirst(String prod) {
if (prod.isEmpty()) {
return Collections.emptySet();
}
public Set<String> stringFirst(String rightside) {
return this.stringFirst(rightside.split(" "));
}
String front;
String rest;
if (prod.indexOf(' ') < 0) {
front = prod;
rest = "";
} else {
front = prod.substring(0, prod.indexOf(' '));
rest = prod.substring(prod.indexOf(' ') + 1);
}
public Set<String> stringFirst(String[] split) {
final Set<String> firstOut = new HashSet<>();
Set<String> firstOut = new HashSet<>(this.first(front));
if (this.nullable(front)) {
firstOut.addAll(this.stringFirst(rest));
// !: Hier wird wieder doppelt getestet
for (int i = 0; i < split.length; i++) {
final String[] sub = Arrays.copyOfRange(split, 0, i);
if (this.allNullable(sub)) {
// X1 ... Xi-1 are nullable, so first(X1 ... Xn) contains first(Xi)
Set<String> firstXiNoEps;
if (split.length == 1 && split[0].equals(this.grammar.getEpsilonSymbol())) {
// Stream collect has to be evaluated, doesn't work on empty stream
firstXiNoEps = Collections.emptySet();
} else {
// Only non-epsilon symbols
firstXiNoEps = this.first(split[i]).stream()
.filter(sym -> !sym.equals(this.grammar.getEpsilonSymbol()))
.collect(Collectors.toSet());
}
firstOut.addAll(firstXiNoEps);
if (i == split.length - 1) {
// Finally, add epsilon to first(X1 X2 ... Xn) if, for all i, epsilon is in first(Xi).
firstOut.add(this.grammar.getEpsilonSymbol());
}
}
}
return firstOut;
}
private Map<String, Set<String>> initFollow(Grammar grammar) {
Map<String, Set<String>> followOut = new HashMap<>();
boolean change;
final Set<String> terminals = grammar.getTerminals();
final Set<String> nonterminals = grammar.getNonterminals();
final String epsilon = grammar.getEpsilonSymbol();
final Map<String, Set<String>> productions = this.getProductionMap(grammar);
for (String sym : terminals) {
// Alle Nichtterminale mit leeren Sets initialisieren
followOut.put(sym, new HashSet<>());
}
for (String sym : nonterminals) {
// Alle Terminale mit leeren Sets initialisieren
followOut.put(sym, new HashSet<>());
}
followOut.get(startsymbol).add("$");
do {
change = false;
for (Map.Entry<String, Set<String>> prods : productions.entrySet()) {
// Für jedes Nichtterminal
final String leftX = prods.getKey();
for (String prod : prods.getValue()) {
// Für jede Produktionsregel von diesem Nichtterminal
// Produktionsregel der Form X -> S1 S2 S3 ... Sk
final String[] split = prod.split(" ");
for (int i = 0; i < split.length - 1; i++) {
// Für das 1-te bis vorletzte rechte Symbol dieser Produktionsregel
final String sym = split[i];
// Das follow des i-ten rechten Symbols dieser Produktionsregel enthält das first des
// (i+1)-ten rechten Sybols dieser Produktionsregel
change = followOut.get(sym).addAll(this.first(split[i + 1]));
for (int j = i + 2; j < prods.getValue().size(); j++) {
// Für das (i+2)-te bis letzte rechte Symbol dieser Produktionsregel
boolean allNullable = true; // Sind alle rechten Symbole nullable?
for (int k = i + 1; k < j; k++) {
// Für das (i+1)-te bis letzte rechte Symbol dieser Produktionsregel
if (!this.nullable(split[k])) {
allNullable = false;
break;
}
}
if (allNullable) {
// Alle zwischen dem (i+1)-ten und j-ten rechten Symbol dieser Produktionsregel sind
// nullable, deshalb enthält follow(Si) auch follow(Sj)
change = followOut.get(sym).addAll(this.first(split[j]));
}
}
boolean allNullable = true; // Sind alle rechten Symbole nullable?
for (int k = i + 1; k < split.length; k++) {
// Für das (i+1)-te bis letzte rechte Symbol dieser Produktionsregel
if (!this.nullable(split[k])) {
allNullable = false;
break;
}
}
if (allNullable) {
// Alle zwischen dem (i+1)-ten bis letzten rechten Symbol dieser Produktionsregel sind
// nullable, deshalb enthält follow(Si) auch follow(X)
change = followOut.get(sym).addAll(followOut.get(leftX));
}
}
// Dem letzten rechten Symbol dieser Produktionsregel wird das follow des linken Nichtterminals
// hinzugefügt: follow(Sk) enthält follow(X) (da X -> S1 ... Sk)
if (!split[split.length - 1].equals(epsilon)) {
//Epsilonregeln überspringen
followOut.get(split[split.length - 1]).addAll(followOut.get(leftX));
}
}
}
} while (change);
return followOut;
}
public Set<String> follow(String sym) {
return this.follow.get(sym);
}
private ILL1ParsingTable initParseTable(Grammar grammar) {
Map<Map.Entry<String, String>, String> parseTableOut = new HashMap<>();
final Set<String> terminals = grammar.getTerminals();
final Set<String> nonterminals = grammar.getNonterminals();
final String epsilon = grammar.getEpsilonSymbol();
final Map<String, Set<String>> productions = this.getProductionMap(grammar);
for (String leftX : nonterminals) {
// Für alle Nichtterminale (Zeilen der Tabelle)
for (String terminal : terminals) {
// Für alle Terminale (Spalten der Tabelle)
final Map.Entry<String, String> cell = new AbstractMap.SimpleEntry<>(leftX, terminal);
for (String prod : productions.get(leftX)) {
// Für jede Produktionsregel für dieses Nichtterminal
if (prod.equals(epsilon)) {
// Epsilonregeln überspringen
continue;
}
if (this.stringFirst(prod).contains(terminal)
|| (this.stringNullable(prod) && this.follow(leftX).contains(terminal))) {
// Verwende Produktion X -> S1 ... Sk, wenn Eingabe c in first(S1 ... Sk) ist
// oder nullable(S1 ... Sk) und Eingabe c in follow(X) ist
parseTableOut.put(cell, prod);
}
}
}
}
return new LL1ParsingTable(grammar, parseTableOut);
}
public Set<String> getNullable() {
return this.nullable;
}
public Map<String, Set<String>> getFirst() {
return this.first;

View File

@ -1,9 +1,8 @@
package parser.grammar;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import parser.grammar.Grammar;
import parser.grammar.GrammarRule;
import parser.grammar.LL1GrammarAnalyzer;
import parser.ILL1ParsingTable;
import java.util.Arrays;
import java.util.HashSet;
@ -13,8 +12,12 @@ import static org.assertj.core.api.Assertions.assertThat;
class LL1GrammarAnalyzerTest {
@Test
void testTable0() {
private static Grammar grammar0;
private static Grammar grammar1;
private static Grammar grammar2;
@BeforeAll
static void initGrammar0() {
/*
S -> a
S -> i E t S
@ -37,19 +40,11 @@ class LL1GrammarAnalyzerTest {
rules.add(new GrammarRule("S", "i", "E", "t", "S"));
rules.add(new GrammarRule("E", "b"));
Grammar grammar = new Grammar(terminals, nonterminals,
startSymbol, epsilonSymbol,
rules);
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar);
assertThat(analyzer.getTable().get("S", "a")).isEqualTo("a");
assertThat(analyzer.getTable().get("S", "i")).isEqualTo("i E t S");
assertThat(analyzer.getTable().get("E", "b")).isEqualTo("b");
grammar0 = new Grammar(terminals, nonterminals, startSymbol, epsilonSymbol, rules);
}
@Test
void testTable1() {
@BeforeAll
static void initGrammar1() {
/*
Folie 4b/32
*/
@ -75,12 +70,115 @@ class LL1GrammarAnalyzerTest {
rules.add(new GrammarRule("F", "(", "E", ")"));
rules.add(new GrammarRule("F", "id"));
Grammar grammar = new Grammar(terminals, nonterminals,
startSymbol, epsilonSymbol,
rules);
grammar1 = new Grammar(terminals, nonterminals, startSymbol, epsilonSymbol, rules);
}
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar);
@BeforeAll
static void initGrammar2() {
/*
Z -> d
Z -> X Y Z
Y ->
Y -> c
X -> Y
X -> a
*/
assertThat(analyzer.getTable().get("F", "id")).isEqualTo("id");
Set<String> nonterminals;
String[] narray = {"X", "Y", "Z"};
nonterminals = new HashSet<>(Arrays.asList(narray));
Set<String> terminals;
String[] tarray = {"a", "c", "d"};
terminals = new HashSet<>(Arrays.asList(tarray));
String startSymbol = "Z";
String epsilonSymbol = "epsilon";
Set<GrammarRule> rules = new HashSet<>();
rules.add(new GrammarRule("Z", "d"));
rules.add(new GrammarRule("Z", "X", "Y", "Z"));
rules.add(new GrammarRule("Y", epsilonSymbol));
rules.add(new GrammarRule("Y", "c"));
rules.add(new GrammarRule("X", "Y"));
rules.add(new GrammarRule("X", "a"));
grammar2 = new Grammar(terminals, nonterminals, startSymbol, epsilonSymbol, rules);
}
@Test
void testFirstGrammar0() {
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar0);
assertThat(analyzer.getFirst().get("S")).containsOnly("i", "a");
assertThat(analyzer.getFirst().get("E")).containsOnly("b");
}
@Test
void testFirstGrammar1() {
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar1);
assertThat(analyzer.getFirst().get("E")).containsOnly("id", "(");
assertThat(analyzer.getFirst().get("E2")).containsOnly("+", grammar1.getEpsilonSymbol());
assertThat(analyzer.getFirst().get("T")).containsOnly("id", "(");
assertThat(analyzer.getFirst().get("T2")).containsOnly("*", grammar1.getEpsilonSymbol());
assertThat(analyzer.getFirst().get("F")).containsOnly("id", "(");
}
@Test
void testFirstGrammar2() {
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar2);
assertThat(analyzer.getFirst().get("X")).containsOnly("c", "a", grammar2.getEpsilonSymbol());
assertThat(analyzer.getFirst().get("Y")).containsOnly("c", grammar2.getEpsilonSymbol());
assertThat(analyzer.getFirst().get("Z")).containsOnly("c", "a", "d");
}
@Test
void testFollowGrammar0() {
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar0);
assertThat(analyzer.getFollow().get("S")).containsOnly("$");
assertThat(analyzer.getFollow().get("E")).containsOnly("t");
}
@Test
void testFollowGrammar1() {
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar1);
assertThat(analyzer.getFollow().get("E")).containsOnly(")", "$");
assertThat(analyzer.getFollow().get("E2")).containsOnly(")", "$");
assertThat(analyzer.getFollow().get("T")).containsOnly("+", ")", "$");
assertThat(analyzer.getFollow().get("T2")).containsOnly("+", ")", "$");
assertThat(analyzer.getFollow().get("F")).containsOnly("+", "*", ")", "$");
}
@Test
void testFollowGrammar2() {
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar2);
assertThat(analyzer.getFollow().get("X")).containsOnly("a", "c", "d");
assertThat(analyzer.getFollow().get("Y")).containsOnly("a", "c", "d");
assertThat(analyzer.getFollow().get("Z")).containsOnly("$");
}
@Test
void testTableGrammar1() {
LL1GrammarAnalyzer analyzer = new LL1GrammarAnalyzer(grammar1);
ILL1ParsingTable table = analyzer.getTable();
assertThat(table.get("E", "id")).isEqualTo("T E2");
assertThat(table.get("E", "(")).isEqualTo("T E2");
assertThat(table.get("E2", "+")).isEqualTo("+ T E2");
assertThat(table.get("E2", ")")).isEqualTo(grammar1.getEpsilonSymbol());
assertThat(table.get("E2", "$")).isEqualTo(grammar1.getEpsilonSymbol());
assertThat(table.get("T", "id")).isEqualTo("F T2");
assertThat(table.get("T", "(")).isEqualTo("F T2");
assertThat(table.get("T2", "+")).isEqualTo(grammar1.getEpsilonSymbol());
assertThat(table.get("T2", "*")).isEqualTo("* F T2");
assertThat(table.get("T2", ")")).isEqualTo(grammar1.getEpsilonSymbol());
assertThat(table.get("T2", "$")).isEqualTo(grammar1.getEpsilonSymbol());
assertThat(table.get("F", "id")).isEqualTo("id");
assertThat(table.get("F", "(")).isEqualTo("( E )");
}
}