core/sal: correctly use CPU id in Bochs backend

Change-Id: I6b5f50d78429284b21794127af3af70df2c687a3
This commit is contained in:
Horst Schirmeier
2018-11-20 18:28:29 +01:00
parent 805bede338
commit 60329bface
2 changed files with 64 additions and 64 deletions

View File

@ -11,68 +11,68 @@ regdata_t BochsCPU::getRegisterContent(const Register* reg) const
// TODO: BX_CPU(0) *always* correct? // TODO: BX_CPU(0) *always* correct?
if (reg->getId() == RID_FLAGS) { // EFLAGS register? if (reg->getId() == RID_FLAGS) { // EFLAGS register?
return static_cast<regdata_t>(BX_CPU(id)->read_eflags()); return static_cast<regdata_t>(BX_CPU(m_Id)->read_eflags());
} }
// untested // untested
if (reg->getId() == RID_CR0) { // CR0 register? if (reg->getId() == RID_CR0) { // CR0 register?
return static_cast<regdata_t>(BX_CPU(id)->read_CR0()); return static_cast<regdata_t>(BX_CPU(m_Id)->read_CR0());
} }
// untested // untested
if (reg->getId() == RID_CR2) { // CR2 register? if (reg->getId() == RID_CR2) { // CR2 register?
return static_cast<regdata_t>(BX_CPU(id)->cr2); return static_cast<regdata_t>(BX_CPU(m_Id)->cr2);
} }
if (reg->getId() == RID_CR3) { // CR3 register? if (reg->getId() == RID_CR3) { // CR3 register?
return static_cast<regdata_t>(BX_CPU(id)->cr3); return static_cast<regdata_t>(BX_CPU(m_Id)->cr3);
} }
// untested // untested
if (reg->getId() == RID_CR4) { // CR4 register? if (reg->getId() == RID_CR4) { // CR4 register?
return static_cast<regdata_t>(BX_CPU(id)->read_CR4()); return static_cast<regdata_t>(BX_CPU(m_Id)->read_CR4());
} }
// untested // untested
if (reg->getId() == RID_CS) { // CS register? if (reg->getId() == RID_CS) { // CS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_CS].selector.value); return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_CS].selector.value);
} }
// untested // untested
if (reg->getId() == RID_DS) { // DS register? if (reg->getId() == RID_DS) { // DS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_DS].selector.value); return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_DS].selector.value);
} }
// untested // untested
if (reg->getId() == RID_ES) { // ES register? if (reg->getId() == RID_ES) { // ES register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_ES].selector.value); return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_ES].selector.value);
} }
// untested // untested
if (reg->getId() == RID_FS) { // FS register? if (reg->getId() == RID_FS) { // FS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_FS].selector.value); return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_FS].selector.value);
} }
// untested // untested
if (reg->getId() == RID_GS) { // GS register? if (reg->getId() == RID_GS) { // GS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_GS].selector.value); return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_GS].selector.value);
} }
// untested // untested
if (reg->getId() == RID_SS) { // SS register? if (reg->getId() == RID_SS) { // SS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_SS].selector.value); return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_SS].selector.value);
} }
#ifdef SIM_SUPPORT_64 #ifdef SIM_SUPPORT_64
if (reg->getId() == RID_PC) // program counter? if (reg->getId() == RID_PC) // program counter?
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[BX_64BIT_REG_RIP].rrx); return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[BX_64BIT_REG_RIP].rrx);
else // 64 bit general purpose registers else // 64 bit general purpose registers
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[reg->getId()].rrx); return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[reg->getId()].rrx);
#else // 32 bit mode #else // 32 bit mode
if (reg->getId() == RID_PC) if (reg->getId() == RID_PC)
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[BX_32BIT_REG_EIP].dword.erx); return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[BX_32BIT_REG_EIP].dword.erx);
else // 32 bit general purpose registers else // 32 bit general purpose registers
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[reg->getId()].dword.erx); return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[reg->getId()].dword.erx);
#endif // SIM_SUPPORT_64 #endif // SIM_SUPPORT_64
} }
@ -85,72 +85,72 @@ void BochsCPU::setRegisterContent(const Register* reg, regdata_t value)
#ifdef SIM_SUPPORT_64 #ifdef SIM_SUPPORT_64
// We are in 64 bit mode: Just assign the lower 32 bits! // We are in 64 bit mode: Just assign the lower 32 bits!
regdata_t regdata = getRegisterContent(reg); regdata_t regdata = getRegisterContent(reg);
BX_CPU(id)->writeEFlags((regdata & 0xFFFFFFFF00000000ULL) | (value & 0xFFFFFFFFULL), BX_CPU(m_Id)->writeEFlags((regdata & 0xFFFFFFFF00000000ULL) | (value & 0xFFFFFFFFULL),
0xffffffff); 0xffffffff);
#else #else
BX_CPU(id)->writeEFlags(value, 0xffffffff); BX_CPU(m_Id)->writeEFlags(value, 0xffffffff);
#endif #endif
BX_CPU(id)->force_flags(); BX_CPU(m_Id)->force_flags();
return; return;
} }
#ifndef __puma #ifndef __puma
// untested // untested
if (reg->getId() == RID_CR0) { // CR0 register? if (reg->getId() == RID_CR0) { // CR0 register?
BX_CPU(id)->SetCR0(value); BX_CPU(m_Id)->SetCR0(value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_CR2) { // CR2 register? if (reg->getId() == RID_CR2) { // CR2 register?
BX_CPU(id)->cr2 = value; BX_CPU(m_Id)->cr2 = value;
return; return;
} }
if (reg->getId() == RID_CR3) { // CR3 register? if (reg->getId() == RID_CR3) { // CR3 register?
BX_CPU(id)->SetCR3(value); BX_CPU(m_Id)->SetCR3(value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_CR4) { // CR4 register? if (reg->getId() == RID_CR4) { // CR4 register?
BX_CPU(id)->SetCR4(value); BX_CPU(m_Id)->SetCR4(value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_CS) { // CS register? if (reg->getId() == RID_CS) { // CS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_CS], value); BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_CS], value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_DS) { // DS register? if (reg->getId() == RID_DS) { // DS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_DS], value); BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_DS], value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_ES) { // ES register? if (reg->getId() == RID_ES) { // ES register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_ES], value); BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_ES], value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_FS) { // FS register? if (reg->getId() == RID_FS) { // FS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_FS], value); BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_FS], value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_GS) { // GS register? if (reg->getId() == RID_GS) { // GS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_GS], value); BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_GS], value);
return; return;
} }
// untested // untested
if (reg->getId() == RID_SS) { // SS register? if (reg->getId() == RID_SS) { // SS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_SS], value); BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_SS], value);
return; return;
} }
#endif #endif
@ -158,14 +158,14 @@ void BochsCPU::setRegisterContent(const Register* reg, regdata_t value)
regdata_t* pData; regdata_t* pData;
#ifdef SIM_SUPPORT_64 #ifdef SIM_SUPPORT_64
if (reg->getId() == RID_PC) // program counter? if (reg->getId() == RID_PC) // program counter?
pData = &(BX_CPU(id)->gen_reg[BX_64BIT_REG_RIP].rrx); pData = &(BX_CPU(m_Id)->gen_reg[BX_64BIT_REG_RIP].rrx);
else // 64 bit general purpose registers else // 64 bit general purpose registers
pData = &(BX_CPU(id)->gen_reg[reg->getId()].rrx); pData = &(BX_CPU(m_Id)->gen_reg[reg->getId()].rrx);
#else // 32 bit mode #else // 32 bit mode
if (reg->getId() == RID_PC) if (reg->getId() == RID_PC)
pData = &(BX_CPU(id)->gen_reg[BX_32BIT_REG_EIP].dword.erx); pData = &(BX_CPU(m_Id)->gen_reg[BX_32BIT_REG_EIP].dword.erx);
else // 32 bit general purpose registers else // 32 bit general purpose registers
pData = &(BX_CPU(id)->gen_reg[reg->getId()].dword.erx); pData = &(BX_CPU(m_Id)->gen_reg[reg->getId()].dword.erx);
#endif // SIM_SUPPORT_64 #endif // SIM_SUPPORT_64
*pData = value; *pData = value;
} }

View File

@ -67,41 +67,41 @@ public:
* Returns \c true if the corresponding flag is set, or \c false * Returns \c true if the corresponding flag is set, or \c false
* otherwise. * otherwise.
*/ */
bool getCarryFlag() const { return BX_CPU(0)->get_CF(); } bool getCarryFlag() const { return BX_CPU(m_Id)->get_CF(); }
bool getParityFlag() const { return BX_CPU(0)->get_PF(); } bool getParityFlag() const { return BX_CPU(m_Id)->get_PF(); }
bool getZeroFlag() const { return BX_CPU(0)->get_ZF(); } bool getZeroFlag() const { return BX_CPU(m_Id)->get_ZF(); }
bool getSignFlag() const { return BX_CPU(0)->get_SF(); } bool getSignFlag() const { return BX_CPU(m_Id)->get_SF(); }
bool getOverflowFlag() const { return BX_CPU(0)->get_OF(); } bool getOverflowFlag() const { return BX_CPU(m_Id)->get_OF(); }
bool getTrapFlag() const { return BX_CPU(0)->get_TF(); } bool getTrapFlag() const { return BX_CPU(m_Id)->get_TF(); }
bool getInterruptFlag() const { return BX_CPU(0)->get_IF(); } bool getInterruptFlag() const { return BX_CPU(m_Id)->get_IF(); }
bool getDirectionFlag() const { return BX_CPU(0)->get_DF(); } bool getDirectionFlag() const { return BX_CPU(m_Id)->get_DF(); }
unsigned getIOPrivilegeLevel() const { return BX_CPU(0)->get_IOPL(); } unsigned getIOPrivilegeLevel() const { return BX_CPU(m_Id)->get_IOPL(); }
bool getNestedTaskFlag() const { return BX_CPU(0)->get_NT(); } bool getNestedTaskFlag() const { return BX_CPU(m_Id)->get_NT(); }
bool getResumeFlag() const { return BX_CPU(0)->get_RF(); } bool getResumeFlag() const { return BX_CPU(m_Id)->get_RF(); }
bool getVMFlag() const { return BX_CPU(0)->get_VM(); } bool getVMFlag() const { return BX_CPU(m_Id)->get_VM(); }
bool getAlignmentCheckFlag() const { return BX_CPU(0)->get_AC(); } bool getAlignmentCheckFlag() const { return BX_CPU(m_Id)->get_AC(); }
bool getVInterruptFlag() const { return BX_CPU(0)->get_VIF(); } bool getVInterruptFlag() const { return BX_CPU(m_Id)->get_VIF(); }
bool getVInterruptPendingFlag() const { return BX_CPU(0)->get_VIP(); } bool getVInterruptPendingFlag() const { return BX_CPU(m_Id)->get_VIP(); }
bool getIdentificationFlag() const { return BX_CPU(0)->get_ID(); } bool getIdentificationFlag() const { return BX_CPU(m_Id)->get_ID(); }
/** /**
* Sets/resets various status FLAGS. * Sets/resets various status FLAGS.
*/ */
void setCarryFlag(bool bit) { BX_CPU(0)->set_CF(bit); } void setCarryFlag(bool bit) { BX_CPU(m_Id)->set_CF(bit); }
void setParityFlag(bool bit) { BX_CPU(0)->set_PF(bit); } void setParityFlag(bool bit) { BX_CPU(m_Id)->set_PF(bit); }
void setZeroFlag(bool bit) { BX_CPU(0)->set_ZF(bit); } void setZeroFlag(bool bit) { BX_CPU(m_Id)->set_ZF(bit); }
void setSignFlag(bool bit) { BX_CPU(0)->set_SF(bit); } void setSignFlag(bool bit) { BX_CPU(m_Id)->set_SF(bit); }
void setOverflowFlag(bool bit) { BX_CPU(0)->set_OF(bit); } void setOverflowFlag(bool bit) { BX_CPU(m_Id)->set_OF(bit); }
void setTrapFlag(bool bit) { BX_CPU(0)->set_TF(bit); } void setTrapFlag(bool bit) { BX_CPU(m_Id)->set_TF(bit); }
void setInterruptFlag(bool bit) { BX_CPU(0)->set_IF(bit); } void setInterruptFlag(bool bit) { BX_CPU(m_Id)->set_IF(bit); }
void setDirectionFlag(bool bit) { BX_CPU(0)->set_DF(bit); } void setDirectionFlag(bool bit) { BX_CPU(m_Id)->set_DF(bit); }
void setIOPrivilegeLevel(unsigned lvl) { BX_CPU(0)->set_IOPL(lvl); } void setIOPrivilegeLevel(unsigned lvl) { BX_CPU(m_Id)->set_IOPL(lvl); }
void setNestedTaskFlag(bool bit) { BX_CPU(0)->set_NT(bit); } void setNestedTaskFlag(bool bit) { BX_CPU(m_Id)->set_NT(bit); }
void setResumeFlag(bool bit) { BX_CPU(0)->set_RF(bit); } void setResumeFlag(bool bit) { BX_CPU(m_Id)->set_RF(bit); }
void setVMFlag(bool bit) { BX_CPU(0)->set_VM(bit); } void setVMFlag(bool bit) { BX_CPU(m_Id)->set_VM(bit); }
void setAlignmentCheckFlag(bool bit) { BX_CPU(0)->set_AC(bit); } void setAlignmentCheckFlag(bool bit) { BX_CPU(m_Id)->set_AC(bit); }
void setVInterruptFlag(bool bit) { BX_CPU(0)->set_VIF(bit); } void setVInterruptFlag(bool bit) { BX_CPU(m_Id)->set_VIF(bit); }
void setVInterruptPendingFlag(bool bit) { BX_CPU(0)->set_VIP(bit); } void setVInterruptPendingFlag(bool bit) { BX_CPU(m_Id)->set_VIP(bit); }
void setIdentificationFlag(bool bit) { BX_CPU(0)->set_ID(bit); } void setIdentificationFlag(bool bit) { BX_CPU(m_Id)->set_ID(bit); }
/** /**
* Returns the current id of this CPU. * Returns the current id of this CPU.
* @return the current id * @return the current id