BasicImporter is renamed to MemoryImporter. An alias for BasicImporter
in the cmdline interface will remain. The MemoryImporter does now only
handle memory and IP events. The simulation time, dynamic instruction
count and handling of open ECs is moved to Importer.
Change-Id: I04eb0fd4b52fbf5b0ca9ab97778a62130cb626ee
This importer is so similar to the basic importer, that it can be
dropped. The current state was used in the SOBRES 2013 Paper.
Change-Id: Ibed1af6e1a72286500d42e83e594557d6dcf3803
The new parameter -s/--stats shows trace statistics such as number of
instructions, number of memory reads/writes, and duration in simulator
time.
Change-Id: I39a48ff62d9c308c420fe52e7ed17ed57ae9c139
We need to cover the complete fault space when a memory map is
provided. This means fake trace entries for completely unaccessed
addresses (e.g., unused parts of the stack), and makes sure we include
all of our fault space in the statistics later.
Without a memory map, we just don't know the extents of our fault
space; just guessing by using the minimum and maximum addresses is not
a good idea, we might have large holes in the fault space.
Change-Id: Ieb4b30a2e41a9921b969bf88513bfbacfc290c93
Is now very similar to normal importer, and may be deleted in the future, but
at the moment, this should be merged, since it is the importer used in the
sobres-2013 paper.
This changes the MySQL Schema. instr1_absolute was introduced.
Change-Id: I1bc2919bd14c335beca6d586b7cc0f80767ad7d5
- Variants/benchmarks can now be selected with wildcards
(--variant/--benchmark), and can be excluded from pruning
(--variant-exclude/--benchmark-exclude).
- The database clearing step can be skipped with --no-delete to
avoid deadlocks with concurrent DB accesses.
- Internals:
* injection_instr / injection_instr_absolute moves from
fspgroup to fsppilot. fsppilot now contains all information we
need for running FI experiments.
TODO: generic campaign needs to be modified, too.
* Force MySQL to use an efficient join order (STRAIGHT_JOIN).
Change-Id: I6241ea2de9da1a1e709fae6374df4fc06ef262a0
- Import timing information from traces that were recorded with timing.
- Allow restricting import to a memory map ("vertical" restriction).
- Proper fault-space right-margin handling.
- Cleanups, data-type usage, etc.
Change-Id: I7a49e8e9e49894c458e884bfc234f36b9ba8b130
TODO: Showing timing or extended trace information should be configurable
with a commandline switch later.
Change-Id: I72ac95ddd1d54dfef87f212ec5afa30b2ed9a6ad
This adds an interface for a backend-specific notion of time, e.g. CPU
cycles since simulator start, and a concrete implementation for the
Bochs backend. This is needed to record CPU idle times (e.g., HLT
instruction), and for target backends capable of more timing-accurate
execution.
This change also modifies the tracing plugin to add the time to all
trace events.
Change-Id: I93ac1d54c07f32b0b8f84f333417741d8e9c8288
The dciao-kernelstructs experiment does a trace imported by the
DCiAOKernelImporter:
bin/import-trace -t trace.pb -i DCiAOKernelImporter --elf-file app.elf
Pruned by the basic method:
bin/prune-trace
and does CiAO fault injection experiments, where the results are
stored in the database.
Change-Id: I485dc2e5097b3ebaf354241f474ee3d317213707
The wrapper builds a temporary bochsrc and sets an FAIL_STATEDIR
environment variable to a temporary directory. FAIL_ELF_PATH is also
set in regard to the command line interface.
Change-Id: I647c6eb3a91ae22847958ca30ede6e09519fba04
The DatabaseCampaign interacts with the MySQL tables that are created
by the import-trace and prune-trace tools. It does offer all
unfinished experiment pilots from the database to the
fail-clients. Those clients send back a (by the experiment) defined
protobuf message as a result. The custom protobuf message does have to
need the form:
import "DatabaseCampaignMessage.proto";
message ExperimentMsg {
required DatabaseCampaignMessage fsppilot = 1;
repeated group Result = 2 {
// custom fields
required int32 bitoffset = 1;
optional int32 result = 2;
}
}
The DatabaseCampaignMessage is the pilot identifier from the
database. For each of the repeated result entries a row in a table is
allocated. The structure of this table is constructed (by protobuf
reflection) from the description of the message. Each field in the
Result group becomes a column in the result table. For the given
example it would be:
CREATE TABLE result_ExperimentMessage(
pilot_id INT,
bitoffset INT NOT NULL,
result INT,
PRIMARY_KEY(pilot_id)
)
Change-Id: I28fb5488e739d4098b823b42426c5760331027f8
This tool creates the fault-space pruning pilot and group
entries. Those are used by the generic campaign to do fault
experiments.
Currently prune-trace only implements conventional def/use pruning
(--prune-method "basic").
Change-Id: I1dfb431e3b1d3cd2ee891a49a3b6ac01210be11f
The import tool does support the following import strategies:
- BasicImporter: generates def-use equivalence classes for read and
write memory accesses
- DCiAOKernelImporter: generates equivalence classes for read access in
the ciao kernel space.
Change-Id: I8960561d3e14dcf5dffa3ff7a59b61a5e8f7e719
The full-tracing plugin was used in the DSN paper. It additionally
traces the data that was accessed/written on a memory access and the
contents of some CPU registers.
Change-Id: I61f5230699009ce523aba341985b98148160556d