core/sal: correctly use CPU id in Bochs backend

Change-Id: I6b5f50d78429284b21794127af3af70df2c687a3
This commit is contained in:
Horst Schirmeier
2018-11-20 18:28:29 +01:00
parent 805bede338
commit 60329bface
2 changed files with 64 additions and 64 deletions

View File

@ -11,68 +11,68 @@ regdata_t BochsCPU::getRegisterContent(const Register* reg) const
// TODO: BX_CPU(0) *always* correct?
if (reg->getId() == RID_FLAGS) { // EFLAGS register?
return static_cast<regdata_t>(BX_CPU(id)->read_eflags());
return static_cast<regdata_t>(BX_CPU(m_Id)->read_eflags());
}
// untested
if (reg->getId() == RID_CR0) { // CR0 register?
return static_cast<regdata_t>(BX_CPU(id)->read_CR0());
return static_cast<regdata_t>(BX_CPU(m_Id)->read_CR0());
}
// untested
if (reg->getId() == RID_CR2) { // CR2 register?
return static_cast<regdata_t>(BX_CPU(id)->cr2);
return static_cast<regdata_t>(BX_CPU(m_Id)->cr2);
}
if (reg->getId() == RID_CR3) { // CR3 register?
return static_cast<regdata_t>(BX_CPU(id)->cr3);
return static_cast<regdata_t>(BX_CPU(m_Id)->cr3);
}
// untested
if (reg->getId() == RID_CR4) { // CR4 register?
return static_cast<regdata_t>(BX_CPU(id)->read_CR4());
return static_cast<regdata_t>(BX_CPU(m_Id)->read_CR4());
}
// untested
if (reg->getId() == RID_CS) { // CS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_CS].selector.value);
return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_CS].selector.value);
}
// untested
if (reg->getId() == RID_DS) { // DS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_DS].selector.value);
return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_DS].selector.value);
}
// untested
if (reg->getId() == RID_ES) { // ES register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_ES].selector.value);
return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_ES].selector.value);
}
// untested
if (reg->getId() == RID_FS) { // FS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_FS].selector.value);
return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_FS].selector.value);
}
// untested
if (reg->getId() == RID_GS) { // GS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_GS].selector.value);
return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_GS].selector.value);
}
// untested
if (reg->getId() == RID_SS) { // SS register?
return static_cast<regdata_t>(BX_CPU(id)->sregs[BX_SEG_REG_SS].selector.value);
return static_cast<regdata_t>(BX_CPU(m_Id)->sregs[BX_SEG_REG_SS].selector.value);
}
#ifdef SIM_SUPPORT_64
if (reg->getId() == RID_PC) // program counter?
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[BX_64BIT_REG_RIP].rrx);
return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[BX_64BIT_REG_RIP].rrx);
else // 64 bit general purpose registers
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[reg->getId()].rrx);
return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[reg->getId()].rrx);
#else // 32 bit mode
if (reg->getId() == RID_PC)
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[BX_32BIT_REG_EIP].dword.erx);
return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[BX_32BIT_REG_EIP].dword.erx);
else // 32 bit general purpose registers
return static_cast<regdata_t>(BX_CPU(id)->gen_reg[reg->getId()].dword.erx);
return static_cast<regdata_t>(BX_CPU(m_Id)->gen_reg[reg->getId()].dword.erx);
#endif // SIM_SUPPORT_64
}
@ -85,72 +85,72 @@ void BochsCPU::setRegisterContent(const Register* reg, regdata_t value)
#ifdef SIM_SUPPORT_64
// We are in 64 bit mode: Just assign the lower 32 bits!
regdata_t regdata = getRegisterContent(reg);
BX_CPU(id)->writeEFlags((regdata & 0xFFFFFFFF00000000ULL) | (value & 0xFFFFFFFFULL),
BX_CPU(m_Id)->writeEFlags((regdata & 0xFFFFFFFF00000000ULL) | (value & 0xFFFFFFFFULL),
0xffffffff);
#else
BX_CPU(id)->writeEFlags(value, 0xffffffff);
BX_CPU(m_Id)->writeEFlags(value, 0xffffffff);
#endif
BX_CPU(id)->force_flags();
BX_CPU(m_Id)->force_flags();
return;
}
#ifndef __puma
// untested
if (reg->getId() == RID_CR0) { // CR0 register?
BX_CPU(id)->SetCR0(value);
BX_CPU(m_Id)->SetCR0(value);
return;
}
// untested
if (reg->getId() == RID_CR2) { // CR2 register?
BX_CPU(id)->cr2 = value;
BX_CPU(m_Id)->cr2 = value;
return;
}
if (reg->getId() == RID_CR3) { // CR3 register?
BX_CPU(id)->SetCR3(value);
BX_CPU(m_Id)->SetCR3(value);
return;
}
// untested
if (reg->getId() == RID_CR4) { // CR4 register?
BX_CPU(id)->SetCR4(value);
BX_CPU(m_Id)->SetCR4(value);
return;
}
// untested
if (reg->getId() == RID_CS) { // CS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_CS], value);
BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_CS], value);
return;
}
// untested
if (reg->getId() == RID_DS) { // DS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_DS], value);
BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_DS], value);
return;
}
// untested
if (reg->getId() == RID_ES) { // ES register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_ES], value);
BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_ES], value);
return;
}
// untested
if (reg->getId() == RID_FS) { // FS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_FS], value);
BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_FS], value);
return;
}
// untested
if (reg->getId() == RID_GS) { // GS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_GS], value);
BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_GS], value);
return;
}
// untested
if (reg->getId() == RID_SS) { // SS register?
BX_CPU(id)->load_seg_reg(&BX_CPU(id)->sregs[BX_SEG_REG_SS], value);
BX_CPU(m_Id)->load_seg_reg(&BX_CPU(m_Id)->sregs[BX_SEG_REG_SS], value);
return;
}
#endif
@ -158,14 +158,14 @@ void BochsCPU::setRegisterContent(const Register* reg, regdata_t value)
regdata_t* pData;
#ifdef SIM_SUPPORT_64
if (reg->getId() == RID_PC) // program counter?
pData = &(BX_CPU(id)->gen_reg[BX_64BIT_REG_RIP].rrx);
pData = &(BX_CPU(m_Id)->gen_reg[BX_64BIT_REG_RIP].rrx);
else // 64 bit general purpose registers
pData = &(BX_CPU(id)->gen_reg[reg->getId()].rrx);
pData = &(BX_CPU(m_Id)->gen_reg[reg->getId()].rrx);
#else // 32 bit mode
if (reg->getId() == RID_PC)
pData = &(BX_CPU(id)->gen_reg[BX_32BIT_REG_EIP].dword.erx);
pData = &(BX_CPU(m_Id)->gen_reg[BX_32BIT_REG_EIP].dword.erx);
else // 32 bit general purpose registers
pData = &(BX_CPU(id)->gen_reg[reg->getId()].dword.erx);
pData = &(BX_CPU(m_Id)->gen_reg[reg->getId()].dword.erx);
#endif // SIM_SUPPORT_64
*pData = value;
}

View File

@ -67,41 +67,41 @@ public:
* Returns \c true if the corresponding flag is set, or \c false
* otherwise.
*/
bool getCarryFlag() const { return BX_CPU(0)->get_CF(); }
bool getParityFlag() const { return BX_CPU(0)->get_PF(); }
bool getZeroFlag() const { return BX_CPU(0)->get_ZF(); }
bool getSignFlag() const { return BX_CPU(0)->get_SF(); }
bool getOverflowFlag() const { return BX_CPU(0)->get_OF(); }
bool getTrapFlag() const { return BX_CPU(0)->get_TF(); }
bool getInterruptFlag() const { return BX_CPU(0)->get_IF(); }
bool getDirectionFlag() const { return BX_CPU(0)->get_DF(); }
unsigned getIOPrivilegeLevel() const { return BX_CPU(0)->get_IOPL(); }
bool getNestedTaskFlag() const { return BX_CPU(0)->get_NT(); }
bool getResumeFlag() const { return BX_CPU(0)->get_RF(); }
bool getVMFlag() const { return BX_CPU(0)->get_VM(); }
bool getAlignmentCheckFlag() const { return BX_CPU(0)->get_AC(); }
bool getVInterruptFlag() const { return BX_CPU(0)->get_VIF(); }
bool getVInterruptPendingFlag() const { return BX_CPU(0)->get_VIP(); }
bool getIdentificationFlag() const { return BX_CPU(0)->get_ID(); }
bool getCarryFlag() const { return BX_CPU(m_Id)->get_CF(); }
bool getParityFlag() const { return BX_CPU(m_Id)->get_PF(); }
bool getZeroFlag() const { return BX_CPU(m_Id)->get_ZF(); }
bool getSignFlag() const { return BX_CPU(m_Id)->get_SF(); }
bool getOverflowFlag() const { return BX_CPU(m_Id)->get_OF(); }
bool getTrapFlag() const { return BX_CPU(m_Id)->get_TF(); }
bool getInterruptFlag() const { return BX_CPU(m_Id)->get_IF(); }
bool getDirectionFlag() const { return BX_CPU(m_Id)->get_DF(); }
unsigned getIOPrivilegeLevel() const { return BX_CPU(m_Id)->get_IOPL(); }
bool getNestedTaskFlag() const { return BX_CPU(m_Id)->get_NT(); }
bool getResumeFlag() const { return BX_CPU(m_Id)->get_RF(); }
bool getVMFlag() const { return BX_CPU(m_Id)->get_VM(); }
bool getAlignmentCheckFlag() const { return BX_CPU(m_Id)->get_AC(); }
bool getVInterruptFlag() const { return BX_CPU(m_Id)->get_VIF(); }
bool getVInterruptPendingFlag() const { return BX_CPU(m_Id)->get_VIP(); }
bool getIdentificationFlag() const { return BX_CPU(m_Id)->get_ID(); }
/**
* Sets/resets various status FLAGS.
*/
void setCarryFlag(bool bit) { BX_CPU(0)->set_CF(bit); }
void setParityFlag(bool bit) { BX_CPU(0)->set_PF(bit); }
void setZeroFlag(bool bit) { BX_CPU(0)->set_ZF(bit); }
void setSignFlag(bool bit) { BX_CPU(0)->set_SF(bit); }
void setOverflowFlag(bool bit) { BX_CPU(0)->set_OF(bit); }
void setTrapFlag(bool bit) { BX_CPU(0)->set_TF(bit); }
void setInterruptFlag(bool bit) { BX_CPU(0)->set_IF(bit); }
void setDirectionFlag(bool bit) { BX_CPU(0)->set_DF(bit); }
void setIOPrivilegeLevel(unsigned lvl) { BX_CPU(0)->set_IOPL(lvl); }
void setNestedTaskFlag(bool bit) { BX_CPU(0)->set_NT(bit); }
void setResumeFlag(bool bit) { BX_CPU(0)->set_RF(bit); }
void setVMFlag(bool bit) { BX_CPU(0)->set_VM(bit); }
void setAlignmentCheckFlag(bool bit) { BX_CPU(0)->set_AC(bit); }
void setVInterruptFlag(bool bit) { BX_CPU(0)->set_VIF(bit); }
void setVInterruptPendingFlag(bool bit) { BX_CPU(0)->set_VIP(bit); }
void setIdentificationFlag(bool bit) { BX_CPU(0)->set_ID(bit); }
void setCarryFlag(bool bit) { BX_CPU(m_Id)->set_CF(bit); }
void setParityFlag(bool bit) { BX_CPU(m_Id)->set_PF(bit); }
void setZeroFlag(bool bit) { BX_CPU(m_Id)->set_ZF(bit); }
void setSignFlag(bool bit) { BX_CPU(m_Id)->set_SF(bit); }
void setOverflowFlag(bool bit) { BX_CPU(m_Id)->set_OF(bit); }
void setTrapFlag(bool bit) { BX_CPU(m_Id)->set_TF(bit); }
void setInterruptFlag(bool bit) { BX_CPU(m_Id)->set_IF(bit); }
void setDirectionFlag(bool bit) { BX_CPU(m_Id)->set_DF(bit); }
void setIOPrivilegeLevel(unsigned lvl) { BX_CPU(m_Id)->set_IOPL(lvl); }
void setNestedTaskFlag(bool bit) { BX_CPU(m_Id)->set_NT(bit); }
void setResumeFlag(bool bit) { BX_CPU(m_Id)->set_RF(bit); }
void setVMFlag(bool bit) { BX_CPU(m_Id)->set_VM(bit); }
void setAlignmentCheckFlag(bool bit) { BX_CPU(m_Id)->set_AC(bit); }
void setVInterruptFlag(bool bit) { BX_CPU(m_Id)->set_VIF(bit); }
void setVInterruptPendingFlag(bool bit) { BX_CPU(m_Id)->set_VIP(bit); }
void setIdentificationFlag(bool bit) { BX_CPU(m_Id)->set_ID(bit); }
/**
* Returns the current id of this CPU.
* @return the current id