Code Restructuring.

This commit is contained in:
Tobias Stumpf
2014-06-13 21:08:36 +02:00
parent 191b14c0e6
commit 350f6bb680
6 changed files with 980 additions and 950 deletions

View File

@ -14,6 +14,9 @@ set(MY_CAMPAIGN_SRCS
aluinstr.cc
experiment.hpp
experiment.cc
experimentFI.cc
experimentParameter.cc
experimentPreparation.cc
campaign.hpp
campaign.cc
UDIS86.hpp

View File

@ -1,29 +1,10 @@
#include <iostream>
#include <sstream>
#include <map>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "UDIS86.hpp"
#include "InstructionFilter.hpp"
#include "aluinstr.hpp"
#include "campaign.hpp"
#include "sal/SALConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/Memory.hpp"
#include "sal/Listener.hpp"
#include <sal/bochs/BochsMemory.hpp>
#include "config/FailConfig.hpp"
#include "TracePlugin.pb.h"
#include "util/ProtoStream.hpp"
#include "util/gzstream/gzstream.h"
#include "util/CommandLine.hpp"
using namespace std;
using namespace fail;
@ -37,67 +18,6 @@ using namespace fail;
save, and restore. Enable these in the configuration.
#endif
string L4SysExperiment::sanitised(const string &in_str) {
string result;
int in_str_size = in_str.size();
result.reserve(in_str_size);
for (int idx = 0; idx < in_str_size; idx++) {
char cur_char = in_str[idx];
unsigned cur_char_value = static_cast<unsigned>(cur_char);
// also exclude the delimiter (',')
if (cur_char_value < 0x20 || cur_char_value > 0x7E || cur_char_value == ',') {
char str_nr[5];
sprintf(str_nr, "\\%03o", cur_char_value);
result += str_nr;
} else {
result += cur_char;
}
}
return result;
}
BaseListener* L4SysExperiment::waitIOOrOther(bool clear_output) {
IOPortListener ev_ioport(0x3F8, true);
BaseListener* ev = NULL;
if (clear_output)
currentOutput.clear();
while (true) {
simulator.addListener(&ev_ioport);
ev = simulator.resume();
//log << "hello " << simulator.getListenerCount() << std::endl;
//simulator.removeListener(&ev_ioport);
if (ev == &ev_ioport) {
currentOutput += ev_ioport.getData();
//log << currentOutput << std::endl;
} else {
break;
}
}
return ev;
}
Bit32u L4SysExperiment::eipBiased() {
BX_CPU_C *cpu_context = simulator.getCPUContext();
Bit32u EIP = cpu_context->gen_reg[BX_32BIT_REG_EIP].dword.erx;
return EIP + cpu_context->eipPageBias;
}
const Bit8u *L4SysExperiment::calculateInstructionAddress() {
// pasted in from various nested Bochs functions and macros - I hope
// they will not change too soon (as do the Bochs developers, probably)
BX_CPU_C *cpu_context = simulator.getCPUContext();
const Bit8u *result = cpu_context->eipFetchPtr + eipBiased();
return result;
}
unsigned L4SysExperiment::calculateTimeout(unsigned instr_left, unsigned ips) {
// the timeout in seconds, plus one backup second (avoids rounding overhead)
// [instr] / [instr / s] = [s]
unsigned seconds = instr_left / ips + 1;
// 1.1 (+10 percent) * 1000000 mus/s * [s]
return 1100000 * seconds;
}
L4SysExperiment::L4SysExperiment()
: m_jc("localhost"), log("L4Sys", false)
{
@ -118,875 +38,12 @@ void L4SysExperiment::terminate(int reason) {
simulator.terminate(reason);
}
void L4SysExperiment::terminateWithError(string details, int reason,
L4SysProtoMsg_Result *r = 0) {
L4SysProtoMsg_Result *result;
if (r)
result = r;
else
result = param->msg.add_result();
result->set_resulttype(param->msg.UNKNOWN);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
result->set_details(details);
m_jc.sendResult(*param);
terminate(reason);
}
void L4SysExperiment::runToStart(fail::BPSingleListener *bp)
{
bp->setWatchInstructionPointer(conf.func_entry);
log << "run until ip reaches 0x" << hex << conf.func_entry << endl;
simulator.addListenerAndResume(bp);
log << "test function entry reached, saving state" << endl;
log << "EIP: expected " << hex << bp->getTriggerInstructionPointer()
<< " and actually got "
<< simulator.getCPU(0).getInstructionPointer()
<< endl;
log << "check the source code if the two instruction pointers are not equal" << endl;
if(conf.address_space == conf.address_space_trace) {
conf.address_space_trace = BX_CPU(0)->cr3;
}
conf.address_space = BX_CPU(0)->cr3;
}
BaseListener* L4SysExperiment::afterInjection(L4SysProtoMsg_Result* res)
{
BaseListener *bl = 0;
simtime_t t_inject = simulator.getTimerTicks();
simtime_t t_bailout;
ifstream instr_list_file(conf.instruction_list.c_str(), ios::binary);
instr_list_file.seekg((1 + res->instr_offset()) * sizeof(TraceInstr));
RangeSetInstructionFilter filtering(conf.filter.c_str());
for (;;) {
// Step over _all_ instructions in the trace AS
BPSingleListener stepListener(ANY_ADDR, conf.address_space_trace);
TraceInstr curr_instr;
instr_list_file.read(reinterpret_cast<char*>(&curr_instr),
sizeof(TraceInstr));
t_bailout = simulator.getTimerTicks();
// step until next traced instruction
simulator.addListener(&stepListener);
bl = waitIOOrOther(false);
// bail out if we hit a listener other than the single step
// one -> in this case the experiment is over prematurely
if (bl != &stepListener) {
// Note, the difference in this case is the diff between the
// last correct instruction and the starting point -> this is
// useful for TIMEOUT events where the actual time now would be
// the complete TIMEOUT whereas we are interested in the time
// until execution deviates from the original trace
res->set_deviate_steps(t_bailout - t_inject);
res->set_deviate_eip(-1);
log << "bailing out of single-stepping mode" << endl;
break;
}
address_t eip = stepListener.getTriggerInstructionPointer();
if (!filtering.isValidInstr(eip))
continue;
if (eip != curr_instr.trigger_addr) {
// In the case where we see an actual instruction stream deviation, we
// want the real diff between NOW and the injection start point
t_bailout = simulator.getTimerTicks();
log << "got " << hex << eip << " expected "
<< curr_instr.trigger_addr << endl;
log << "mismatch found after " << (t_bailout - t_inject) << " instructions." << endl;
res->set_deviate_steps(t_bailout - t_inject);
res->set_deviate_eip(eip);
return waitIOOrOther(false);
}
}
log << "left single-stepping mode after " << (t_bailout - t_inject)
<< " instructions." << endl;
return bl;
}
void L4SysExperiment::collectInstructionTrace(fail::BPSingleListener* bp)
{
fail::MemAccessListener ML(ANY_ADDR, MemAccessEvent::MEM_READWRITE);
ogzstream out(conf.trace.c_str());
ProtoOStream *os = new ProtoOStream(&out);
size_t count = 0, inst_accepted = 0, mem = 0, mem_valid = 0;
simtime_t prevtime = 0, currtime;
simtime_diff_t deltatime;
log << "restoring state" << endl;
simulator.restore(conf.state_folder.c_str());
currtime = simulator.getTimerTicks();
log << "EIP = " << hex
<< simulator.getCPU(0).getInstructionPointer()
<< endl;
if (!simulator.addListener(&ML)) {
log << "did not add memory listener..." << std::endl;
exit(1);
}
if (!simulator.addListener(bp)) {
log << "did not add breakpoint listener..." << std::endl;
exit(1);
}
#if L4SYS_FILTER_INSTRUCTIONS
ofstream instr_list_file(conf.instruction_list.c_str(), ios::binary);
RangeSetInstructionFilter filtering(conf.filter.c_str());
bp->setWatchInstructionPointer(ANY_ADDR);
map<address_t, unsigned> times_called_map;
bool injecting = false;
while (bp->getTriggerInstructionPointer() != conf.func_exit) {
fail::BaseListener *res = simulator.resume();
address_t curr_addr = 0;
// XXX: See the API problem below!
if (res == &ML) {
curr_addr = ML.getTriggerInstructionPointer();
simulator.addListener(&ML);
if ((conf.address_space_trace != ANY_ADDR) && (BX_CPU(0)->cr3 != conf.address_space_trace)) {
continue;
}
++mem;
} else if (res == bp) {
curr_addr = bp->getTriggerInstructionPointer();
assert(curr_addr == simulator.getCPU(0).getInstructionPointer());
simulator.addListener(bp);
++count;
}
currtime = simulator.getTimerTicks();
deltatime = currtime - prevtime;
if (curr_addr == conf.filter_entry) {
injecting = true;
}
if (curr_addr == conf.filter_exit) {
injecting = false;
}
// Only trace if:
// 1) we are between FILTER_ENTRY and FILTER_EXIT, and
// 2) we have a valid instruction according to filter rules, and
// 3) we are in the TRACE address space
if (!injecting or
!filtering.isValidInstr(curr_addr, reinterpret_cast<char const*>(calculateInstructionAddress()))
or
(BX_CPU(0)->cr3 != conf.address_space_trace)
) {
//log << "connt..." << std::endl;
continue;
}
if (res == &ML) {
#if 0
log << "Memory event IP " << std::hex << ML.getTriggerInstructionPointer()
<< " @ " << ML.getTriggerAddress() << "("
<< ML.getTriggerAccessType() << "," << ML.getTriggerWidth()
<< ")" << std::endl;
#endif
++mem_valid;
Trace_Event te;
if (deltatime != 0) { te.set_time_delta(1); };
te.set_ip(curr_addr);
te.set_memaddr(ML.getTriggerAddress());
te.set_accesstype( (ML.getTriggerAccessType() & MemAccessEvent::MEM_READ) ? te.READ : te.WRITE );
te.set_width(ML.getTriggerWidth());
os->writeMessage(&te);
} else if (res == bp) {
unsigned times_called = times_called_map[curr_addr];
++times_called;
times_called_map[curr_addr] = times_called;
//log << "breakpoint event" << std::endl;
// now check if we want to add the instruction for fault injection
++inst_accepted;
// 1) The 'old' way of logging instructions -> DEPRECATE soon
// BUT: we are currently using the bp_counter stored in this
// file!
TraceInstr new_instr;
//log << "writing IP " << hex << curr_addr << " counter "
// << dec << times_called << "(" << hex << BX_CPU(0)->cr3 << ")"
// << endl;
new_instr.trigger_addr = curr_addr;
new_instr.bp_counter = times_called;
instr_list_file.write(reinterpret_cast<char*>(&new_instr), sizeof(TraceInstr));
// 2) The 'new' way -> generate Events that can be processed by
// the generic *-trace tools
// XXX: need to log CR3 if we want multiple binaries here
Trace_Event e;
if (deltatime != 0) { e.set_time_delta(1); };
e.set_ip(curr_addr);
os->writeMessage(&e);
} else {
printf("Unknown res? %p\n", res);
}
prevtime = currtime;
//short sanity check
//log << "continue..." << std::endl;
}
log << "saving instructions triggered during normal execution" << endl;
instr_list_file.close();
log << "test function calculation position reached after "
<< dec << count << " instructions; " << inst_accepted << " accepted" << endl;
log << "mem accesses: " << mem << ", valid: " << mem_valid << std::endl;
#else
bp->setWatchInstructionPointer(ANY_ADDR);
while (bp->getTriggerInstructionPointer() != conf.func_exit)
{
fail::BaseListener *res = simulator.resume();
address_t curr_addr = 0;
// XXX: See the API problem below!
if (res == &ML) {
curr_addr = ML.getTriggerInstructionPointer();
simulator.addListener(&ML);
if ((func.address_space_trace != ANY_ADDR) && (BX_CPU(0)->cr3 != func.address_space_trace)) {
continue;
}
++mem;
} else if (res == bp) {
curr_addr = bp->getTriggerInstructionPointer();
assert(curr_addr == simulator.getCPU(0).getInstructionPointer());
simulator.addListener(bp);
++count;
}
#if 0
if (curr_addr < 0xC0000000) // XXX filter for kernel-only experiment
continue;
#endif
currtime = simulator.getTimerTicks();
deltatime = currtime - prevtime;
if (res == &ML) {
#if 0
log << "Memory event IP " << std::hex << ML.getTriggerInstructionPointer()
<< " @ " << ML.getTriggerAddress() << "("
<< ML.getTriggerAccessType() << "," << ML.getTriggerWidth()
<< ")" << std::endl;
#endif
++mem_valid;
Trace_Event te;
if (deltatime != 0) { te.set_time_delta(deltatime); };
te.set_ip(curr_addr);
te.set_memaddr(ML.getTriggerAddress());
te.set_accesstype( (ML.getTriggerAccessType() & MemAccessEvent::MEM_READ) ? te.READ : te.WRITE );
te.set_width(ML.getTriggerWidth());
os->writeMessage(&te);
} else if (res == bp) {
Trace_Event e;
if (deltatime != 0) { e.set_time_delta(deltatime); };
e.set_ip(curr_addr);
os->writeMessage(&e);
} else {
printf("Unknown res? %p\n", res);
}
prevtime = currtime;
}
log << "test function calculation position reached after "
<< dec << count << " instructions; " << count << " accepted" << endl;
log << "mem accesses: " << mem << ", valid: " << mem_valid << std::endl;
#endif
conf.numinstr = inst_accepted;
conf.totinstr = count;
delete bp;
}
void L4SysExperiment::goldenRun(fail::BPSingleListener* bp)
{
log << "restoring state" << endl;
simulator.restore(conf.state_folder.c_str());
log << "EIP = " << hex
<< simulator.getCPU(0).getInstructionPointer()
<< endl;
std::string golden_run;
ofstream golden_run_file(conf.golden_run.c_str());
bp->setWatchInstructionPointer(conf.func_exit);
simulator.addListener(bp);
BaseListener* ev = waitIOOrOther(true);
if (ev == bp) {
golden_run.assign(currentOutput.c_str());
golden_run_file << currentOutput.c_str();
log << "Output successfully logged!" << endl;
} else {
log
<< "Obviously, there is some trouble with"
<< " the events registered - aborting simulation!"
<< endl;
golden_run_file.close();
terminate(10);
}
log << "saving output generated during normal execution" << endl;
golden_run_file.close();
delete bp;
}
void L4SysExperiment::getJobParameters()
{
// get the experiment parameters
log << "asking job server for experiment parameters" << endl;
if (!m_jc.getParam(*param)) {
log << "Dying." << endl;
// communicate that we were told to die
terminate(1);
}
}
void L4SysExperiment::validatePrerequisites(std::string state, std::string output)
{
struct stat teststruct;
if (stat(state.c_str(), &teststruct) == -1 ||
stat(output.c_str(), &teststruct) == -1) {
log << "Important data missing - call \"prepare\" first." << endl;
terminate(10);
}
}
void L4SysExperiment::readGoldenRun(std::string& target, std::string golden_run)
{
ifstream golden_run_file(golden_run.c_str());
if (!golden_run_file.good()) {
log << "Could not open file " << golden_run.c_str() << endl;
terminate(20);
}
target.assign((istreambuf_iterator<char>(golden_run_file)),
istreambuf_iterator<char>());
golden_run_file.close();
}
void L4SysExperiment::setupFilteredBreakpoint(fail::BPSingleListener* bp, int instOffset, std::string instr_list)
{
/*
* The L4Sys experiment uses instruction filtering to restrict the range
* of fault injection to only e.g., kernel instructions.
*
* To speed up injection, L4Sys furthermore does not use per-instruction
* breakpoints but only places a breakpoint on the actually interesting
* instruction (e.g., the injection EIP). Hence, we also do not count
* instructions from the beginning of the experiment, but we count how
* often a certain EIP was hit before the injection.
*
* To achieve these properties, we use an additional trace file that
* provides us with a 'hit counter' of each injection candidate. We use
* the global instruction ID (DataBaseCampaign: instruction_offset) to
* index into this trace file and determine the value for the breakpoint
* counter.
*/
ifstream instr_list_file(instr_list.c_str(), ios::binary);
if (!instr_list_file.good()) {
log << "Missing instruction trace" << endl;
terminate(21);
}
log << "inst offset " << dec << instOffset << " sizeof(TraceInstr) " << sizeof(TraceInstr) << endl;
TraceInstr curr_instr;
instr_list_file.seekg(instOffset * sizeof(TraceInstr));
log << instr_list_file.eof() << " " << instr_list_file.bad() << " "
<< instr_list_file.fail() << endl;
if (instr_list_file.eof()) {
log << "Job parameters indicate position outside the traced instruction list." << endl;
terminate(1);
}
instr_list_file.read(reinterpret_cast<char*>(&curr_instr), sizeof(TraceInstr));
instr_list_file.close();
log << "setting watchpoint at " << hex << curr_instr.trigger_addr << endl;
bp->setWatchInstructionPointer(curr_instr.trigger_addr);
log << "setting bp counter " << hex << curr_instr.bp_counter << endl;
bp->setCounter(curr_instr.bp_counter);
}
fail::BPSingleListener*
L4SysExperiment::prepareMemoryExperiment(int ip, int offset, int dataAddress)
{
fail::BPSingleListener *bp = new BPSingleListener(0, conf.address_space_trace);
log << "\033[34;1mMemory fault injection\033[0m at instruction " << std::hex << offset
<< ", ip " << ip << ", address " << dataAddress << std::endl;
#if L4SYS_FILTER_INSTRUCTIONS
setupFilteredBreakpoint(bp, offset, conf.instruction_list);
assert(bp->getWatchInstructionPointer() == (address_t)(ip & 0xFFFFFFFF));
#else
bp->setWatchInstructionPointer(ANY_ADDR);
bp->setCounter(offset);
#endif
return bp;
}
fail::BPSingleListener*
L4SysExperiment::prepareRegisterExperiment(int ip, int offset, int dataAddress)
{
fail::BPSingleListener *bp = new BPSingleListener(0, conf.address_space_trace);
int reg, regOffset;
reg = ((dataAddress >> 4) & 0xF) + 1; // regs start at 1
regOffset = dataAddress & 0xF;
log << "\033[32;1mGPR bitflip\033[0m at instr. offset " << offset
<< " reg data (" << reg << ", "
<< regOffset << ")" << std::endl;
#if L4SYS_FILTER_INSTRUCTIONS
setupFilteredBreakpoint(bp, offset, conf.instruction_list);
log << bp->getWatchInstructionPointer() << std::endl;
log << ip << std::endl;
assert(bp->getWatchInstructionPointer() == (address_t)(ip & 0xFFFFFFFF));
log << bp->getCounter() << std::endl;
#else
log << "Exp offset: " << offset << std::endl;
bp->setWatchInstructionPointer(ANY_ADDR);
bp->setCounter(offset);
#endif
return bp;
}
bool L4SysExperiment::doMemoryInjection(int address, int bit)
{
MemoryManager& mm = simulator.getMemoryManager();
// XXX: evil, but I need to bail out if memory access is invalid
host_address_t addr = reinterpret_cast<BochsMemoryManager*>(&mm)->guestToHost(address);
if (addr == (host_address_t)ADDR_INV)
return false;
byte_t data = mm.getByte(address);
byte_t newdata = data ^ (1 << bit);
mm.setByte(address, newdata);
log << "[" << std::hex << address << "] " << (int)data
<< " -> " << (int)newdata << std::endl;
return true;
}
void L4SysExperiment::doRegisterInjection(int regDesc, int bit)
{
int reg, offset;
reg = (regDesc >> 4) + 1; // regs start at 1
offset = regDesc & 0xF;
ConcreteCPU& cpu = simulator.getCPU(0);
Register *reg_target = cpu.getRegister(reg - 1);
regdata_t data = cpu.getRegisterContent(reg_target);
regdata_t newdata = data ^ (1 << (bit + 8 * offset));
cpu.setRegisterContent(reg_target, newdata);
log << "Reg[" << reg << "]: " << std::hex << data << " -> "
<< newdata << std::endl;
}
void L4SysExperiment::doExperiments(fail::BPSingleListener* bp) {
// LAST STEP: The actual experiment.
validatePrerequisites(conf.state_folder, conf.golden_run);
// Read the golden run output for validation purposes
std::string golden_run;
readGoldenRun(golden_run, conf.golden_run);
getJobParameters();
int exp_type = param->msg.exp_type();
int instr_offset = param->msg.fsppilot().injection_instr();
int regData = param->msg.fsppilot().data_address();
if (exp_type == param->msg.MEM) {
bp = prepareMemoryExperiment(param->msg.fsppilot().injection_instr_absolute(),
param->msg.fsppilot().injection_instr(),
param->msg.fsppilot().data_address());
} else if (exp_type == param->msg.GPRFLIP) {
bp = prepareRegisterExperiment(param->msg.fsppilot().injection_instr_absolute(),
param->msg.fsppilot().injection_instr(),
param->msg.fsppilot().data_address());
} else {
log << "Unsupported experiment type: " << exp_type << std::endl;
terminate(1);
}
assert(bp);
for (unsigned bit = 0; bit < 8; ++bit) {
L4SysProtoMsg_Result *result = param->msg.add_result();
result->set_instr_offset(instr_offset);
simulator.clearListeners();
log << "Bit " << bit << ", restoring state." << endl;
simulator.restore(conf.state_folder.c_str());
log << " ... EIP = " << std::hex << simulator.getCPU(0).getInstructionPointer() << std::endl;
simulator.addListener(bp);
simtime_t now = simulator.getTimerTicks();
fail::BaseListener *go = waitIOOrOther(true);
assert(go == bp);
log << "Hit BP @ " << hex << bp->getTriggerInstructionPointer() << " " << bp->getWatchInstructionPointer()
<< " Start time " << now << ", new time " << simulator.getTimerTicks()
<< ", diff = " << simulator.getTimerTicks() - now << std::endl;
#if L4SYS_FILTER_INSTRUCTIONS
assert(bp->getTriggerInstructionPointer() == bp->getWatchInstructionPointer());
#endif
result->set_injection_ip(bp->getTriggerInstructionPointer());
if (exp_type == param->msg.MEM) {
result->set_bit_offset(bit);
log << "injection addr: "
<< std::hex << param->msg.fsppilot().data_address()
<< std::endl;
result->set_injection_address(param->msg.fsppilot().data_address());
if (!doMemoryInjection(param->msg.fsppilot().data_address(), bit))
{
terminateWithError("invalid mem access", 51, result);
}
} else if (exp_type == param->msg.GPRFLIP) {
int reg = (param->msg.fsppilot().data_address() >> 4) + 1;
result->set_register_offset(static_cast<L4SysProtoMsg_RegisterType>(reg));
result->set_bit_offset(bit + 8 * (param->msg.fsppilot().data_address() & 0xF));
doRegisterInjection(param->msg.fsppilot().data_address(), bit);
} else {
log << "doing nothing for experiment type " << exp_type << std::endl;
}
BPSingleListener ev_done(conf.func_exit, conf.address_space);
simulator.addListener(&ev_done);
// Well-known bailout point -- if we hit L4SYS_BREAK_BLINK, which
// is the entry of Vga::blink_cursor(), we know that we are in some
// kind of error handler
BPSingleListener ev_blink(conf.break_blink);
simulator.addListener(&ev_blink);
BPSingleListener ev_longjmp(conf.break_longjmp);
simulator.addListener(&ev_longjmp);
//If we come to our own exit function, we can stop
BPSingleListener ev_exit(conf.break_exit);
simulator.addListener(&ev_exit);
unsigned instr_left = conf.totinstr - instr_offset; // XXX offset is in NUMINSTR, TOTINSTR is higher
BPSingleListener ev_incomplete(ANY_ADDR, conf.address_space);
/*
* Use hard-coded value for incomplete counter. We are currently looking at short-running pieces
* of code. This means that in the error case, where a lot of data is still to be printed to serial
* line, the benchmark does not complete this within <short-time> * <1.x> cycles. Instead, we use
* a frame large enough to catch some more output even at the end of a run.
*/
ev_incomplete.setCounter(2000000);
simulator.addListener(&ev_incomplete);
/*
* This timeout will always be at least one second - see calculateTimeout()
*/
TimerListener ev_timeout(calculateTimeout(instr_left, conf.emul_ips));
simulator.addListener(&ev_timeout);
log << "continue... (" << simulator.getListenerCount()
<< " breakpoints, timeout @ " << ev_timeout.getTimeout()
<< std::endl;
log << "TOListener " << (void*)&ev_timeout << " incompListener "
<< (void*)&ev_incomplete << endl;
BaseListener *ev = afterInjection(result);
log << "afterInj: res.devstep = " << result->deviate_steps() << endl;
/* copying a string object that contains control sequences
* unfortunately does not work with the library I am using,
* which is why output is passed on as C string and
* the string compare is done on C strings
*/
if (ev == &ev_done) {
if (strcmp(currentOutput.c_str(), golden_run.c_str()) == 0) {
log << "Result DONE" << endl;
result->set_resulttype(param->msg.DONE);
} else {
log << "Result WRONG" << endl;
result->set_resulttype(param->msg.WRONG);
result->set_output(sanitised(currentOutput.c_str()));
}
} else if ((ev == &ev_incomplete) ||
(ev == &ev_blink) ||
(ev == &ev_longjmp)) {
log << "Result INCOMPLETE" << endl;
result->set_resulttype(param->msg.INCOMPLETE);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
} else if (ev == &ev_timeout) {
log << "Result TIMEOUT" << endl;
result->set_resulttype(param->msg.TIMEOUT);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
} else if (ev == &ev_exit) {
log << "Result FAILSTOP" << endl;
result->set_resulttype(param->msg.FAILSTOP);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
} else {
log << "Result WTF?" << endl;
stringstream ss;
ss << "eventid " << ev;
terminateWithError(ss.str(), 50);
}
}
m_jc.sendResult(*param);
}
void L4SysExperiment::parseOptions(L4SysConfig &conf) {
CommandLine &cmd = CommandLine::Inst();
cmd.addOption("", "", Arg::None, "USAGE: fail-client -Wf,[option] -Wf,[option] ... <BochsOptions...>");
CommandLine::option_handle HELP =
cmd.addOption("h", "help", Arg::None, "-h,--help \tPrint usage and exit");
CommandLine::option_handle STEP =
cmd.addOption("s", "step", Arg::Optional, "-s,--step \tSpecify preparation step, without this argumnt fail-client start in experiment mode (cr3: get CR3, cc: Create Checkpoint, it: collect instruction trace, gr: golden run, all: do the whole preparation)");
CommandLine::option_handle OPT_MAX_INSTR_BYTES =
cmd.addOption("", "max_instr_bytes", Arg::Optional, "--max_instr_bytes \t define MAX_INSTR_BYTES");
CommandLine::option_handle OPT_ADDRESS_SPACE =
cmd.addOption("", "address_space", Arg::Optional, "--address_space \t define L4SYS_ADDRESS_SPACE");
CommandLine::option_handle OPT_ADDRESS_SPACE_TRACE =
cmd.addOption("", "address_space_trace", Arg::Optional, "--address_space_trace \t define L4SYS_ADDRESS_SPACE_TRACE");
CommandLine::option_handle OPT_FUNC_ENTRY =
cmd.addOption("", "func_entry", Arg::Optional, "--func_entry \t define L4SYS_FUNC_ENTRY");
CommandLine::option_handle OPT_FUNC_EXIT =
cmd.addOption("", "func_exit", Arg::Optional, "--func_exit \t define L4SYS_FUNC_EXIT");
CommandLine::option_handle OPT_FILTER_ENTRY =
cmd.addOption("", "filter_entry", Arg::Optional, "--filter_entry \t define L4SYS_FILTER_ENTRY");
CommandLine::option_handle OPT_FILTER_EXIT =
cmd.addOption("", "filter_exit", Arg::Optional, "--filter_exit \t define L4SYS_FILTER_EXIT");
CommandLine::option_handle OPT_BREAK_BLINK =
cmd.addOption("", "break_blink", Arg::Optional, "--break_blink \t define L4SYS_BREAK_BLINK");
CommandLine::option_handle OPT_BREAK_LONGJMP =
cmd.addOption("", "break_longjmp", Arg::Optional, "--break_longjmp \t define L4SYS_BREAK_LONGJMP");
CommandLine::option_handle OPT_BREAK_EXIT =
cmd.addOption("", "break_exit", Arg::Optional, "--break_exit \t define L4SYS_BREAK_EXIT");
CommandLine::option_handle OPT_FILTER_INSTRUCTIONS =
cmd.addOption("", "filter_instructions", Arg::Optional, "--filter_instructions \t define L4SYS_FILTER_INSTRUCTIONS");
CommandLine::option_handle OPT_NUMINSTR =
cmd.addOption("", "numinstr", Arg::Optional, "--numinstr \t define L4SYS_NUMINSTR");
CommandLine::option_handle OPT_TOTINSTR =
cmd.addOption("", "totinstr", Arg::Optional, "--totinstr \t define L4SYS_TOTINSTR");
CommandLine::option_handle OPT_EMUL_IPS =
cmd.addOption("", "bochs_ips", Arg::Optional, "--bochs_ips \t define L4SYS_BOCHS_IPS");
CommandLine::option_handle OPT_STATE_FOLDER =
cmd.addOption("", "state_folder", Arg::Optional, "--state_folder \t define L4SYS_STATE_FOLDER");
CommandLine::option_handle OPT_INSTRUCTION_LIST =
cmd.addOption("", "instruction_list", Arg::Optional, "--instruction_list \t define L4SYS_INSTRUCTION_LIST");
CommandLine::option_handle OPT_ALU_INSTRUCTIONS =
cmd.addOption("", "alu_instructions", Arg::Optional, "--alu_instructions \t define L4SYS_ALU_INSTRUCTIONS");
CommandLine::option_handle OPT_CORRECT_OUTPUT =
cmd.addOption("", "golden_run", Arg::Optional, "--correct_output \t define L4SYS_CORRECT_OUTPUT");
CommandLine::option_handle OPT_FILTER =
cmd.addOption("", "filter", Arg::Optional, "--filter \t define L4SYS_FILTER");
CommandLine::option_handle OPT_TRACE =
cmd.addOption("", "trace", Arg::Optional, "--trace \t define outputfile for trace (default trace.pb)");
if (!cmd.parse()) {
cerr << "Error parsing arguments." << endl;
simulator.terminate(1);
} else if (cmd[HELP]) {
cmd.printUsage();
simulator.terminate(0);
}
if (cmd[OPT_MAX_INSTR_BYTES]) {
conf.max_instr_bytes = strtol(cmd[OPT_MAX_INSTR_BYTES].arg, NULL, 16);
} else {
conf.max_instr_bytes = MAX_INSTR_BYTES;
}
if (cmd[OPT_ADDRESS_SPACE]) {
conf.address_space = strtol(cmd[OPT_ADDRESS_SPACE].arg, NULL, 16);
} else {
conf.address_space = L4SYS_ADDRESS_SPACE;
}
if (cmd[OPT_ADDRESS_SPACE_TRACE]) {
conf.address_space_trace = strtol(cmd[OPT_ADDRESS_SPACE_TRACE].arg, NULL, 16);
} else {
conf.address_space_trace = L4SYS_ADDRESS_SPACE_TRACE;
}
if (cmd[OPT_FUNC_ENTRY]) {
conf.func_entry = strtol(cmd[OPT_FUNC_ENTRY].arg, NULL, 16);
} else {
conf.func_entry = L4SYS_FUNC_ENTRY;
}
if (cmd[OPT_FUNC_EXIT]) {
conf.func_exit = strtol(cmd[OPT_FUNC_EXIT].arg, NULL, 16);
} else {
conf.func_exit = L4SYS_FUNC_EXIT;
}
if (cmd[OPT_FILTER_ENTRY]) {
conf.filter_entry = strtol(cmd[OPT_FILTER_ENTRY].arg, NULL, 16);
} else {
conf.filter_entry = L4SYS_FILTER_ENTRY;
}
if (cmd[OPT_FILTER_EXIT]) {
conf.filter_exit = strtol(cmd[OPT_FILTER_EXIT].arg, NULL, 16);
} else {
conf.filter_exit = L4SYS_FILTER_EXIT;
}
if (cmd[OPT_BREAK_BLINK]) {
conf.break_blink = strtol(cmd[OPT_BREAK_BLINK].arg, NULL, 16);
} else {
conf.break_blink = L4SYS_BREAK_BLINK;
}
if (cmd[OPT_BREAK_LONGJMP]) {
conf.break_longjmp = strtol(cmd[OPT_BREAK_LONGJMP].arg, NULL, 16);
} else {
conf.break_longjmp = L4SYS_BREAK_LONGJMP;
}
if (cmd[OPT_BREAK_EXIT]) {
conf.break_exit = strtol(cmd[OPT_BREAK_EXIT].arg, NULL, 16);
} else {
conf.break_exit = L4SYS_BREAK_EXIT;
}
if (cmd[OPT_FILTER_INSTRUCTIONS]) {
conf.filter_instructions = strtol(cmd[OPT_FILTER_INSTRUCTIONS].arg, NULL, 16);
} else {
conf.filter_instructions = L4SYS_FILTER_INSTRUCTIONS;
}
if (cmd[OPT_NUMINSTR]) {
conf.numinstr = strtol(cmd[OPT_NUMINSTR].arg, NULL, 16);
} else {
conf.numinstr = L4SYS_NUMINSTR;
}
if (cmd[OPT_TOTINSTR]) {
conf.totinstr = strtol(cmd[OPT_TOTINSTR].arg, NULL, 16);
} else {
conf.totinstr = L4SYS_TOTINSTR;
}
if (cmd[OPT_EMUL_IPS]) {
conf.emul_ips = strtol(cmd[OPT_EMUL_IPS].arg, NULL, 16);
} else {
conf.emul_ips = L4SYS_BOCHS_IPS;
}
if (cmd[OPT_STATE_FOLDER]) {
conf.state_folder = std::string(cmd[OPT_STATE_FOLDER].arg);
} else {
conf.state_folder = L4SYS_STATE_FOLDER;
}
if (cmd[OPT_INSTRUCTION_LIST]) {
conf.instruction_list = std::string(cmd[OPT_INSTRUCTION_LIST].arg);
} else {
conf.instruction_list = L4SYS_INSTRUCTION_LIST;
}
if (cmd[OPT_ALU_INSTRUCTIONS]) {
conf.alu_instructions = std::string(cmd[OPT_ALU_INSTRUCTIONS].arg);
} else {
conf.alu_instructions = L4SYS_ALU_INSTRUCTIONS;
}
if (cmd[OPT_CORRECT_OUTPUT]) {
conf.golden_run = std::string(cmd[OPT_CORRECT_OUTPUT].arg);
} else {
conf.golden_run = L4SYS_CORRECT_OUTPUT;
}
if (cmd[OPT_FILTER]) {
conf.filter = std::string(cmd[OPT_FILTER].arg);
} else {
conf.filter = L4SYS_FILTER;
}
if (cmd[OPT_TRACE]) {
conf.trace = std::string(cmd[OPT_TRACE].arg);
} else {
conf.trace = std::string("trace.pb");
}
if (cmd[STEP]) {
if (!std::string("cr3").compare(cmd[STEP].arg) ) {
log << "calculate cr3" << endl;
conf.step = L4SysConfig::GET_CR3;
} else if (!std::string("cc").compare(cmd[STEP].arg) ) {
log << "Create Checkpoint" << endl;
conf.step = L4SysConfig::CREATE_CHECKPOINT;
} else if (!std::string("it").compare(cmd[STEP].arg) ) {
log << "collect instruction trace" << endl;
conf.step = L4SysConfig::COLLECT_INSTR_TRACE;
} else if (!std::string("gr").compare(cmd[STEP].arg) ) {
log << "golden run" << endl;
conf.step = L4SysConfig::GOLDEN_RUN;
} else if (!std::string("all").compare(cmd[STEP].arg) ) {
log << "do all preparation steps" << endl;
conf.step = L4SysConfig::FULL_PREPARATION;
} else {
cerr << "Wrong argument for option '--step'" << endl;
simulator.terminate(1);
}
} else {
conf.step = L4SysConfig::NO_PREP;
}
}
bool L4SysExperiment::run()
{
srand(time(NULL));
log << "Starting L4Sys Experiment, phase " << PREPARATION_STEP << endl;
parseOptions(conf);
switch(conf.step) {
@ -1012,7 +69,7 @@ bool L4SysExperiment::run()
// STEP 3: determine the output of a "golden run"
// -> golden run needs L4SYS_ADDRESS_SPACE as it breaks on
// L4SYS_FUNC_EXIT
goldenRun(new BPSingleListener(0, L4SYS_ADDRESS_SPACE));
goldenRun(new BPSingleListener(0, conf.address_space));
break;
}
case L4SysConfig::FULL_PREPARATION: {
@ -1021,7 +78,7 @@ bool L4SysExperiment::run()
simulator.clearListeners();
collectInstructionTrace(new BPSingleListener(0, ANY_ADDR));
simulator.clearListeners();
goldenRun(new BPSingleListener(0, L4SYS_ADDRESS_SPACE));
goldenRun(new BPSingleListener(0, conf.address_space));
break;
}
default: {

View File

@ -0,0 +1,471 @@
#include <iostream>
#include "experiment.hpp"
#include "UDIS86.hpp"
#include "InstructionFilter.hpp"
#include "aluinstr.hpp"
#include "campaign.hpp"
#include "sal/SALConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/Memory.hpp"
#include "sal/Listener.hpp"
#include <sal/bochs/BochsMemory.hpp>
#include "config/FailConfig.hpp"
#include "TracePlugin.pb.h"
#include "util/ProtoStream.hpp"
#include "util/gzstream/gzstream.h"
#include "util/CommandLine.hpp"
using namespace std;
using namespace fail;
string L4SysExperiment::sanitised(const string &in_str) {
string result;
int in_str_size = in_str.size();
result.reserve(in_str_size);
for (int idx = 0; idx < in_str_size; idx++) {
char cur_char = in_str[idx];
unsigned cur_char_value = static_cast<unsigned>(cur_char);
// also exclude the delimiter (',')
if (cur_char_value < 0x20 || cur_char_value > 0x7E || cur_char_value == ',') {
char str_nr[5];
sprintf(str_nr, "\\%03o", cur_char_value);
result += str_nr;
} else {
result += cur_char;
}
}
return result;
}
BaseListener* L4SysExperiment::waitIOOrOther(bool clear_output) {
IOPortListener ev_ioport(0x3F8, true);
BaseListener* ev = NULL;
if (clear_output)
currentOutput.clear();
while (true) {
simulator.addListener(&ev_ioport);
ev = simulator.resume();
//log << "hello " << simulator.getListenerCount() << std::endl;
//simulator.removeListener(&ev_ioport);
if (ev == &ev_ioport) {
currentOutput += ev_ioport.getData();
//log << currentOutput << std::endl;
} else {
break;
}
}
return ev;
}
unsigned L4SysExperiment::calculateTimeout(unsigned instr_left, unsigned ips) {
// the timeout in seconds, plus one backup second (avoids rounding overhead)
// [instr] / [instr / s] = [s]
unsigned seconds = instr_left / ips + 1;
// 1.1 (+10 percent) * 1000000 mus/s * [s]
return 1100000 * seconds;
}
BaseListener* L4SysExperiment::afterInjection(L4SysProtoMsg_Result* res)
{
BaseListener *bl = 0;
simtime_t t_inject = simulator.getTimerTicks();
simtime_t t_bailout;
ifstream instr_list_file(conf.instruction_list.c_str(), ios::binary);
instr_list_file.seekg((1 + res->instr_offset()) * sizeof(TraceInstr));
RangeSetInstructionFilter filtering(conf.filter.c_str());
for (;;) {
// Step over _all_ instructions in the trace AS
BPSingleListener stepListener(ANY_ADDR, conf.address_space_trace);
TraceInstr curr_instr;
instr_list_file.read(reinterpret_cast<char*>(&curr_instr),
sizeof(TraceInstr));
t_bailout = simulator.getTimerTicks();
// step until next traced instruction
simulator.addListener(&stepListener);
bl = waitIOOrOther(false);
// bail out if we hit a listener other than the single step
// one -> in this case the experiment is over prematurely
if (bl != &stepListener) {
// Note, the difference in this case is the diff between the
// last correct instruction and the starting point -> this is
// useful for TIMEOUT events where the actual time now would be
// the complete TIMEOUT whereas we are interested in the time
// until execution deviates from the original trace
res->set_deviate_steps(t_bailout - t_inject);
res->set_deviate_eip(-1);
log << "bailing out of single-stepping mode" << endl;
break;
}
address_t eip = stepListener.getTriggerInstructionPointer();
if (!filtering.isValidInstr(eip))
continue;
if (eip != curr_instr.trigger_addr) {
// In the case where we see an actual instruction stream deviation, we
// want the real diff between NOW and the injection start point
t_bailout = simulator.getTimerTicks();
log << "got " << hex << eip << " expected "
<< curr_instr.trigger_addr << endl;
log << "mismatch found after " << (t_bailout - t_inject) << " instructions." << endl;
res->set_deviate_steps(t_bailout - t_inject);
res->set_deviate_eip(eip);
return waitIOOrOther(false);
}
}
log << "left single-stepping mode after " << (t_bailout - t_inject)
<< " instructions." << endl;
return bl;
}
void L4SysExperiment::getJobParameters()
{
// get the experiment parameters
log << "asking job server for experiment parameters" << endl;
if (!m_jc.getParam(*param)) {
log << "Dying." << endl;
// communicate that we were told to die
terminate(1);
}
}
void L4SysExperiment::validatePrerequisites(std::string state, std::string output)
{
struct stat teststruct;
if (stat(state.c_str(), &teststruct) == -1 ||
stat(output.c_str(), &teststruct) == -1) {
log << "Important data missing - call \"prepare\" first." << endl;
terminate(10);
}
}
void L4SysExperiment::readGoldenRun(std::string& target, std::string golden_run)
{
ifstream golden_run_file(golden_run.c_str());
if (!golden_run_file.good()) {
log << "Could not open file " << golden_run.c_str() << endl;
terminate(20);
}
target.assign((istreambuf_iterator<char>(golden_run_file)),
istreambuf_iterator<char>());
golden_run_file.close();
}
void L4SysExperiment::setupFilteredBreakpoint(fail::BPSingleListener* bp, int instOffset, std::string instr_list)
{
/*
* The L4Sys experiment uses instruction filtering to restrict the range
* of fault injection to only e.g., kernel instructions.
*
* To speed up injection, L4Sys furthermore does not use per-instruction
* breakpoints but only places a breakpoint on the actually interesting
* instruction (e.g., the injection EIP). Hence, we also do not count
* instructions from the beginning of the experiment, but we count how
* often a certain EIP was hit before the injection.
*
* To achieve these properties, we use an additional trace file that
* provides us with a 'hit counter' of each injection candidate. We use
* the global instruction ID (DataBaseCampaign: instruction_offset) to
* index into this trace file and determine the value for the breakpoint
* counter.
*/
ifstream instr_list_file(instr_list.c_str(), ios::binary);
if (!instr_list_file.good()) {
log << "Missing instruction trace" << endl;
terminate(21);
}
log << "inst offset " << dec << instOffset << " sizeof(TraceInstr) " << sizeof(TraceInstr) << endl;
TraceInstr curr_instr;
instr_list_file.seekg(instOffset * sizeof(TraceInstr));
log << instr_list_file.eof() << " " << instr_list_file.bad() << " "
<< instr_list_file.fail() << endl;
if (instr_list_file.eof()) {
log << "Job parameters indicate position outside the traced instruction list." << endl;
terminate(1);
}
instr_list_file.read(reinterpret_cast<char*>(&curr_instr), sizeof(TraceInstr));
instr_list_file.close();
log << "setting watchpoint at " << hex << curr_instr.trigger_addr << endl;
bp->setWatchInstructionPointer(curr_instr.trigger_addr);
log << "setting bp counter " << hex << curr_instr.bp_counter << endl;
bp->setCounter(curr_instr.bp_counter);
}
fail::BPSingleListener*
L4SysExperiment::prepareMemoryExperiment(int ip, int offset, int dataAddress)
{
fail::BPSingleListener *bp = new BPSingleListener(0, conf.address_space_trace);
log << "\033[34;1mMemory fault injection\033[0m at instruction " << std::hex << offset
<< ", ip " << ip << ", address " << dataAddress << std::endl;
#if L4SYS_FILTER_INSTRUCTIONS
setupFilteredBreakpoint(bp, offset, conf.instruction_list);
assert(bp->getWatchInstructionPointer() == (address_t)(ip & 0xFFFFFFFF));
#else
bp->setWatchInstructionPointer(ANY_ADDR);
bp->setCounter(offset);
#endif
return bp;
}
fail::BPSingleListener*
L4SysExperiment::prepareRegisterExperiment(int ip, int offset, int dataAddress)
{
fail::BPSingleListener *bp = new BPSingleListener(0, conf.address_space_trace);
int reg, regOffset;
reg = ((dataAddress >> 4) & 0xF) + 1; // regs start at 1
regOffset = dataAddress & 0xF;
log << "\033[32;1mGPR bitflip\033[0m at instr. offset " << offset
<< " reg data (" << reg << ", "
<< regOffset << ")" << std::endl;
#if L4SYS_FILTER_INSTRUCTIONS
setupFilteredBreakpoint(bp, offset, conf.instruction_list);
log << bp->getWatchInstructionPointer() << std::endl;
log << ip << std::endl;
assert(bp->getWatchInstructionPointer() == (address_t)(ip & 0xFFFFFFFF));
log << bp->getCounter() << std::endl;
#else
log << "Exp offset: " << offset << std::endl;
bp->setWatchInstructionPointer(ANY_ADDR);
bp->setCounter(offset);
#endif
return bp;
}
bool L4SysExperiment::doMemoryInjection(int address, int bit)
{
MemoryManager& mm = simulator.getMemoryManager();
// XXX: evil, but I need to bail out if memory access is invalid
host_address_t addr = reinterpret_cast<BochsMemoryManager*>(&mm)->guestToHost(address);
if (addr == (host_address_t)ADDR_INV)
return false;
byte_t data = mm.getByte(address);
byte_t newdata = data ^ (1 << bit);
mm.setByte(address, newdata);
log << "[" << std::hex << address << "] " << (int)data
<< " -> " << (int)newdata << std::endl;
return true;
}
void L4SysExperiment::doRegisterInjection(int regDesc, int bit)
{
int reg, offset;
reg = (regDesc >> 4) + 1; // regs start at 1
offset = regDesc & 0xF;
ConcreteCPU& cpu = simulator.getCPU(0);
Register *reg_target = cpu.getRegister(reg - 1);
regdata_t data = cpu.getRegisterContent(reg_target);
regdata_t newdata = data ^ (1 << (bit + 8 * offset));
cpu.setRegisterContent(reg_target, newdata);
log << "Reg[" << reg << "]: " << std::hex << data << " -> "
<< newdata << std::endl;
}
void L4SysExperiment::terminateWithError(string details, int reason,
L4SysProtoMsg_Result *r = 0) {
L4SysProtoMsg_Result *result;
if (r)
result = r;
else
result = param->msg.add_result();
result->set_resulttype(param->msg.UNKNOWN);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
result->set_details(details);
m_jc.sendResult(*param);
terminate(reason);
}
void L4SysExperiment::doExperiments(fail::BPSingleListener* bp) {
// LAST STEP: The actual experiment.
validatePrerequisites(conf.state_folder, conf.golden_run);
// Read the golden run output for validation purposes
std::string golden_run;
readGoldenRun(golden_run, conf.golden_run);
getJobParameters();
int exp_type = param->msg.exp_type();
int instr_offset = param->msg.fsppilot().injection_instr();
int regData = param->msg.fsppilot().data_address();
if (exp_type == param->msg.MEM) {
bp = prepareMemoryExperiment(param->msg.fsppilot().injection_instr_absolute(),
param->msg.fsppilot().injection_instr(),
param->msg.fsppilot().data_address());
} else if (exp_type == param->msg.GPRFLIP) {
bp = prepareRegisterExperiment(param->msg.fsppilot().injection_instr_absolute(),
param->msg.fsppilot().injection_instr(),
param->msg.fsppilot().data_address());
} else {
log << "Unsupported experiment type: " << exp_type << std::endl;
terminate(1);
}
assert(bp);
for (unsigned bit = 0; bit < 8; ++bit) {
L4SysProtoMsg_Result *result = param->msg.add_result();
result->set_instr_offset(instr_offset);
simulator.clearListeners();
log << "Bit " << bit << ", restoring state." << endl;
simulator.restore(conf.state_folder.c_str());
log << " ... EIP = " << std::hex << simulator.getCPU(0).getInstructionPointer() << std::endl;
simulator.addListener(bp);
simtime_t now = simulator.getTimerTicks();
fail::BaseListener *go = waitIOOrOther(true);
assert(go == bp);
log << "Hit BP @ " << hex << bp->getTriggerInstructionPointer() << " " << bp->getWatchInstructionPointer()
<< " Start time " << now << ", new time " << simulator.getTimerTicks()
<< ", diff = " << simulator.getTimerTicks() - now << std::endl;
#if L4SYS_FILTER_INSTRUCTIONS
assert(bp->getTriggerInstructionPointer() == bp->getWatchInstructionPointer());
#endif
result->set_injection_ip(bp->getTriggerInstructionPointer());
if (exp_type == param->msg.MEM) {
result->set_bit_offset(bit);
log << "injection addr: "
<< std::hex << param->msg.fsppilot().data_address()
<< std::endl;
result->set_injection_address(param->msg.fsppilot().data_address());
if (!doMemoryInjection(param->msg.fsppilot().data_address(), bit))
{
terminateWithError("invalid mem access", 51, result);
}
} else if (exp_type == param->msg.GPRFLIP) {
int reg = (param->msg.fsppilot().data_address() >> 4) + 1;
result->set_register_offset(static_cast<L4SysProtoMsg_RegisterType>(reg));
result->set_bit_offset(bit + 8 * (param->msg.fsppilot().data_address() & 0xF));
doRegisterInjection(param->msg.fsppilot().data_address(), bit);
} else {
log << "doing nothing for experiment type " << exp_type << std::endl;
}
BPSingleListener ev_done(conf.func_exit, conf.address_space);
simulator.addListener(&ev_done);
// Well-known bailout point -- if we hit L4SYS_BREAK_BLINK, which
// is the entry of Vga::blink_cursor(), we know that we are in some
// kind of error handler
BPSingleListener ev_blink(conf.break_blink);
simulator.addListener(&ev_blink);
BPSingleListener ev_longjmp(conf.break_longjmp);
simulator.addListener(&ev_longjmp);
//If we come to our own exit function, we can stop
BPSingleListener ev_exit(conf.break_exit);
simulator.addListener(&ev_exit);
unsigned instr_left = conf.totinstr - instr_offset; // XXX offset is in NUMINSTR, TOTINSTR is higher
BPSingleListener ev_incomplete(ANY_ADDR, conf.address_space);
/*
* Use hard-coded value for incomplete counter. We are currently looking at short-running pieces
* of code. This means that in the error case, where a lot of data is still to be printed to serial
* line, the benchmark does not complete this within <short-time> * <1.x> cycles. Instead, we use
* a frame large enough to catch some more output even at the end of a run.
*/
ev_incomplete.setCounter(2000000);
simulator.addListener(&ev_incomplete);
/*
* This timeout will always be at least one second - see calculateTimeout()
*/
TimerListener ev_timeout(calculateTimeout(instr_left, conf.emul_ips));
simulator.addListener(&ev_timeout);
log << "continue... (" << simulator.getListenerCount()
<< " breakpoints, timeout @ " << ev_timeout.getTimeout()
<< std::endl;
log << "TOListener " << (void*)&ev_timeout << " incompListener "
<< (void*)&ev_incomplete << endl;
BaseListener *ev = afterInjection(result);
log << "afterInj: res.devstep = " << result->deviate_steps() << endl;
/* copying a string object that contains control sequences
* unfortunately does not work with the library I am using,
* which is why output is passed on as C string and
* the string compare is done on C strings
*/
if (ev == &ev_done) {
if (strcmp(currentOutput.c_str(), golden_run.c_str()) == 0) {
log << "Result DONE" << endl;
result->set_resulttype(param->msg.DONE);
} else {
log << "Result WRONG" << endl;
result->set_resulttype(param->msg.WRONG);
result->set_output(sanitised(currentOutput.c_str()));
}
} else if ((ev == &ev_incomplete) ||
(ev == &ev_blink) ||
(ev == &ev_longjmp)) {
log << "Result INCOMPLETE" << endl;
result->set_resulttype(param->msg.INCOMPLETE);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
} else if (ev == &ev_timeout) {
log << "Result TIMEOUT" << endl;
result->set_resulttype(param->msg.TIMEOUT);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
} else if (ev == &ev_exit) {
log << "Result FAILSTOP" << endl;
result->set_resulttype(param->msg.FAILSTOP);
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
result->set_output(sanitised(currentOutput.c_str()));
} else {
log << "Result WTF?" << endl;
stringstream ss;
ss << "eventid " << ev;
terminateWithError(ss.str(), 50);
}
}
m_jc.sendResult(*param);
}

View File

@ -26,9 +26,9 @@
#define L4SYS_FILTER_ENTRY L4SYS_inj_start
#define L4SYS_FILTER_EXIT L4SYS_inj_end
#define L4SYS_BREAK_BLINK 0x0
#define L4SYS_BREAK_LONGJMP 0x0
#define L4SYS_BREAK_EXIT 0x0
#define L4SYS_BREAK_BLINK 0xdead
#define L4SYS_BREAK_LONGJMP 0xdead
#define L4SYS_BREAK_EXIT 0xdead
// select instruction filtering
// XXX: this should be always on and the code should be
@ -37,8 +37,8 @@
#define L4SYS_FILTER_INSTRUCTIONS 1
// kernel: 2377547, userland: 79405472
#define L4SYS_NUMINSTR 16
#define L4SYS_TOTINSTR 58401
#define L4SYS_NUMINSTR 0x1
#define L4SYS_TOTINSTR 0x1
#define L4SYS_BOCHS_IPS 5000000
// several file names used

View File

@ -0,0 +1,213 @@
#include <iostream>
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "util/CommandLine.hpp"
using namespace std;
using namespace fail;
void L4SysExperiment::parseOptions(L4SysConfig &conf) {
CommandLine &cmd = CommandLine::Inst();
cmd.addOption("", "", Arg::None, "USAGE: fail-client -Wf,[option] -Wf,[option] ... <BochsOptions...>");
CommandLine::option_handle HELP =
cmd.addOption("h", "help", Arg::None, "-h,--help \tPrint usage and exit");
CommandLine::option_handle STEP =
cmd.addOption("s", "step", Arg::Optional, "-s,--step \tSpecify preparation step, without this argumnt fail-client start in experiment mode (cr3: get CR3, cc: Create Checkpoint, it: collect instruction trace, gr: golden run, all: do the whole preparation)");
CommandLine::option_handle OPT_MAX_INSTR_BYTES =
cmd.addOption("", "max_instr_bytes", Arg::Optional, "--max_instr_bytes \t define MAX_INSTR_BYTES");
CommandLine::option_handle OPT_ADDRESS_SPACE =
cmd.addOption("", "address_space", Arg::Optional, "--address_space \t define L4SYS_ADDRESS_SPACE");
CommandLine::option_handle OPT_ADDRESS_SPACE_TRACE =
cmd.addOption("", "address_space_trace", Arg::Optional, "--address_space_trace \t define L4SYS_ADDRESS_SPACE_TRACE");
CommandLine::option_handle OPT_FUNC_ENTRY =
cmd.addOption("", "func_entry", Arg::Optional, "--func_entry \t define L4SYS_FUNC_ENTRY");
CommandLine::option_handle OPT_FUNC_EXIT =
cmd.addOption("", "func_exit", Arg::Optional, "--func_exit \t define L4SYS_FUNC_EXIT");
CommandLine::option_handle OPT_FILTER_ENTRY =
cmd.addOption("", "filter_entry", Arg::Optional, "--filter_entry \t define L4SYS_FILTER_ENTRY");
CommandLine::option_handle OPT_FILTER_EXIT =
cmd.addOption("", "filter_exit", Arg::Optional, "--filter_exit \t define L4SYS_FILTER_EXIT");
CommandLine::option_handle OPT_BREAK_BLINK =
cmd.addOption("", "break_blink", Arg::Optional, "--break_blink \t define L4SYS_BREAK_BLINK");
CommandLine::option_handle OPT_BREAK_LONGJMP =
cmd.addOption("", "break_longjmp", Arg::Optional, "--break_longjmp \t define L4SYS_BREAK_LONGJMP");
CommandLine::option_handle OPT_BREAK_EXIT =
cmd.addOption("", "break_exit", Arg::Optional, "--break_exit \t define L4SYS_BREAK_EXIT");
CommandLine::option_handle OPT_FILTER_INSTRUCTIONS =
cmd.addOption("", "filter_instructions", Arg::Optional, "--filter_instructions \t define L4SYS_FILTER_INSTRUCTIONS");
CommandLine::option_handle OPT_NUMINSTR =
cmd.addOption("", "numinstr", Arg::Optional, "--numinstr \t define L4SYS_NUMINSTR");
CommandLine::option_handle OPT_TOTINSTR =
cmd.addOption("", "totinstr", Arg::Optional, "--totinstr \t define L4SYS_TOTINSTR");
CommandLine::option_handle OPT_EMUL_IPS =
cmd.addOption("", "bochs_ips", Arg::Optional, "--bochs_ips \t define L4SYS_BOCHS_IPS");
CommandLine::option_handle OPT_STATE_FOLDER =
cmd.addOption("", "state_folder", Arg::Optional, "--state_folder \t define L4SYS_STATE_FOLDER");
CommandLine::option_handle OPT_INSTRUCTION_LIST =
cmd.addOption("", "instruction_list", Arg::Optional, "--instruction_list \t define L4SYS_INSTRUCTION_LIST");
CommandLine::option_handle OPT_ALU_INSTRUCTIONS =
cmd.addOption("", "alu_instructions", Arg::Optional, "--alu_instructions \t define L4SYS_ALU_INSTRUCTIONS");
CommandLine::option_handle OPT_CORRECT_OUTPUT =
cmd.addOption("", "golden_run", Arg::Optional, "--correct_output \t define L4SYS_CORRECT_OUTPUT");
CommandLine::option_handle OPT_FILTER =
cmd.addOption("", "filter", Arg::Optional, "--filter \t define L4SYS_FILTER");
CommandLine::option_handle OPT_TRACE =
cmd.addOption("", "trace", Arg::Optional, "--trace \t define outputfile for trace (default trace.pb)");
if (!cmd.parse()) {
cerr << "Error parsing arguments." << endl;
simulator.terminate(1);
} else if (cmd[HELP]) {
cmd.printUsage();
simulator.terminate(0);
}
if (cmd[OPT_MAX_INSTR_BYTES]) {
conf.max_instr_bytes = strtol(cmd[OPT_MAX_INSTR_BYTES].arg, NULL, 16);
} else {
conf.max_instr_bytes = MAX_INSTR_BYTES;
}
if (cmd[OPT_ADDRESS_SPACE]) {
conf.address_space = strtol(cmd[OPT_ADDRESS_SPACE].arg, NULL, 16);
} else {
conf.address_space = L4SYS_ADDRESS_SPACE;
}
if (cmd[OPT_ADDRESS_SPACE_TRACE]) {
conf.address_space_trace = strtol(cmd[OPT_ADDRESS_SPACE_TRACE].arg, NULL, 16);
} else {
conf.address_space_trace = L4SYS_ADDRESS_SPACE_TRACE;
}
if (cmd[OPT_FUNC_ENTRY]) {
conf.func_entry = strtol(cmd[OPT_FUNC_ENTRY].arg, NULL, 16);
} else {
conf.func_entry = L4SYS_FUNC_ENTRY;
}
if (cmd[OPT_FUNC_EXIT]) {
conf.func_exit = strtol(cmd[OPT_FUNC_EXIT].arg, NULL, 16);
} else {
conf.func_exit = L4SYS_FUNC_EXIT;
}
if (cmd[OPT_FILTER_ENTRY]) {
conf.filter_entry = strtol(cmd[OPT_FILTER_ENTRY].arg, NULL, 16);
} else {
conf.filter_entry = L4SYS_FILTER_ENTRY;
}
if (cmd[OPT_FILTER_EXIT]) {
conf.filter_exit = strtol(cmd[OPT_FILTER_EXIT].arg, NULL, 16);
} else {
conf.filter_exit = L4SYS_FILTER_EXIT;
}
if (cmd[OPT_BREAK_BLINK]) {
conf.break_blink = strtol(cmd[OPT_BREAK_BLINK].arg, NULL, 16);
} else {
conf.break_blink = L4SYS_BREAK_BLINK;
}
if (cmd[OPT_BREAK_LONGJMP]) {
conf.break_longjmp = strtol(cmd[OPT_BREAK_LONGJMP].arg, NULL, 16);
} else {
conf.break_longjmp = L4SYS_BREAK_LONGJMP;
}
if (cmd[OPT_BREAK_EXIT]) {
conf.break_exit = strtol(cmd[OPT_BREAK_EXIT].arg, NULL, 16);
} else {
conf.break_exit = L4SYS_BREAK_EXIT;
}
if (cmd[OPT_FILTER_INSTRUCTIONS]) {
conf.filter_instructions = strtol(cmd[OPT_FILTER_INSTRUCTIONS].arg, NULL, 16);
} else {
conf.filter_instructions = L4SYS_FILTER_INSTRUCTIONS;
}
if (cmd[OPT_NUMINSTR]) {
conf.numinstr = strtol(cmd[OPT_NUMINSTR].arg, NULL, 16);
} else {
conf.numinstr = L4SYS_NUMINSTR;
}
if (cmd[OPT_TOTINSTR]) {
conf.totinstr = strtol(cmd[OPT_TOTINSTR].arg, NULL, 16);
} else {
conf.totinstr = L4SYS_TOTINSTR;
}
if (cmd[OPT_EMUL_IPS]) {
conf.emul_ips = strtol(cmd[OPT_EMUL_IPS].arg, NULL, 16);
} else {
conf.emul_ips = L4SYS_BOCHS_IPS;
}
if (cmd[OPT_STATE_FOLDER]) {
conf.state_folder = std::string(cmd[OPT_STATE_FOLDER].arg);
} else {
conf.state_folder = L4SYS_STATE_FOLDER;
}
if (cmd[OPT_INSTRUCTION_LIST]) {
conf.instruction_list = std::string(cmd[OPT_INSTRUCTION_LIST].arg);
} else {
conf.instruction_list = L4SYS_INSTRUCTION_LIST;
}
if (cmd[OPT_ALU_INSTRUCTIONS]) {
conf.alu_instructions = std::string(cmd[OPT_ALU_INSTRUCTIONS].arg);
} else {
conf.alu_instructions = L4SYS_ALU_INSTRUCTIONS;
}
if (cmd[OPT_CORRECT_OUTPUT]) {
conf.golden_run = std::string(cmd[OPT_CORRECT_OUTPUT].arg);
} else {
conf.golden_run = L4SYS_CORRECT_OUTPUT;
}
if (cmd[OPT_FILTER]) {
conf.filter = std::string(cmd[OPT_FILTER].arg);
} else {
conf.filter = L4SYS_FILTER;
}
if (cmd[OPT_TRACE]) {
conf.trace = std::string(cmd[OPT_TRACE].arg);
} else {
conf.trace = std::string("trace.pb");
}
if (cmd[STEP]) {
if (!std::string("cr3").compare(cmd[STEP].arg) ) {
log << "calculate cr3" << endl;
conf.step = L4SysConfig::GET_CR3;
} else if (!std::string("cc").compare(cmd[STEP].arg) ) {
log << "Create Checkpoint" << endl;
conf.step = L4SysConfig::CREATE_CHECKPOINT;
} else if (!std::string("it").compare(cmd[STEP].arg) ) {
log << "collect instruction trace" << endl;
conf.step = L4SysConfig::COLLECT_INSTR_TRACE;
} else if (!std::string("gr").compare(cmd[STEP].arg) ) {
log << "golden run" << endl;
conf.step = L4SysConfig::GOLDEN_RUN;
} else if (!std::string("all").compare(cmd[STEP].arg) ) {
log << "do all preparation steps" << endl;
conf.step = L4SysConfig::FULL_PREPARATION;
} else {
cerr << "Wrong argument for option '--step'" << endl;
simulator.terminate(1);
}
} else {
conf.step = L4SysConfig::NO_PREP;
}
}

View File

@ -0,0 +1,286 @@
#include <iostream>
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "InstructionFilter.hpp"
#include "aluinstr.hpp"
#include "sal/SALConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/Memory.hpp"
#include "sal/Listener.hpp"
#include <sal/bochs/BochsMemory.hpp>
#include "config/FailConfig.hpp"
#include "TracePlugin.pb.h"
#include "util/ProtoStream.hpp"
#include "util/gzstream/gzstream.h"
#include "util/CommandLine.hpp"
using namespace std;
using namespace fail;
Bit32u L4SysExperiment::eipBiased() {
BX_CPU_C *cpu_context = simulator.getCPUContext();
Bit32u EIP = cpu_context->gen_reg[BX_32BIT_REG_EIP].dword.erx;
return EIP + cpu_context->eipPageBias;
}
const Bit8u *L4SysExperiment::calculateInstructionAddress() {
// pasted in from various nested Bochs functions and macros - I hope
// they will not change too soon (as do the Bochs developers, probably)
BX_CPU_C *cpu_context = simulator.getCPUContext();
const Bit8u *result = cpu_context->eipFetchPtr + eipBiased();
return result;
}
void L4SysExperiment::runToStart(fail::BPSingleListener *bp)
{
bp->setWatchInstructionPointer(conf.func_entry);
log << "run until ip reaches 0x" << hex << conf.func_entry << endl;
simulator.addListenerAndResume(bp);
log << "test function entry reached, saving state" << endl;
log << "EIP: expected " << hex << bp->getTriggerInstructionPointer()
<< " and actually got "
<< simulator.getCPU(0).getInstructionPointer()
<< endl;
log << "check the source code if the two instruction pointers are not equal" << endl;
if(conf.address_space == conf.address_space_trace) {
conf.address_space_trace = BX_CPU(0)->cr3;
}
conf.address_space = BX_CPU(0)->cr3;
}
void L4SysExperiment::collectInstructionTrace(fail::BPSingleListener* bp)
{
fail::MemAccessListener ML(ANY_ADDR, MemAccessEvent::MEM_READWRITE);
ogzstream out(conf.trace.c_str());
ProtoOStream *os = new ProtoOStream(&out);
size_t count = 0, inst_accepted = 0, mem = 0, mem_valid = 0;
simtime_t prevtime = 0, currtime;
simtime_diff_t deltatime;
log << "restoring state" << endl;
simulator.restore(conf.state_folder.c_str());
currtime = simulator.getTimerTicks();
log << "EIP = " << hex
<< simulator.getCPU(0).getInstructionPointer()
<< endl;
if (!simulator.addListener(&ML)) {
log << "did not add memory listener..." << std::endl;
exit(1);
}
if (!simulator.addListener(bp)) {
log << "did not add breakpoint listener..." << std::endl;
exit(1);
}
#if L4SYS_FILTER_INSTRUCTIONS
ofstream instr_list_file(conf.instruction_list.c_str(), ios::binary);
RangeSetInstructionFilter filtering(conf.filter.c_str());
bp->setWatchInstructionPointer(ANY_ADDR);
map<address_t, unsigned> times_called_map;
bool injecting = false;
while (bp->getTriggerInstructionPointer() != conf.func_exit) {
fail::BaseListener *res = simulator.resume();
address_t curr_addr = 0;
// XXX: See the API problem below!
if (res == &ML) {
curr_addr = ML.getTriggerInstructionPointer();
simulator.addListener(&ML);
if ((conf.address_space_trace != ANY_ADDR) && (BX_CPU(0)->cr3 != conf.address_space_trace)) {
continue;
}
++mem;
} else if (res == bp) {
curr_addr = bp->getTriggerInstructionPointer();
assert(curr_addr == simulator.getCPU(0).getInstructionPointer());
simulator.addListener(bp);
++count;
}
currtime = simulator.getTimerTicks();
deltatime = currtime - prevtime;
if (curr_addr == conf.filter_entry) {
injecting = true;
}
if (curr_addr == conf.filter_exit) {
injecting = false;
}
// Only trace if:
// 1) we are between FILTER_ENTRY and FILTER_EXIT, and
// 2) we have a valid instruction according to filter rules, and
// 3) we are in the TRACE address space
if (!injecting or
!filtering.isValidInstr(curr_addr, reinterpret_cast<char const*>(calculateInstructionAddress()))
or
(BX_CPU(0)->cr3 != conf.address_space_trace)
) {
//log << "connt..." << std::endl;
continue;
}
if (res == &ML) {
#if 0
log << "Memory event IP " << std::hex << ML.getTriggerInstructionPointer()
<< " @ " << ML.getTriggerAddress() << "("
<< ML.getTriggerAccessType() << "," << ML.getTriggerWidth()
<< ")" << std::endl;
#endif
++mem_valid;
Trace_Event te;
if (deltatime != 0) { te.set_time_delta(1); };
te.set_ip(curr_addr);
te.set_memaddr(ML.getTriggerAddress());
te.set_accesstype( (ML.getTriggerAccessType() & MemAccessEvent::MEM_READ) ? te.READ : te.WRITE );
te.set_width(ML.getTriggerWidth());
os->writeMessage(&te);
} else if (res == bp) {
unsigned times_called = times_called_map[curr_addr];
++times_called;
times_called_map[curr_addr] = times_called;
//log << "breakpoint event" << std::endl;
// now check if we want to add the instruction for fault injection
++inst_accepted;
// 1) The 'old' way of logging instructions -> DEPRECATE soon
// BUT: we are currently using the bp_counter stored in this
// file!
TraceInstr new_instr;
//log << "writing IP " << hex << curr_addr << " counter "
// << dec << times_called << "(" << hex << BX_CPU(0)->cr3 << ")"
// << endl;
new_instr.trigger_addr = curr_addr;
new_instr.bp_counter = times_called;
instr_list_file.write(reinterpret_cast<char*>(&new_instr), sizeof(TraceInstr));
// 2) The 'new' way -> generate Events that can be processed by
// the generic *-trace tools
// XXX: need to log CR3 if we want multiple binaries here
Trace_Event e;
if (deltatime != 0) { e.set_time_delta(1); };
e.set_ip(curr_addr);
os->writeMessage(&e);
} else {
printf("Unknown res? %p\n", res);
}
prevtime = currtime;
//short sanity check
//log << "continue..." << std::endl;
}
log << "saving instructions triggered during normal execution" << endl;
instr_list_file.close();
log << "test function calculation position reached after "
<< dec << count << " instructions; " << inst_accepted << " accepted" << endl;
log << "mem accesses: " << mem << ", valid: " << mem_valid << std::endl;
#else
bp->setWatchInstructionPointer(ANY_ADDR);
while (bp->getTriggerInstructionPointer() != conf.func_exit)
{
fail::BaseListener *res = simulator.resume();
address_t curr_addr = 0;
// XXX: See the API problem below!
if (res == &ML) {
curr_addr = ML.getTriggerInstructionPointer();
simulator.addListener(&ML);
if ((func.address_space_trace != ANY_ADDR) && (BX_CPU(0)->cr3 != func.address_space_trace)) {
continue;
}
++mem;
} else if (res == bp) {
curr_addr = bp->getTriggerInstructionPointer();
assert(curr_addr == simulator.getCPU(0).getInstructionPointer());
simulator.addListener(bp);
++count;
}
#if 0
if (curr_addr < 0xC0000000) // XXX filter for kernel-only experiment
continue;
#endif
currtime = simulator.getTimerTicks();
deltatime = currtime - prevtime;
if (res == &ML) {
#if 0
log << "Memory event IP " << std::hex << ML.getTriggerInstructionPointer()
<< " @ " << ML.getTriggerAddress() << "("
<< ML.getTriggerAccessType() << "," << ML.getTriggerWidth()
<< ")" << std::endl;
#endif
++mem_valid;
Trace_Event te;
if (deltatime != 0) { te.set_time_delta(deltatime); };
te.set_ip(curr_addr);
te.set_memaddr(ML.getTriggerAddress());
te.set_accesstype( (ML.getTriggerAccessType() & MemAccessEvent::MEM_READ) ? te.READ : te.WRITE );
te.set_width(ML.getTriggerWidth());
os->writeMessage(&te);
} else if (res == bp) {
Trace_Event e;
if (deltatime != 0) { e.set_time_delta(deltatime); };
e.set_ip(curr_addr);
os->writeMessage(&e);
} else {
printf("Unknown res? %p\n", res);
}
prevtime = currtime;
}
log << "test function calculation position reached after "
<< dec << count << " instructions; " << count << " accepted" << endl;
log << "mem accesses: " << mem << ", valid: " << mem_valid << std::endl;
#endif
conf.numinstr = inst_accepted;
conf.totinstr = count;
delete bp;
}
void L4SysExperiment::goldenRun(fail::BPSingleListener* bp)
{
log << "restoring state" << endl;
simulator.restore(conf.state_folder.c_str());
log << "EIP = " << hex
<< simulator.getCPU(0).getInstructionPointer()
<< endl;
std::string golden_run;
ofstream golden_run_file(conf.golden_run.c_str());
bp->setWatchInstructionPointer(conf.func_exit);
simulator.addListener(bp);
BaseListener* ev = waitIOOrOther(true);
if (ev == bp) {
golden_run.assign(currentOutput.c_str());
golden_run_file << currentOutput.c_str();
log << "Output successfully logged!" << endl;
} else {
log
<< "Obviously, there is some trouble with"
<< " the events registered - aborting simulation!"
<< endl;
golden_run_file.close();
terminate(10);
}
log << "saving output generated during normal execution" << endl;
golden_run_file.close();
delete bp;
}