Merge branch main into dev/wasi_threads

This commit is contained in:
Wenyong Huang
2023-02-17 08:46:12 +08:00
163 changed files with 7153 additions and 1857 deletions

View File

@ -565,6 +565,7 @@ pthread_create_wrapper(wasm_exec_env_t exec_env,
#if WASM_ENABLE_LIBC_WASI != 0
WASIContext *wasi_ctx;
#endif
CApiFuncImport **new_c_api_func_imports = NULL;
bh_assert(module);
bh_assert(module_inst);
@ -597,6 +598,46 @@ pthread_create_wrapper(wasm_exec_env_t exec_env,
wasm_runtime_set_wasi_ctx(new_module_inst, wasi_ctx);
#endif
/* workaround about passing instantiate-linking information */
{
CApiFuncImport *c_api_func_imports;
uint32 import_func_count = 0;
uint32 size_in_bytes = 0;
#if WASM_ENABLE_INTERP != 0
if (module_inst->module_type == Wasm_Module_Bytecode) {
new_c_api_func_imports = &(
((WASMModuleInstance *)new_module_inst)->e->c_api_func_imports);
c_api_func_imports =
((WASMModuleInstance *)module_inst)->e->c_api_func_imports;
import_func_count = ((WASMModule *)module)->import_function_count;
}
#endif
#if WASM_ENABLE_AOT != 0
if (module_inst->module_type == Wasm_Module_AoT) {
AOTModuleInstanceExtra *e =
(AOTModuleInstanceExtra *)((AOTModuleInstance *)new_module_inst)
->e;
new_c_api_func_imports = &(e->c_api_func_imports);
e = (AOTModuleInstanceExtra *)((AOTModuleInstance *)module_inst)->e;
c_api_func_imports = e->c_api_func_imports;
import_func_count = ((AOTModule *)module)->import_func_count;
}
#endif
if (import_func_count != 0 && c_api_func_imports) {
size_in_bytes = sizeof(CApiFuncImport *) * import_func_count;
*new_c_api_func_imports = wasm_runtime_malloc(size_in_bytes);
if (!(*new_c_api_func_imports))
goto fail;
bh_memcpy_s(*new_c_api_func_imports, size_in_bytes,
c_api_func_imports, size_in_bytes);
}
}
if (!(info_node = wasm_runtime_malloc(sizeof(ThreadInfoNode))))
goto fail;

View File

@ -63,6 +63,12 @@ typedef struct WASIContext {
wasi_ctx_t
wasm_runtime_get_wasi_ctx(wasm_module_inst_t module_inst);
static inline size_t
min(size_t a, size_t b)
{
return a > b ? b : a;
}
static inline struct fd_table *
wasi_ctx_get_curfds(wasm_module_inst_t module_inst, wasi_ctx_t wasi_ctx)
{
@ -951,6 +957,97 @@ wasi_path_remove_directory(wasm_exec_env_t exec_env, wasi_fd_t fd,
return wasmtime_ssp_path_remove_directory(curfds, fd, path, path_len);
}
#if WASM_ENABLE_THREAD_MGR != 0
static __wasi_timestamp_t
get_timeout_for_poll_oneoff(const wasi_subscription_t *in,
uint32 nsubscriptions)
{
__wasi_timestamp_t timeout = (__wasi_timestamp_t)-1;
uint32 i = 0;
for (i = 0; i < nsubscriptions; ++i) {
const __wasi_subscription_t *s = &in[i];
if (s->u.type == __WASI_EVENTTYPE_CLOCK
&& (s->u.u.clock.flags & __WASI_SUBSCRIPTION_CLOCK_ABSTIME) == 0) {
timeout = min(timeout, s->u.u.clock.timeout);
}
}
return timeout;
}
static void
update_clock_subscription_data(wasi_subscription_t *in, uint32 nsubscriptions,
const wasi_timestamp_t new_timeout)
{
uint32 i = 0;
for (i = 0; i < nsubscriptions; ++i) {
__wasi_subscription_t *s = &in[i];
if (s->u.type == __WASI_EVENTTYPE_CLOCK) {
s->u.u.clock.timeout = new_timeout;
}
}
}
static wasi_errno_t
execute_interruptible_poll_oneoff(wasm_module_inst_t module_inst,
#if !defined(WASMTIME_SSP_STATIC_CURFDS)
struct fd_table *curfds,
#endif
const __wasi_subscription_t *in,
__wasi_event_t *out, size_t nsubscriptions,
size_t *nevents)
{
if (nsubscriptions == 0) {
*nevents = 0;
return __WASI_ESUCCESS;
}
wasi_errno_t err;
__wasi_timestamp_t elapsed = 0;
const __wasi_timestamp_t timeout = get_timeout_for_poll_oneoff(
in, nsubscriptions),
time_quant = 1e9;
const uint64 size_to_copy =
nsubscriptions * (uint64)sizeof(wasi_subscription_t);
__wasi_subscription_t *in_copy = NULL;
if (size_to_copy >= UINT32_MAX
|| !(in_copy = (__wasi_subscription_t *)wasm_runtime_malloc(
(uint32)size_to_copy))) {
return __WASI_ENOMEM;
}
bh_memcpy_s(in_copy, size_to_copy, in, size_to_copy);
while (timeout == (__wasi_timestamp_t)-1 || elapsed <= timeout) {
elapsed += time_quant;
/* update timeout for clock subscription events */
update_clock_subscription_data(in_copy, nsubscriptions,
min(time_quant, timeout - elapsed));
err = wasmtime_ssp_poll_oneoff(curfds, in_copy, out, nsubscriptions,
nevents);
if (err) {
wasm_runtime_free(in_copy);
return err;
}
if (wasm_runtime_get_exception(module_inst) || *nevents > 0) {
wasm_runtime_free(in_copy);
if (*nevents) {
return __WASI_ESUCCESS;
}
return EINTR;
}
}
wasm_runtime_free(in_copy);
return __WASI_ESUCCESS;
}
#endif
static wasi_errno_t
wasi_poll_oneoff(wasm_exec_env_t exec_env, const wasi_subscription_t *in,
wasi_event_t *out, uint32 nsubscriptions, uint32 *nevents_app)
@ -958,7 +1055,7 @@ wasi_poll_oneoff(wasm_exec_env_t exec_env, const wasi_subscription_t *in,
wasm_module_inst_t module_inst = get_module_inst(exec_env);
wasi_ctx_t wasi_ctx = get_wasi_ctx(module_inst);
struct fd_table *curfds = wasi_ctx_get_curfds(module_inst, wasi_ctx);
size_t nevents;
size_t nevents = 0;
wasi_errno_t err;
if (!wasi_ctx)
@ -969,7 +1066,12 @@ wasi_poll_oneoff(wasm_exec_env_t exec_env, const wasi_subscription_t *in,
|| !validate_native_addr(nevents_app, sizeof(uint32)))
return (wasi_errno_t)-1;
#if WASM_ENABLE_THREAD_MGR == 0
err = wasmtime_ssp_poll_oneoff(curfds, in, out, nsubscriptions, &nevents);
#else
err = execute_interruptible_poll_oneoff(module_inst, curfds, in, out,
nsubscriptions, &nevents);
#endif
if (err)
return err;
@ -1861,12 +1963,6 @@ allocate_iovec_app_buffer(wasm_module_inst_t module_inst,
return __WASI_ESUCCESS;
}
static inline size_t
min(size_t a, size_t b)
{
return a > b ? b : a;
}
static wasi_errno_t
copy_buffer_to_iovec_app(wasm_module_inst_t module_inst, uint8 *buf_begin,
uint32 buf_size, iovec_app_t *data, uint32 data_len,

View File

@ -0,0 +1,14 @@
/*
* Copyright (C) 2023 Amazon.com, Inc. or its affiliates. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#if !defined(__GNUC_PREREQ) && (defined(__GNUC__) || defined(__GNUG__)) \
&& !defined(__clang__) && defined(__GNUC_MINOR__)
/* Depending on the platform the macro is defined in sys/features.h or
features.h Given the macro is simple, we re-implement it here instead of
dealing with two different paths.
*/
#define __GNUC_PREREQ(maj, min) \
((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
#endif

View File

@ -1,42 +0,0 @@
// Part of the Wasmtime Project, under the Apache License v2.0 with LLVM
// Exceptions. See
// https://github.com/bytecodealliance/wasmtime/blob/main/LICENSE for license
// information.
//
// Significant parts of this file are derived from cloudabi-utils. See
// https://github.com/bytecodealliance/wasmtime/blob/main/lib/wasi/sandboxed-system-primitives/src/LICENSE
// for license information.
//
// The upstream file contains the following copyright notice:
//
// Copyright (c) 2015 Nuxi, https://nuxi.nl/
#ifndef COMMON_LIMITS_H
#define COMMON_LIMITS_H
#define NUMERIC_MIN(t) \
_Generic((t)0, char \
: CHAR_MIN, signed char \
: SCHAR_MIN, unsigned char : 0, short \
: SHRT_MIN, unsigned short : 0, int \
: INT_MIN, unsigned int : 0, long \
: LONG_MIN, unsigned long : 0, long long \
: LLONG_MIN, unsigned long long : 0, default \
: (void)0)
#define NUMERIC_MAX(t) \
_Generic((t)0, char \
: CHAR_MAX, signed char \
: SCHAR_MAX, unsigned char \
: UCHAR_MAX, short \
: SHRT_MAX, unsigned short \
: USHRT_MAX, int \
: INT_MAX, unsigned int \
: UINT_MAX, long \
: LONG_MAX, unsigned long \
: ULONG_MAX, long long \
: LLONG_MAX, unsigned long long \
: ULLONG_MAX, default \
: (void)0)
#endif

View File

@ -15,7 +15,6 @@
#include "bh_platform.h"
#include "wasmtime_ssp.h"
#include "locking.h"
#include "numeric_limits.h"
#include "posix.h"
#include "random.h"
#include "refcount.h"
@ -2257,8 +2256,7 @@ convert_timestamp(__wasi_timestamp_t in, struct timespec *out)
in /= 1000000000;
// Clamp to the maximum in case it would overflow our system's time_t.
out->tv_sec =
(time_t)in < NUMERIC_MAX(time_t) ? (time_t)in : NUMERIC_MAX(time_t);
out->tv_sec = (time_t)in < BH_TIME_T_MAX ? (time_t)in : BH_TIME_T_MAX;
}
// Converts the provided timestamps and flags to a set of arguments for
@ -3226,6 +3224,7 @@ wasi_ssp_sock_get_reuse_port(
#else
errno = ENOTSUP;
ret = BHT_ERROR;
optval = 0;
#endif /* defined(SO_REUSEPORT) */
fd_object_release(fo);

View File

@ -16,6 +16,7 @@
#include "bh_platform.h"
#include "locking.h"
#include "gnuc.h"
#define PRODUCES(...) LOCKS_SHARED(__VA_ARGS__) NO_LOCK_ANALYSIS
#define CONSUMES(...) UNLOCKS(__VA_ARGS__) NO_LOCK_ANALYSIS
@ -95,6 +96,42 @@ refcount_release(struct refcount *r)
return old == 1;
}
#elif defined(__GNUC_PREREQ)
#if __GNUC_PREREQ(4, 7)
struct refcount {
unsigned int count;
};
/* Initialize the reference counter. */
static inline void
refcount_init(struct refcount *r, unsigned int count)
{
__atomic_store_n(&r->count, count, __ATOMIC_SEQ_CST);
}
/* Increment the reference counter. */
static inline void
refcount_acquire(struct refcount *r)
{
__atomic_fetch_add(&r->count, 1, __ATOMIC_ACQUIRE);
}
/* Decrement the reference counter, returning whether the reference
dropped to zero. */
static inline bool
refcount_release(struct refcount *r)
{
int old = (int)__atomic_fetch_sub(&r->count, 1, __ATOMIC_RELEASE);
bh_assert(old != 0 && "Reference count becoming negative");
return old == 1;
}
#else /* else of __GNUC_PREREQ (4.7) */
#error "Reference counter isn't implemented"
#endif /* end of __GNUC_PREREQ (4.7) */
#else /* else of CONFIG_HAS_STD_ATOMIC */
#error "Reference counter isn't implemented"
#endif /* end of CONFIG_HAS_STD_ATOMIC */

View File

@ -14,6 +14,7 @@
#ifndef SSP_CONFIG_H
#define SSP_CONFIG_H
#include "gnuc.h"
#include <stdlib.h>
#if defined(__FreeBSD__) || defined(__APPLE__) \
@ -107,10 +108,31 @@
#endif
#if !defined(BH_PLATFORM_LINUX_SGX)
/* Clang's __GNUC_PREREQ macro has a different meaning than GCC one,
so we have to handle this case specially */
#if defined(__clang__)
/* Clang provides stdatomic.h since 3.6.0
See https://releases.llvm.org/3.6.0/tools/clang/docs/ReleaseNotes.html */
#if __clang_major__ > 3 || (__clang_major__ == 3 && __clang_minor__ >= 6)
#define CONFIG_HAS_STD_ATOMIC 1
#else
#define CONFIG_HAS_STD_ATOMIC 0
#endif
#elif defined(__GNUC_PREREQ)
/* Even though older versions of GCC support C11, atomics were
not implemented until 4.9. See
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58016 */
#if __GNUC_PREREQ(4, 9)
#define CONFIG_HAS_STD_ATOMIC 1
#else /* else of __GNUC_PREREQ(4, 9) */
#define CONFIG_HAS_STD_ATOMIC 0
#endif /* end of __GNUC_PREREQ(4, 9) */
#else /* else of defined(__GNUC_PREREQ) */
#define CONFIG_HAS_STD_ATOMIC 1
#endif /* end of defined(__GNUC_PREREQ) */
#else /* else of !defined(BH_PLATFORM_LINUX_SGX) */
#define CONFIG_HAS_STD_ATOMIC 0
#endif /* end of !defined(BH_PLATFORM_LINUX_SGX) */
#if !defined(__NuttX__)
#define CONFIG_HAS_D_INO 1

View File

@ -76,6 +76,58 @@ traverse_list(bh_list *l, list_visitor visitor, void *user_data)
}
}
/* Assumes cluster->lock is locked */
static bool
safe_traverse_exec_env_list(WASMCluster *cluster, list_visitor visitor,
void *user_data)
{
Vector proc_nodes;
void *node;
bool ret = true;
if (!bh_vector_init(&proc_nodes, cluster->exec_env_list.len, sizeof(void *),
false)) {
ret = false;
goto final;
}
node = bh_list_first_elem(&cluster->exec_env_list);
while (node) {
bool already_processed = false;
void *proc_node;
for (size_t i = 0; i < bh_vector_size(&proc_nodes); i++) {
if (!bh_vector_get(&proc_nodes, i, &proc_node)) {
ret = false;
goto final;
}
if (proc_node == node) {
already_processed = true;
break;
}
}
if (already_processed) {
node = bh_list_elem_next(node);
continue;
}
os_mutex_unlock(&cluster->lock);
visitor(node, user_data);
os_mutex_lock(&cluster->lock);
if (!bh_vector_append(&proc_nodes, &node)) {
ret = false;
goto final;
}
node = bh_list_first_elem(&cluster->exec_env_list);
}
final:
bh_vector_destroy(&proc_nodes);
return ret;
}
/* The caller must lock cluster->lock */
static bool
allocate_aux_stack(WASMExecEnv *exec_env, uint32 *start, uint32 *size)
@ -344,7 +396,6 @@ wasm_cluster_del_exec_env(WASMCluster *cluster, WASMExecEnv *exec_env)
os_mutex_unlock(&cluster->debug_inst->wait_lock);
}
#endif
if (bh_list_remove(&cluster->exec_env_list, exec_env) != 0)
ret = false;
@ -478,7 +529,7 @@ fail4:
/* free the allocated aux stack space */
free_aux_stack(exec_env, aux_stack_start);
fail3:
wasm_exec_env_destroy(new_exec_env);
wasm_exec_env_destroy_internal(new_exec_env);
fail2:
wasm_runtime_deinstantiate_internal(new_module_inst, true);
fail1:
@ -616,7 +667,7 @@ fail3:
if (alloc_aux_stack)
free_aux_stack(exec_env, aux_stack_start);
fail2:
wasm_exec_env_destroy(new_exec_env);
wasm_exec_env_destroy_internal(new_exec_env);
fail1:
os_mutex_unlock(&cluster->lock);
@ -786,16 +837,22 @@ wasm_cluster_join_thread(WASMExecEnv *exec_env, void **ret_val)
korp_tid handle;
os_mutex_lock(&cluster_list_lock);
os_mutex_lock(&exec_env->cluster->lock);
if (!clusters_have_exec_env(exec_env) || exec_env->thread_is_detached) {
/* Invalid thread, thread has exited or thread has been detached */
if (ret_val)
*ret_val = NULL;
os_mutex_unlock(&exec_env->cluster->lock);
os_mutex_unlock(&cluster_list_lock);
return 0;
}
exec_env->wait_count++;
handle = exec_env->handle;
os_mutex_unlock(&exec_env->cluster->lock);
os_mutex_unlock(&cluster_list_lock);
return os_thread_join(handle, ret_val);
}
@ -878,15 +935,22 @@ int32
wasm_cluster_cancel_thread(WASMExecEnv *exec_env)
{
os_mutex_lock(&cluster_list_lock);
os_mutex_lock(&exec_env->cluster->lock);
if (!exec_env->cluster) {
goto final;
}
if (!clusters_have_exec_env(exec_env)) {
/* Invalid thread or the thread has exited */
os_mutex_unlock(&cluster_list_lock);
return 0;
goto final;
}
os_mutex_unlock(&cluster_list_lock);
set_thread_cancel_flags(exec_env);
final:
os_mutex_unlock(&exec_env->cluster->lock);
os_mutex_unlock(&cluster_list_lock);
return 0;
}
@ -908,11 +972,9 @@ wasm_cluster_terminate_all(WASMCluster *cluster)
{
os_mutex_lock(&cluster->lock);
cluster->processing = true;
os_mutex_unlock(&cluster->lock);
traverse_list(&cluster->exec_env_list, terminate_thread_visitor, NULL);
safe_traverse_exec_env_list(cluster, terminate_thread_visitor, NULL);
os_mutex_lock(&cluster->lock);
cluster->processing = false;
os_mutex_unlock(&cluster->lock);
}
@ -923,12 +985,10 @@ wasm_cluster_terminate_all_except_self(WASMCluster *cluster,
{
os_mutex_lock(&cluster->lock);
cluster->processing = true;
os_mutex_unlock(&cluster->lock);
traverse_list(&cluster->exec_env_list, terminate_thread_visitor,
(void *)exec_env);
safe_traverse_exec_env_list(cluster, terminate_thread_visitor,
(void *)exec_env);
os_mutex_lock(&cluster->lock);
cluster->processing = false;
os_mutex_unlock(&cluster->lock);
}
@ -950,11 +1010,9 @@ wams_cluster_wait_for_all(WASMCluster *cluster)
{
os_mutex_lock(&cluster->lock);
cluster->processing = true;
os_mutex_unlock(&cluster->lock);
traverse_list(&cluster->exec_env_list, wait_for_thread_visitor, NULL);
safe_traverse_exec_env_list(cluster, wait_for_thread_visitor, NULL);
os_mutex_lock(&cluster->lock);
cluster->processing = false;
os_mutex_unlock(&cluster->lock);
}
@ -965,12 +1023,10 @@ wasm_cluster_wait_for_all_except_self(WASMCluster *cluster,
{
os_mutex_lock(&cluster->lock);
cluster->processing = true;
os_mutex_unlock(&cluster->lock);
traverse_list(&cluster->exec_env_list, wait_for_thread_visitor,
(void *)exec_env);
safe_traverse_exec_env_list(cluster, wait_for_thread_visitor,
(void *)exec_env);
os_mutex_lock(&cluster->lock);
cluster->processing = false;
os_mutex_unlock(&cluster->lock);
}

View File

@ -1 +0,0 @@
**/Dockerfile

View File

@ -17,27 +17,76 @@ By only including this file in your WASM application you will bind WASI-NN into
To run the tests we assume that the current directory is the root of the repository.
1. Build the docker image,
### Build the runtime
Build the runtime base image,
```
docker build -t wasi-nn -f core/iwasm/libraries/wasi-nn/test/Dockerfile .
docker build -t wasi-nn-base -f core/iwasm/libraries/wasi-nn/test/Dockerfile.base .
```
2. Run the container
Build the runtime image for your execution target type.
`EXECUTION_TYPE` can be:
* `cpu`
* `nvidia-gpu`
```
docker run wasi-nn
EXECUTION_TYPE=cpu
docker build -t wasi-nn-${EXECUTION_TYPE} -f core/iwasm/libraries/wasi-nn/test/Dockerfile.${EXECUTION_TYPE} .
```
### Build wasm app
```
docker build -t wasi-nn-compile -f core/iwasm/libraries/wasi-nn/test/Dockerfile.compile .
```
```
docker run -v $PWD/core/iwasm/libraries/wasi-nn:/wasi-nn wasi-nn-compile
```
### Run wasm app
If all the tests have run properly you will the the following message in the terminal,
```
Tests: passed!
```
* CPU
```
docker run \
-v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-cpu \
--dir=/assets \
--env="TARGET=cpu" \
/assets/test_tensorflow.wasm
```
* (NVIDIA) GPU
```
docker run \
--runtime=nvidia \
-v $PWD/core/iwasm/libraries/wasi-nn/test:/assets wasi-nn-nvidia-gpu \
--dir=/assets \
--env="TARGET=gpu" \
/assets/test_tensorflow.wasm
```
Requirements:
* [NVIDIA docker](https://github.com/NVIDIA/nvidia-docker).
## What is missing
* Only 1 model at a time is supported.
Supported:
* Only 1 WASM app at a time.
* Only 1 model at a time.
* `graph` and `graph-execution-context` are ignored.
* Only `tensorflow` (lite) is supported.
* Only `cpu` is supported.
* Graph encoding: `tensorflowlite`.
* Execution target: `cpu` and `gpu`.
* Tensor type: `fp32`.

View File

@ -1,55 +0,0 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_LOGGER_H
#define WASI_NN_LOGGER_H
#include <stdio.h>
#include <string.h>
#define __FILENAME__ \
(strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
/* Disable a level by removing the define */
#define ENABLE_ERR_LOG
#define ENABLE_WARN_LOG
#define ENABLE_DBG_LOG
#define ENABLE_INFO_LOG
// Definition of the levels
#ifdef ENABLE_ERR_LOG
#define NN_ERR_PRINTF(fmt, ...) \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout)
#else
#define NN_ERR_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_WARN_LOG
#define NN_WARN_PRINTF(fmt, ...) \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout)
#else
#define NN_WARN_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_DBG_LOG
#define NN_DBG_PRINTF(fmt, ...) \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout)
#else
#define NN_DBG_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_INFO_LOG
#define NN_INFO_PRINTF(fmt, ...) \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout)
#else
#define NN_INFO_PRINTF(fmt, ...)
#endif
#endif

View File

@ -0,0 +1,63 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_LOGGER_H
#define WASI_NN_LOGGER_H
#include <stdio.h>
#include <string.h>
#define __FILENAME__ \
(strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
/* Disable a level by removing the define */
#define ENABLE_ERR_LOG
#define ENABLE_WARN_LOG
#define ENABLE_DBG_LOG
#define ENABLE_INFO_LOG
// Definition of the levels
#ifdef ENABLE_ERR_LOG
#define NN_ERR_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_ERR_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_WARN_LOG
#define NN_WARN_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_WARN_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_DBG_LOG
#define NN_DBG_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_DBG_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_INFO_LOG
#define NN_INFO_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_INFO_PRINTF(fmt, ...)
#endif
#endif

View File

@ -0,0 +1,163 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasi_nn_app_native.h"
static error
graph_builder_app_native(wasm_module_inst_t instance,
graph_builder_wasm *builder_wasm,
graph_builder *builder)
{
if (!wasm_runtime_validate_app_addr(instance, builder_wasm->buf_offset,
builder_wasm->size * sizeof(uint8_t))) {
NN_ERR_PRINTF("builder_wasm->buf_offset is invalid");
return invalid_argument;
}
builder->buf = (uint8_t *)wasm_runtime_addr_app_to_native(
instance, builder_wasm->buf_offset);
builder->size = builder_wasm->size;
return success;
}
error
graph_builder_array_app_native(wasm_module_inst_t instance,
graph_builder_array_wasm *builder_array_wasm,
graph_builder_array *builder_array)
{
if (!wasm_runtime_validate_native_addr(instance, builder_array_wasm,
sizeof(graph_builder_array_wasm))) {
NN_ERR_PRINTF("builder_array_wasm is invalid");
return invalid_argument;
}
NN_DBG_PRINTF("Graph builder array contains %d elements",
builder_array_wasm->size);
if (!wasm_runtime_validate_app_addr(
instance, builder_array_wasm->buf_offset,
builder_array_wasm->size * sizeof(graph_builder_wasm))) {
NN_ERR_PRINTF("builder_array_wasm->buf_offset is invalid");
return invalid_argument;
}
graph_builder_wasm *builder_wasm =
(graph_builder_wasm *)wasm_runtime_addr_app_to_native(
instance, builder_array_wasm->buf_offset);
graph_builder *builder = (graph_builder *)wasm_runtime_malloc(
builder_array_wasm->size * sizeof(graph_builder));
if (builder == NULL)
return missing_memory;
for (uint32_t i = 0; i < builder_array_wasm->size; ++i) {
error res;
if (success
!= (res = graph_builder_app_native(instance, &builder_wasm[i],
&builder[i]))) {
wasm_runtime_free(builder);
return res;
}
NN_DBG_PRINTF("Graph builder %d contains %d elements", i,
builder->size);
}
builder_array->buf = builder;
builder_array->size = builder_array_wasm->size;
return success;
}
static error
tensor_data_app_native(wasm_module_inst_t instance, uint32_t total_elements,
tensor_wasm *input_tensor_wasm, tensor_data *data)
{
if (!wasm_runtime_validate_app_addr(
instance, input_tensor_wasm->data_offset, total_elements)) {
NN_ERR_PRINTF("input_tensor_wasm->data_offset is invalid");
return invalid_argument;
}
*data = (tensor_data)wasm_runtime_addr_app_to_native(
instance, input_tensor_wasm->data_offset);
return success;
}
static error
tensor_dimensions_app_native(wasm_module_inst_t instance,
tensor_wasm *input_tensor_wasm,
tensor_dimensions **dimensions)
{
if (!wasm_runtime_validate_app_addr(instance,
input_tensor_wasm->dimensions_offset,
sizeof(tensor_dimensions_wasm))) {
NN_ERR_PRINTF("input_tensor_wasm->dimensions_offset is invalid");
return invalid_argument;
}
tensor_dimensions_wasm *dimensions_wasm =
(tensor_dimensions_wasm *)wasm_runtime_addr_app_to_native(
instance, input_tensor_wasm->dimensions_offset);
if (!wasm_runtime_validate_app_addr(instance, dimensions_wasm->buf_offset,
sizeof(tensor_dimensions))) {
NN_ERR_PRINTF("dimensions_wasm->buf_offset is invalid");
return invalid_argument;
}
*dimensions =
(tensor_dimensions *)wasm_runtime_malloc(sizeof(tensor_dimensions));
if (dimensions == NULL)
return missing_memory;
(*dimensions)->size = dimensions_wasm->size;
(*dimensions)->buf = (uint32_t *)wasm_runtime_addr_app_to_native(
instance, dimensions_wasm->buf_offset);
NN_DBG_PRINTF("Number of dimensions: %d", (*dimensions)->size);
return success;
}
error
tensor_app_native(wasm_module_inst_t instance, tensor_wasm *input_tensor_wasm,
tensor *input_tensor)
{
NN_DBG_PRINTF("Converting tensor_wasm to tensor");
if (!wasm_runtime_validate_native_addr(instance, input_tensor_wasm,
sizeof(tensor_wasm))) {
NN_ERR_PRINTF("input_tensor_wasm is invalid");
return invalid_argument;
}
error res;
tensor_dimensions *dimensions = NULL;
if (success
!= (res = tensor_dimensions_app_native(instance, input_tensor_wasm,
&dimensions))) {
NN_ERR_PRINTF("error when parsing dimensions");
return res;
}
uint32_t total_elements = 1;
for (uint32_t i = 0; i < dimensions->size; ++i) {
total_elements *= dimensions->buf[i];
NN_DBG_PRINTF("Dimension %d: %d", i, dimensions->buf[i]);
}
NN_DBG_PRINTF("Tensor type: %d", input_tensor_wasm->type);
NN_DBG_PRINTF("Total number of elements: %d", total_elements);
tensor_data data = NULL;
if (success
!= (res = tensor_data_app_native(instance, total_elements,
input_tensor_wasm, &data))) {
wasm_runtime_free(dimensions);
return res;
}
input_tensor->type = input_tensor_wasm->type;
input_tensor->dimensions = dimensions;
input_tensor->data = data;
return success;
}

View File

@ -0,0 +1,51 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_APP_NATIVE
#define WASI_NN_APP_NATIVE
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "wasi_nn.h"
#include "logger.h"
#include "bh_platform.h"
#include "wasm_export.h"
typedef struct {
uint32_t buf_offset;
uint32_t size;
} graph_builder_wasm;
typedef struct {
uint32_t buf_offset;
uint32_t size;
} graph_builder_array_wasm;
typedef struct {
uint32_t buf_offset;
uint32_t size;
} tensor_dimensions_wasm;
typedef struct {
uint32_t dimensions_offset;
tensor_type type;
uint32_t data_offset;
} tensor_wasm;
error
graph_builder_array_app_native(wasm_module_inst_t instance,
graph_builder_array_wasm *builder,
graph_builder_array *builder_native);
error
tensor_app_native(wasm_module_inst_t instance, tensor_wasm *input_tensor,
tensor *input_tensor_native);
#endif

View File

@ -0,0 +1,302 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "wasi_nn.h"
#include "wasi_nn_app_native.h"
#include "logger.h"
#include "wasi_nn_tensorflowlite.hpp"
#include "bh_platform.h"
#include "wasm_export.h"
#include "wasm_runtime.h"
#include "aot_runtime.h"
/* Definition of 'wasi_nn.h' structs in WASM app format (using offset) */
typedef error (*LOAD)(graph_builder_array *, graph_encoding, execution_target,
graph *);
typedef error (*INIT_EXECUTION_CONTEXT)(graph, graph_execution_context *);
typedef error (*SET_INPUT)(graph_execution_context, uint32_t, tensor *);
typedef error (*COMPUTE)(graph_execution_context);
typedef error (*GET_OUTPUT)(graph_execution_context, uint32_t, tensor_data,
uint32_t *);
typedef struct {
LOAD load;
INIT_EXECUTION_CONTEXT init_execution_context;
SET_INPUT set_input;
COMPUTE compute;
GET_OUTPUT get_output;
} api_function;
/* Global variables */
static api_function lookup[] = {
{ NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL },
{ tensorflowlite_load, tensorflowlite_init_execution_context,
tensorflowlite_set_input, tensorflowlite_compute,
tensorflowlite_get_output }
};
/* Utils */
static bool
is_encoding_implemented(graph_encoding encoding)
{
return lookup[encoding].load && lookup[encoding].init_execution_context
&& lookup[encoding].set_input && lookup[encoding].compute
&& lookup[encoding].get_output;
}
static error
is_model_initialized(WASINNContext *wasi_nn_ctx)
{
if (!wasi_nn_ctx->is_initialized) {
NN_ERR_PRINTF("Model not initialized.");
return runtime_error;
}
return success;
}
WASINNContext *
wasm_runtime_get_wasi_nn_ctx(wasm_module_inst_t instance)
{
WASINNContext *wasi_nn_ctx = NULL;
#if WASM_ENABLE_INTERP != 0
if (instance->module_type == Wasm_Module_Bytecode) {
NN_DBG_PRINTF("Getting ctx from WASM");
WASMModuleInstance *module_inst = (WASMModuleInstance *)instance;
wasi_nn_ctx = ((WASMModuleInstanceExtra *)module_inst->e)->wasi_nn_ctx;
}
#endif
#if WASM_ENABLE_AOT != 0
if (instance->module_type == Wasm_Module_AoT) {
NN_DBG_PRINTF("Getting ctx from AOT");
AOTModuleInstance *module_inst = (AOTModuleInstance *)instance;
wasi_nn_ctx = ((AOTModuleInstanceExtra *)module_inst->e)->wasi_nn_ctx;
}
#endif
bh_assert(wasi_nn_ctx != NULL);
NN_DBG_PRINTF("Returning ctx");
return wasi_nn_ctx;
}
/* WASI-NN implementation */
error
wasi_nn_load(wasm_exec_env_t exec_env, graph_builder_array_wasm *builder,
graph_encoding encoding, execution_target target, graph *g)
{
NN_DBG_PRINTF("Running wasi_nn_load [encoding=%d, target=%d]...", encoding,
target);
if (!is_encoding_implemented(encoding)) {
NN_ERR_PRINTF("Encoding not supported.");
return invalid_encoding;
}
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
error res;
graph_builder_array builder_native = { 0 };
if (success
!= (res = graph_builder_array_app_native(instance, builder,
&builder_native)))
return res;
if (!wasm_runtime_validate_native_addr(instance, g, sizeof(graph))) {
NN_ERR_PRINTF("graph is invalid");
res = invalid_argument;
goto fail;
}
res = lookup[encoding].load(&builder_native, encoding, target, g);
NN_DBG_PRINTF("wasi_nn_load finished with status %d [graph=%d]", res, *g);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
wasi_nn_ctx->current_encoding = encoding;
wasi_nn_ctx->is_initialized = true;
fail:
// XXX: Free intermediate structure pointers
if (builder_native.buf)
wasm_runtime_free(builder_native.buf);
return res;
}
error
wasi_nn_init_execution_context(wasm_exec_env_t exec_env, graph g,
graph_execution_context *ctx)
{
NN_DBG_PRINTF("Running wasi_nn_init_execution_context [graph=%d]...", g);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
if (!wasm_runtime_validate_native_addr(instance, ctx,
sizeof(graph_execution_context))) {
NN_ERR_PRINTF("ctx is invalid");
return invalid_argument;
}
res = lookup[wasi_nn_ctx->current_encoding].init_execution_context(g, ctx);
*ctx = g;
NN_DBG_PRINTF(
"wasi_nn_init_execution_context finished with status %d [ctx=%d]", res,
*ctx);
return res;
}
error
wasi_nn_set_input(wasm_exec_env_t exec_env, graph_execution_context ctx,
uint32_t index, tensor_wasm *input_tensor)
{
NN_DBG_PRINTF("Running wasi_nn_set_input [ctx=%d, index=%d]...", ctx,
index);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
tensor input_tensor_native = { 0 };
if (success
!= (res = tensor_app_native(instance, input_tensor,
&input_tensor_native)))
return res;
res = lookup[wasi_nn_ctx->current_encoding].set_input(ctx, index,
&input_tensor_native);
// XXX: Free intermediate structure pointers
if (input_tensor_native.dimensions)
wasm_runtime_free(input_tensor_native.dimensions);
NN_DBG_PRINTF("wasi_nn_set_input finished with status %d", res);
return res;
}
error
wasi_nn_compute(wasm_exec_env_t exec_env, graph_execution_context ctx)
{
NN_DBG_PRINTF("Running wasi_nn_compute [ctx=%d]...", ctx);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
res = lookup[wasi_nn_ctx->current_encoding].compute(ctx);
NN_DBG_PRINTF("wasi_nn_compute finished with status %d", res);
return res;
}
error
wasi_nn_get_output(wasm_exec_env_t exec_env, graph_execution_context ctx,
uint32_t index, tensor_data output_tensor,
uint32_t *output_tensor_size)
{
NN_DBG_PRINTF("Running wasi_nn_get_output [ctx=%d, index=%d]...", ctx,
index);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
if (!wasm_runtime_validate_native_addr(instance, output_tensor_size,
sizeof(uint32_t))) {
NN_ERR_PRINTF("output_tensor_size is invalid");
return invalid_argument;
}
res = lookup[wasi_nn_ctx->current_encoding].get_output(
ctx, index, output_tensor, output_tensor_size);
NN_DBG_PRINTF("wasi_nn_get_output finished with status %d [data_size=%d]",
res, *output_tensor_size);
return res;
}
/* Non-exposed public functions */
WASINNContext *
wasi_nn_initialize()
{
NN_DBG_PRINTF("Initializing wasi-nn");
WASINNContext *wasi_nn_ctx =
(WASINNContext *)wasm_runtime_malloc(sizeof(WASINNContext));
if (wasi_nn_ctx == NULL) {
NN_ERR_PRINTF("Error when allocating memory for WASI-NN context");
return NULL;
}
wasi_nn_ctx->is_initialized = true;
wasi_nn_ctx->current_encoding = 3;
return wasi_nn_ctx;
}
void
wasi_nn_destroy(WASINNContext *wasi_nn_ctx)
{
if (wasi_nn_ctx == NULL) {
NN_ERR_PRINTF(
"Error when deallocating memory. WASI-NN context is NULL");
return;
}
NN_DBG_PRINTF("Freeing wasi-nn");
NN_DBG_PRINTF("-> is_initialized: %d", wasi_nn_ctx->is_initialized);
NN_DBG_PRINTF("-> current_encoding: %d", wasi_nn_ctx->current_encoding);
tensorflowlite_destroy();
wasm_runtime_free(wasi_nn_ctx);
}
/* Register WASI-NN in WAMR */
/* clang-format off */
#define REG_NATIVE_FUNC(func_name, signature) \
{ #func_name, wasi_nn_##func_name, signature, NULL }
/* clang-format on */
static NativeSymbol native_symbols_wasi_nn[] = {
REG_NATIVE_FUNC(load, "(*ii*)i"),
REG_NATIVE_FUNC(init_execution_context, "(i*)i"),
REG_NATIVE_FUNC(set_input, "(ii*)i"),
REG_NATIVE_FUNC(compute, "(i)i"),
REG_NATIVE_FUNC(get_output, "(ii**)i"),
};
uint32_t
get_wasi_nn_export_apis(NativeSymbol **p_libc_wasi_apis)
{
*p_libc_wasi_apis = native_symbols_wasi_nn;
return sizeof(native_symbols_wasi_nn) / sizeof(NativeSymbol);
}

View File

@ -0,0 +1,30 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_PRIVATE_H
#define WASI_NN_PRIVATE_H
#include "wasi_nn_types.h"
typedef struct {
bool is_initialized;
graph_encoding current_encoding;
} WASINNContext;
/**
* @brief Initialize wasi-nn
*
*/
WASINNContext *
wasi_nn_initialize();
/**
* @brief Destroy wasi-nn on app exists
*
*/
void
wasi_nn_destroy(WASINNContext *wasi_nn_ctx);
#endif

View File

@ -3,8 +3,10 @@
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasi_nn_tensorflow.hpp"
#include "wasi_nn_common.h"
#include "wasi_nn.h"
#include "wasi_nn_tensorflowlite.hpp"
#include "logger.h"
#include "bh_common.h"
#include "bh_platform.h"
#include "platform_common.h"
@ -14,6 +16,7 @@
#include <tensorflow/lite/model.h>
#include <tensorflow/lite/optional_debug_tools.h>
#include <tensorflow/lite/error_reporter.h>
#include <tensorflow/lite/delegates/gpu/delegate.h>
/* Global variables */
@ -25,30 +28,30 @@ static char *model_pointer = NULL;
/* WASI-NN (tensorflow) implementation */
error
tensorflow_load(graph_builder_array builder, graph_encoding encoding,
execution_target target, graph *graph)
tensorflowlite_load(graph_builder_array *builder, graph_encoding encoding,
execution_target target, graph *g)
{
if (model_pointer != NULL) {
wasm_runtime_free(model_pointer);
model_pointer = NULL;
}
if (builder.size != 1) {
if (builder->size != 1) {
NN_ERR_PRINTF("Unexpected builder format.");
return invalid_argument;
}
if (encoding != tensorflow) {
NN_ERR_PRINTF("Encoding is not tensorflow.");
if (encoding != tensorflowlite) {
NN_ERR_PRINTF("Encoding is not tensorflowlite.");
return invalid_argument;
}
if (target != cpu) {
NN_ERR_PRINTF("Only CPU target is supported.");
if (target != cpu && target != gpu) {
NN_ERR_PRINTF("Only CPU and GPU target is supported.");
return invalid_argument;
}
uint32_t size = builder.buf[0].size;
uint32_t size = builder->buf[0].size;
model_pointer = (char *)wasm_runtime_malloc(size);
if (model_pointer == NULL) {
@ -56,7 +59,7 @@ tensorflow_load(graph_builder_array builder, graph_encoding encoding,
return missing_memory;
}
bh_memcpy_s(model_pointer, size, builder.buf[0].buf, size);
bh_memcpy_s(model_pointer, size, builder->buf[0].buf, size);
model = tflite::FlatBufferModel::BuildFromBuffer(model_pointer, size, NULL);
if (model == NULL) {
@ -77,11 +80,34 @@ tensorflow_load(graph_builder_array builder, graph_encoding encoding,
return missing_memory;
}
bool use_default = false;
switch (target) {
case gpu:
{
// https://www.tensorflow.org/lite/performance/gpu
auto options = TfLiteGpuDelegateOptionsV2Default();
options.inference_preference =
TFLITE_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED;
options.inference_priority1 =
TFLITE_GPU_INFERENCE_PRIORITY_MIN_LATENCY;
auto *delegate = TfLiteGpuDelegateV2Create(&options);
if (interpreter->ModifyGraphWithDelegate(delegate) != kTfLiteOk) {
NN_ERR_PRINTF("Error when enabling GPU delegate.");
use_default = true;
}
break;
}
default:
use_default = true;
}
if (use_default)
NN_WARN_PRINTF("Default encoding is CPU.");
return success;
}
error
tensorflow_init_execution_context(graph graph)
tensorflowlite_init_execution_context(graph g, graph_execution_context *ctx)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
@ -92,8 +118,8 @@ tensorflow_init_execution_context(graph graph)
}
error
tensorflow_set_input(graph_execution_context ctx, uint32_t index,
tensor *input_tensor)
tensorflowlite_set_input(graph_execution_context ctx, uint32_t index,
tensor *input_tensor)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
@ -113,11 +139,11 @@ tensorflow_set_input(graph_execution_context ctx, uint32_t index,
}
uint32_t model_tensor_size = 1;
for (int i = 0; i < (int)tensor->dims->size; ++i)
for (int i = 0; i < tensor->dims->size; ++i)
model_tensor_size *= (uint32_t)tensor->dims->data[i];
uint32_t input_tensor_size = 1;
for (int i = 0; i < input_tensor->dimensions->size; i++)
for (uint32_t i = 0; i < input_tensor->dimensions->size; i++)
input_tensor_size *= (uint32_t)input_tensor->dimensions->buf[i];
if (model_tensor_size != input_tensor_size) {
@ -136,7 +162,7 @@ tensorflow_set_input(graph_execution_context ctx, uint32_t index,
}
error
tensorflow_compute(graph_execution_context ctx)
tensorflowlite_compute(graph_execution_context ctx)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
@ -147,8 +173,9 @@ tensorflow_compute(graph_execution_context ctx)
}
error
tensorflow_get_output(graph_execution_context context, uint32_t index,
tensor_data output_tensor, uint32_t *output_tensor_size)
tensorflowlite_get_output(graph_execution_context ctx, uint32_t index,
tensor_data output_tensor,
uint32_t *output_tensor_size)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
@ -178,7 +205,7 @@ tensorflow_get_output(graph_execution_context context, uint32_t index,
}
float *tensor_f = interpreter->typed_output_tensor<float>(index);
for (int i = 0; i < model_tensor_size; ++i)
for (uint32_t i = 0; i < model_tensor_size; ++i)
NN_DBG_PRINTF("output: %f", tensor_f[i]);
*output_tensor_size = model_tensor_size;
@ -186,3 +213,22 @@ tensorflow_get_output(graph_execution_context context, uint32_t index,
model_tensor_size * sizeof(float));
return success;
}
void
tensorflowlite_destroy()
{
/*
TensorFlow Lite memory is man
Related issues:
* https://github.com/tensorflow/tensorflow/issues/15880
*/
NN_DBG_PRINTF("Freeing memory.");
model.reset(nullptr);
model = NULL;
interpreter.reset(nullptr);
interpreter = NULL;
wasm_runtime_free(model_pointer);
model_pointer = NULL;
NN_DBG_PRINTF("Memory free'd.");
}

View File

@ -0,0 +1,41 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_TENSORFLOWLITE_HPP
#define WASI_NN_TENSORFLOWLITE_HPP
#include "wasi_nn.h"
#ifdef __cplusplus
extern "C" {
#endif
error
tensorflowlite_load(graph_builder_array *builder, graph_encoding encoding,
execution_target target, graph *g);
error
tensorflowlite_init_execution_context(graph g, graph_execution_context *ctx);
error
tensorflowlite_set_input(graph_execution_context ctx, uint32_t index,
tensor *input_tensor);
error
tensorflowlite_compute(graph_execution_context ctx);
error
tensorflowlite_get_output(graph_execution_context ctx, uint32_t index,
tensor_data output_tensor,
uint32_t *output_tensor_size);
void
tensorflowlite_destroy();
#ifdef __cplusplus
}
#endif
#endif

View File

@ -7,10 +7,10 @@ project (iwasm)
set (CMAKE_VERBOSE_MAKEFILE OFF)
# Reset default linker flags
set (CMAKE_SHARED_LIBRARY_LINK_C_FLAGS "")
set (CMAKE_SHARED_LIBRARY_LINK_CXX_FLAGS "")
set (CMAKE_C_STANDARD 99)
set (CMAKE_CXX_STANDARD 14)
set (CMAKE_SHARED_LIBRARY_LINK_C_FLAGS "")
set (CMAKE_SHARED_LIBRARY_LINK_CXX_FLAGS "")
if (NOT DEFINED WAMR_BUILD_PLATFORM)
set (WAMR_BUILD_PLATFORM "linux")

View File

@ -1,32 +0,0 @@
# Copyright (C) 2019 Intel Corporation. All rights reserved.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
FROM ubuntu:22.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y \
cmake build-essential git wget python3.10 python3-pip
RUN wget -q https://github.com/WebAssembly/wasi-sdk/releases/download/wasi-sdk-14/wasi-sdk-14.0-linux.tar.gz && \
tar xf wasi-sdk-*-linux.tar.gz -C /opt && rm -f wasi-sdk-*-linux.tar.gz && \
mv /opt/wasi-sdk-14.0 /opt/wasi-sdk
WORKDIR /home/wamr
COPY core core
COPY build-scripts build-scripts
COPY product-mini product-mini
RUN pip3 install -r core/iwasm/libraries/wasi-nn/test/requirements.txt
WORKDIR /home/wamr/core/iwasm/libraries/wasi-nn/test/build
RUN cmake -DWAMR_BUILD_WASI_NN=1 ..
RUN make -j $(grep -c ^processor /proc/cpuinfo)
WORKDIR /home/wamr/core/iwasm/libraries/wasi-nn/test
RUN ./build.sh
ENTRYPOINT [ "./build/iwasm", "--dir=.", "test_tensorflow.wasm" ]

View File

@ -0,0 +1,22 @@
# Copyright (C) 2019 Intel Corporation. All rights reserved.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
FROM ubuntu:20.04 AS base
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y \
cmake build-essential git
WORKDIR /home/wamr
COPY . .
WORKDIR /home/wamr/core/iwasm/libraries/wasi-nn/test/build
RUN cmake \
-DWAMR_BUILD_WASI_NN=1 \
-DTFLITE_ENABLE_GPU=ON \
..
RUN make -j $(grep -c ^processor /proc/cpuinfo)

View File

@ -0,0 +1,23 @@
# Copyright (C) 2019 Intel Corporation. All rights reserved.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
FROM ubuntu:20.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y \
cmake build-essential git wget python3.10 python3-pip
ARG WASI_SDK_VER=19
RUN wget -c --progress=dot:giga https://github.com/WebAssembly/wasi-sdk/releases/download/wasi-sdk-${WASI_SDK_VER}/wasi-sdk-${WASI_SDK_VER}.0-linux.tar.gz -P /opt \
&& tar xf /opt/wasi-sdk-${WASI_SDK_VER}.0-linux.tar.gz -C /opt \
&& ln -fs /opt/wasi-sdk-${WASI_SDK_VER}.0 /opt/wasi-sdk \
&& rm /opt/wasi-sdk-${WASI_SDK_VER}.0-linux.tar.gz
WORKDIR /wasi-nn/test
COPY core/iwasm/libraries/wasi-nn/test/requirements.txt .
RUN pip3 install -r requirements.txt && rm requirements.txt
ENTRYPOINT [ "bash", "./build.sh" ]

View File

@ -0,0 +1,8 @@
# Copyright (C) 2019 Intel Corporation. All rights reserved.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
FROM ubuntu:20.04
COPY --from=wasi-nn-base /home/wamr/core/iwasm/libraries/wasi-nn/test/build/iwasm /run/iwasm
ENTRYPOINT [ "/run/iwasm" ]

View File

@ -0,0 +1,20 @@
# Copyright (C) 2019 Intel Corporation. All rights reserved.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
FROM nvidia/cuda:11.3.0-runtime-ubuntu20.04
RUN apt-get update && apt-get install -y --no-install-recommends \
ocl-icd-libopencl1 \
ocl-icd-opencl-dev \
clinfo && \
rm -rf /var/lib/apt/lists/*
RUN mkdir -p /etc/OpenCL/vendors && \
echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
ENV NVIDIA_VISIBLE_DEVICES=all
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
COPY --from=wasi-nn-base /home/wamr/core/iwasm/libraries/wasi-nn/test/build/iwasm /run/iwasm
ENTRYPOINT [ "/run/iwasm" ]

View File

@ -7,7 +7,7 @@
-Wl,--allow-undefined \
-Wl,--strip-all,--no-entry \
--sysroot=/opt/wasi-sdk/share/wasi-sysroot \
-I/home/wamr/core/iwasm/libraries/wasi-nn \
-I.. \
-o test_tensorflow.wasm test_tensorflow.c
# TFLite models to use in the tests

78
core/iwasm/libraries/wasi-nn/test/test_tensorflow.c Executable file → Normal file
View File

@ -28,7 +28,7 @@ typedef struct {
// WASI-NN wrappers
error
wasm_load(char *model_name, graph *graph)
wasm_load(char *model_name, graph *g, execution_target target)
{
FILE *pFile = fopen(model_name, "r");
if (pFile == NULL)
@ -64,7 +64,7 @@ wasm_load(char *model_name, graph *graph)
arr.buf[0].size = result;
arr.buf[0].buf = buffer;
error res = load(&arr, tensorflow, cpu, graph);
error res = load(&arr, tensorflowlite, target, g);
fclose(pFile);
free(buffer);
@ -73,13 +73,13 @@ wasm_load(char *model_name, graph *graph)
}
error
wasm_init_execution_context(graph graph, graph_execution_context *ctx)
wasm_init_execution_context(graph g, graph_execution_context *ctx)
{
return init_execution_context(graph, ctx);
return init_execution_context(g, ctx);
}
error
wasm_input(graph_execution_context ctx, float *input_tensor, uint32_t *dim)
wasm_set_input(graph_execution_context ctx, float *input_tensor, uint32_t *dim)
{
tensor_dimensions dims;
dims.size = INPUT_TENSOR_DIMS;
@ -115,11 +115,12 @@ wasm_get_output(graph_execution_context ctx, uint32_t index, float *out_tensor,
// Inference
float *
run_inference(float *input, uint32_t *input_size, uint32_t *output_size,
char *model_name, uint32_t num_output_tensors)
run_inference(execution_target target, float *input, uint32_t *input_size,
uint32_t *output_size, char *model_name,
uint32_t num_output_tensors)
{
graph graph;
if (wasm_load(model_name, &graph) != success) {
if (wasm_load(model_name, &graph, target) != success) {
fprintf(stderr, "Error when loading model.");
exit(1);
}
@ -130,7 +131,7 @@ run_inference(float *input, uint32_t *input_size, uint32_t *output_size,
exit(1);
}
if (wasm_input(ctx, input, input_size) != success) {
if (wasm_set_input(ctx, input, input_size) != success) {
fprintf(stderr, "Error when setting input tensor.");
exit(1);
}
@ -151,7 +152,7 @@ run_inference(float *input, uint32_t *input_size, uint32_t *output_size,
*output_size = MAX_OUTPUT_TENSOR_SIZE - *output_size;
if (wasm_get_output(ctx, i, &out_tensor[offset], output_size)
!= success) {
fprintf(stderr, "Error when getting input .");
fprintf(stderr, "Error when getting output .");
exit(1);
}
@ -185,14 +186,14 @@ create_input(int *dims)
// TESTS
void
test_sum()
test_sum(execution_target target)
{
int dims[] = { 1, 5, 5, 1 };
input_info input = create_input(dims);
uint32_t output_size = 0;
float *output = run_inference(input.input_tensor, input.dim, &output_size,
"models/sum.tflite", 1);
float *output = run_inference(target, input.input_tensor, input.dim,
&output_size, "/assets/models/sum.tflite", 1);
assert(output_size == 1);
assert(fabs(output[0] - 300.0) < EPSILON);
@ -203,14 +204,14 @@ test_sum()
}
void
test_max()
test_max(execution_target target)
{
int dims[] = { 1, 5, 5, 1 };
input_info input = create_input(dims);
uint32_t output_size = 0;
float *output = run_inference(input.input_tensor, input.dim, &output_size,
"models/max.tflite", 1);
float *output = run_inference(target, input.input_tensor, input.dim,
&output_size, "/assets/models/max.tflite", 1);
assert(output_size == 1);
assert(fabs(output[0] - 24.0) < EPSILON);
@ -222,14 +223,15 @@ test_max()
}
void
test_average()
test_average(execution_target target)
{
int dims[] = { 1, 5, 5, 1 };
input_info input = create_input(dims);
uint32_t output_size = 0;
float *output = run_inference(input.input_tensor, input.dim, &output_size,
"models/average.tflite", 1);
float *output =
run_inference(target, input.input_tensor, input.dim, &output_size,
"/assets/models/average.tflite", 1);
assert(output_size == 1);
assert(fabs(output[0] - 12.0) < EPSILON);
@ -241,14 +243,15 @@ test_average()
}
void
test_mult_dimensions()
test_mult_dimensions(execution_target target)
{
int dims[] = { 1, 3, 3, 1 };
input_info input = create_input(dims);
uint32_t output_size = 0;
float *output = run_inference(input.input_tensor, input.dim, &output_size,
"models/mult_dim.tflite", 1);
float *output =
run_inference(target, input.input_tensor, input.dim, &output_size,
"/assets/models/mult_dim.tflite", 1);
assert(output_size == 9);
for (int i = 0; i < 9; i++)
@ -260,14 +263,15 @@ test_mult_dimensions()
}
void
test_mult_outputs()
test_mult_outputs(execution_target target)
{
int dims[] = { 1, 4, 4, 1 };
input_info input = create_input(dims);
uint32_t output_size = 0;
float *output = run_inference(input.input_tensor, input.dim, &output_size,
"models/mult_out.tflite", 2);
float *output =
run_inference(target, input.input_tensor, input.dim, &output_size,
"/assets/models/mult_out.tflite", 2);
assert(output_size == 8);
// first tensor check
@ -285,16 +289,30 @@ test_mult_outputs()
int
main()
{
char *env = getenv("TARGET");
if (env == NULL) {
printf("Usage:\n--env=\"TARGET=[cpu|gpu]\"\n");
return 1;
}
execution_target target;
if (strcmp(env, "cpu") == 0)
target = cpu;
else if (strcmp(env, "gpu") == 0)
target = gpu;
else {
printf("Wrong target!");
return 1;
}
printf("################### Testing sum...\n");
test_sum();
test_sum(target);
printf("################### Testing max...\n");
test_max();
test_max(target);
printf("################### Testing average...\n");
test_average();
test_average(target);
printf("################### Testing multiple dimensions...\n");
test_mult_dimensions();
test_mult_dimensions(target);
printf("################### Testing multiple outputs...\n");
test_mult_outputs();
test_mult_outputs(target);
printf("Tests: passed!\n");
return 0;

View File

@ -5,6 +5,15 @@ set (WASI_NN_DIR ${CMAKE_CURRENT_LIST_DIR})
add_definitions (-DWASM_ENABLE_WASI_NN=1)
set (LIBC_WASI_NN_SOURCE ${WASI_NN_DIR}/wasi_nn_native.c ${WASI_NN_DIR}/wasi_nn_tensorflow.cpp)
include_directories (${WASI_NN_DIR})
include_directories (${WASI_NN_DIR}/src)
include_directories (${WASI_NN_DIR}/src/utils)
set (
LIBC_WASI_NN_SOURCE
${WASI_NN_DIR}/src/wasi_nn.c
${WASI_NN_DIR}/src/wasi_nn_tensorflowlite.cpp
${WASI_NN_DIR}/src/utils/wasi_nn_app_native.c
)
set (TENSORFLOW_LIB tensorflow-lite)

View File

@ -3,63 +3,17 @@
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_WASM_H
#define WASI_NN_WASM_H
#include "wasi_nn_common.h"
/**
* Following definition from:
* [Aug 10th, 2022]
* https://github.com/WebAssembly/wasi-nn/blob/e5e1a6c31f424c7cd63026cd270e9746775675a0/wasi-nn.wit.md
* [Oct 25th, 2022]
* https://github.com/WebAssembly/wasi-nn/blob/0f77c48ec195748990ff67928a4b3eef5f16c2de/wasi-nn.wit.md
*/
/* The graph initialization data. */
#ifndef WASI_NN_H
#define WASI_NN_H
// This consists of an array of buffers because implementing backends may encode
// their graph IR in parts (e.g., OpenVINO stores its IR and weights
// separately).
typedef struct {
uint8_t *buf;
uint32_t size;
} graph_builder;
typedef struct {
graph_builder *buf;
uint32_t size;
} graph_builder_array;
/* The dimensions of a tensor. */
// The array length matches the tensor rank and each element in the array
// describes the size of each dimension.
typedef struct {
uint32_t *buf;
uint32_t size;
} tensor_dimensions;
/* The tensor data. */
// Initially conceived as a sparse representation, each empty cell would be
// filled with zeros and the array length must match the product of all of the
// dimensions and the number of bytes in the type (e.g., a 2x2 tensor with
// 4-byte f32 elements would have a data array of length 16). Naturally, this
// representation requires some knowledge of how to lay out data in
// memory--e.g., using row-major ordering--and could perhaps be improved.
typedef uint8_t *tensor_data;
/* A tensor. */
typedef struct {
// Describe the size of the tensor (e.g., 2x2x2x2 -> [2, 2, 2, 2]). To
// represent a tensor containing a single value, use `[1]` for the tensor
// dimensions.
tensor_dimensions *dimensions;
// Describe the type of element in the tensor (e.g., f32).
tensor_type type;
// Contains the tensor data.
tensor_data data;
} tensor;
#include <stdint.h>
#include "wasi_nn_types.h"
/**
* @brief Load an opaque sequence of bytes to use for inference.
@ -67,25 +21,31 @@ typedef struct {
* @param builder Model builder.
* @param encoding Model encoding.
* @param target Execution target.
* @param graph Graph.
* @param g Graph.
* @return error Execution status.
*/
error
load(graph_builder_array *builder, graph_encoding encoding,
execution_target target, graph *graph)
__attribute__((export_module("wasi_nn")))
execution_target target, graph *g)
__attribute__((import_module("wasi_nn")));
/**
* INFERENCE
*
*/
// Bind a `graph` to the input and output tensors for an inference.
typedef uint32_t graph_execution_context;
/**
* @brief Create an execution instance of a loaded graph.
*
* @param graph Graph.
* @param g Graph.
* @param ctx Execution context.
* @return error Execution status.
*/
error
init_execution_context(graph graph, graph_execution_context *ctx)
__attribute__((export_module("wasi_nn")))
init_execution_context(graph g, graph_execution_context *ctx)
__attribute__((import_module("wasi_nn")));
/**
@ -98,7 +58,6 @@ init_execution_context(graph graph, graph_execution_context *ctx)
*/
error
set_input(graph_execution_context ctx, uint32_t index, tensor *tensor)
__attribute__((export_module("wasi_nn")))
__attribute__((import_module("wasi_nn")));
/**
@ -108,8 +67,7 @@ set_input(graph_execution_context ctx, uint32_t index, tensor *tensor)
* @return error Execution status.
*/
error
compute(graph_execution_context ctx) __attribute__((export_module("wasi_nn")))
__attribute__((import_module("wasi_nn")));
compute(graph_execution_context ctx) __attribute__((import_module("wasi_nn")));
/**
* @brief Extract the outputs after inference.
@ -126,7 +84,6 @@ __attribute__((import_module("wasi_nn")));
error
get_output(graph_execution_context ctx, uint32_t index,
tensor_data output_tensor, uint32_t *output_tensor_size)
__attribute__((export_module("wasi_nn")))
__attribute__((import_module("wasi_nn")));
#endif

View File

@ -1,44 +0,0 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_COMMON_H
#define WASI_NN_COMMON_H
#include <stdint.h>
// The type of the elements in a tensor.
typedef enum { fp16 = 0, fp32, up8, ip32 } tensor_type;
// Describes the encoding of the graph. This allows the API to be implemented by
// various backends that encode (i.e., serialize) their graph IR with different
// formats.
typedef enum { openvino = 0, onnx, tensorflow, pytorch } graph_encoding;
// Define where the graph should be executed.
typedef enum { cpu = 0, gpu, tpu } execution_target;
// Error codes returned by functions in this API.
typedef enum {
// No error occurred.
success = 0,
// Caller module passed an invalid argument.
invalid_argument,
// Invalid encoding.
invalid_encoding,
// Caller module is missing a memory export.
missing_memory,
// Device or resource busy.
busy,
// Runtime Error.
runtime_error,
} error;
// An execution graph for performing inference (i.e., a model).
typedef uint32_t graph;
// Bind a `graph` to the input and output tensors for an inference.
typedef uint32_t graph_execution_context;
#endif

View File

@ -1,264 +0,0 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include <stdio.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include "wasi_nn_common.h"
#include "wasm_export.h"
#include "bh_platform.h"
#include "wasi_nn.h"
#include "wasi_nn_tensorflow.hpp"
#include "logger.h"
/* Definition of 'wasi_nn.h' structs in WASM app format (using offset) */
typedef struct {
uint32_t buf_offset;
uint32_t size;
} graph_builder_wasm;
typedef struct {
uint32_t buf_offset;
uint32_t size;
} graph_builder_array_wasm;
typedef struct {
uint32_t dimensions_offset;
tensor_type type;
uint32_t data_offset;
} tensor_wasm;
typedef struct {
uint32_t buf_offset;
uint32_t size;
} tensor_dimensions_wasm;
/* Global variables */
static uint8_t _is_initialized;
static graph_encoding _encoding;
/* Utils */
static error
check_initialized()
{
if (!_is_initialized) {
NN_ERR_PRINTF("Model not initialized.");
return invalid_argument;
}
if (_encoding != tensorflow) {
NN_ERR_PRINTF("Model encoding is not tensorflow.");
return invalid_argument;
}
return success;
}
/* WASI-NN implementation */
error
wasi_nn_load(wasm_exec_env_t exec_env, graph_builder_array_wasm *builder,
graph_encoding encoding, execution_target target, graph *graph)
{
NN_DBG_PRINTF("Running wasi_nn_load [encoding=%d, target=%d]...", encoding,
target);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
if (!wasm_runtime_validate_native_addr(instance, builder,
sizeof(graph_builder_array_wasm)))
return invalid_argument;
if (!wasm_runtime_validate_app_addr(instance, builder->buf_offset,
builder->size * sizeof(uint32_t)))
return invalid_argument;
NN_DBG_PRINTF("Graph builder array contains %d elements", builder->size);
graph_builder_wasm *gb_wasm =
(graph_builder_wasm *)wasm_runtime_addr_app_to_native(
instance, builder->buf_offset);
graph_builder *gb_native = (graph_builder *)wasm_runtime_malloc(
builder->size * sizeof(graph_builder));
if (gb_native == NULL)
return missing_memory;
for (int i = 0; i < builder->size; ++i) {
if (!wasm_runtime_validate_app_addr(instance, gb_wasm[i].buf_offset,
gb_wasm[i].size
* sizeof(uint8_t))) {
wasm_runtime_free(gb_native);
return invalid_argument;
}
gb_native[i].buf = (uint8_t *)wasm_runtime_addr_app_to_native(
instance, gb_wasm[i].buf_offset);
gb_native[i].size = gb_wasm[i].size;
NN_DBG_PRINTF("Graph builder %d contains %d elements", i,
gb_wasm[i].size);
}
graph_builder_array gba_native = { .buf = gb_native,
.size = builder->size };
if (!wasm_runtime_validate_native_addr(instance, graph, sizeof(graph))) {
wasm_runtime_free(gb_native);
return invalid_argument;
}
switch (encoding) {
case tensorflow:
break;
default:
NN_ERR_PRINTF("Only tensorflow is supported.");
wasm_runtime_free(gb_native);
return invalid_argument;
}
_encoding = encoding;
_is_initialized = 1;
error res = tensorflow_load(gba_native, _encoding, target, graph);
NN_DBG_PRINTF("wasi_nn_load finished with status %d [graph=%d]", res,
*graph);
wasm_runtime_free(gb_native);
return res;
}
error
wasi_nn_init_execution_context(wasm_exec_env_t exec_env, graph graph,
graph_execution_context *ctx)
{
NN_DBG_PRINTF("Running wasi_nn_init_execution_context [graph=%d]...",
graph);
error res;
if (success != (res = check_initialized()))
return res;
res = tensorflow_init_execution_context(graph);
*ctx = graph;
NN_DBG_PRINTF(
"wasi_nn_init_execution_context finished with status %d [ctx=%d]", res,
*ctx);
return res;
}
error
wasi_nn_set_input(wasm_exec_env_t exec_env, graph_execution_context ctx,
uint32_t index, tensor_wasm *input_tensor)
{
NN_DBG_PRINTF("Running wasi_nn_set_input [ctx=%d, index=%d]...", ctx,
index);
error res;
if (success != (res = check_initialized()))
return res;
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
if (!wasm_runtime_validate_native_addr(instance, input_tensor,
sizeof(tensor_wasm)))
return invalid_argument;
if (!wasm_runtime_validate_app_addr(
instance, input_tensor->dimensions_offset, sizeof(uint32_t)))
return invalid_argument;
tensor_dimensions_wasm *dimensions_w =
(tensor_dimensions_wasm *)wasm_runtime_addr_app_to_native(
instance, input_tensor->dimensions_offset);
if (!wasm_runtime_validate_app_addr(instance, dimensions_w->buf_offset,
dimensions_w->size * sizeof(uint32_t)))
return invalid_argument;
tensor_dimensions dimensions = {
.buf = (uint32_t *)wasm_runtime_addr_app_to_native(
instance, dimensions_w->buf_offset),
.size = dimensions_w->size
};
NN_DBG_PRINTF("Number of dimensions: %d", dimensions.size);
int total_elements = 1;
for (int i = 0; i < dimensions.size; ++i) {
NN_DBG_PRINTF("Dimension %d: %d", i, dimensions.buf[i]);
total_elements *= dimensions.buf[i];
}
NN_DBG_PRINTF("Tensor type: %d", input_tensor->type);
if (!wasm_runtime_validate_app_addr(instance, input_tensor->data_offset,
total_elements))
return invalid_argument;
tensor tensor = { .type = input_tensor->type,
.dimensions = &dimensions,
.data = (uint8_t *)wasm_runtime_addr_app_to_native(
instance, input_tensor->data_offset) };
res = tensorflow_set_input(ctx, index, &tensor);
NN_DBG_PRINTF("wasi_nn_set_input finished with status %d", res);
return res;
}
error
wasi_nn_compute(wasm_exec_env_t exec_env, graph_execution_context ctx)
{
NN_DBG_PRINTF("Running wasi_nn_compute [ctx=%d]...", ctx);
error res;
if (success != (res = check_initialized()))
return res;
res = tensorflow_compute(ctx);
NN_DBG_PRINTF("wasi_nn_compute finished with status %d", res);
return res;
}
error
wasi_nn_get_output(wasm_exec_env_t exec_env, graph_execution_context ctx,
uint32_t index, tensor_data output_tensor,
uint32_t *output_tensor_size)
{
NN_DBG_PRINTF("Running wasi_nn_get_output [ctx=%d, index=%d]...", ctx,
index);
error res;
if (success != (res = check_initialized()))
return res;
res = tensorflow_get_output(ctx, index, output_tensor, output_tensor_size);
NN_DBG_PRINTF("wasi_nn_get_output finished with status %d [data_size=%d]",
res, *output_tensor_size);
return res;
}
/* Register WASI-NN in WAMR */
/* clang-format off */
#define REG_NATIVE_FUNC(func_name, signature) \
{ #func_name, wasi_nn_##func_name, signature, NULL }
/* clang-format on */
static NativeSymbol native_symbols_wasi_nn[] = {
REG_NATIVE_FUNC(load, "(*ii*)i"),
REG_NATIVE_FUNC(init_execution_context, "(i*)i"),
REG_NATIVE_FUNC(set_input, "(ii*)i"),
REG_NATIVE_FUNC(compute, "(i)i"),
REG_NATIVE_FUNC(get_output, "(ii**)i"),
};
uint32_t
get_wasi_nn_export_apis(NativeSymbol **p_libc_wasi_apis)
{
*p_libc_wasi_apis = native_symbols_wasi_nn;
return sizeof(native_symbols_wasi_nn) / sizeof(NativeSymbol);
}

View File

@ -1,40 +0,0 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_TENSORFLOW_HPP
#define WASI_NN_TENSORFLOW_HPP
#include <stdio.h>
#include "wasi_nn.h"
#include "logger.h"
#ifdef __cplusplus
extern "C" {
#endif
error
tensorflow_load(graph_builder_array builder, graph_encoding encoding,
execution_target target, graph *graph);
error
tensorflow_init_execution_context(graph graph);
error
tensorflow_set_input(graph_execution_context ctx, uint32_t index,
tensor *input_tensor);
error
tensorflow_compute(graph_execution_context ctx);
error
tensorflow_get_output(graph_execution_context context, uint32_t index,
tensor_data output_tensor, uint32_t *output_tensor_size);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,106 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_TYPES_H
#define WASI_NN_TYPES_H
/**
* ERRORS
*
*/
// Error codes returned by functions in this API.
typedef enum {
// No error occurred.
success = 0,
// Caller module passed an invalid argument.
invalid_argument,
// Invalid encoding.
invalid_encoding,
// Caller module is missing a memory export.
missing_memory,
// Device or resource busy.
busy,
// Runtime Error.
runtime_error,
} error;
/**
* TENSOR
*
*/
// The dimensions of a tensor.
//
// The array length matches the tensor rank and each element in the array
// describes the size of each dimension.
typedef struct {
uint32_t *buf;
uint32_t size;
} tensor_dimensions;
// The type of the elements in a tensor.
typedef enum { fp16 = 0, fp32, up8, ip32 } tensor_type;
// The tensor data.
//
// Initially conceived as a sparse representation, each empty cell would be
// filled with zeros and the array length must match the product of all of the
// dimensions and the number of bytes in the type (e.g., a 2x2 tensor with
// 4-byte f32 elements would have a data array of length 16). Naturally, this
// representation requires some knowledge of how to lay out data in
// memory--e.g., using row-major ordering--and could perhaps be improved.
typedef uint8_t *tensor_data;
// A tensor.
typedef struct {
// Describe the size of the tensor (e.g., 2x2x2x2 -> [2, 2, 2, 2]). To
// represent a tensor containing a single value, use `[1]` for the tensor
// dimensions.
tensor_dimensions *dimensions;
// Describe the type of element in the tensor (e.g., f32).
tensor_type type;
// Contains the tensor data.
tensor_data data;
} tensor;
/**
* GRAPH
*
*/
// The graph initialization data.
//
// This consists of an array of buffers because implementing backends may encode
// their graph IR in parts (e.g., OpenVINO stores its IR and weights
// separately).
typedef struct {
uint8_t *buf;
uint32_t size;
} graph_builder;
typedef struct {
graph_builder *buf;
uint32_t size;
} graph_builder_array;
// An execution graph for performing inference (i.e., a model).
typedef uint32_t graph;
// Describes the encoding of the graph. This allows the API to be implemented by
// various backends that encode (i.e., serialize) their graph IR with different
// formats.
typedef enum {
openvino = 0,
onnx,
tensorflow,
pytorch,
tensorflowlite
} graph_encoding;
// Define where the graph should be executed.
typedef enum execution_target { cpu = 0, gpu, tpu } execution_target;
#endif