Add xtensa AOT support and fix build issue of alios (#223)

* Clean compiling warnings of zephyr samples

* Support xtensa AOT and fix build issue of alios
This commit is contained in:
Weining
2020-04-01 18:38:42 +08:00
committed by GitHub
parent c1a0e6d877
commit c6fc12b7b6
20 changed files with 762 additions and 68 deletions

View File

@ -985,14 +985,21 @@ load_text_section(const uint8 *buf, const uint8 *buf_end,
return false;
}
module->code = (void*)buf;
module->code_size = (uint32)(buf_end - buf);
read_uint32(buf, buf_end, module->literal_size);
/* literal data is at begining of the text section */
module->literal = (uint8*)buf;
module->code = (void*)(buf + module->literal_size);
module->code_size = (uint32)(buf_end - (uint8*)module->code);
if (module->code_size > 0) {
plt_base = (uint8*)buf_end - get_plt_table_size();
init_plt_table(plt_base);
}
return true;
fail:
return false;
}
static bool
@ -1184,13 +1191,20 @@ resolve_target_sym(const char *symbol, int32 *p_index)
return NULL;
}
static bool
is_literal_relocation(const char *reloc_sec_name)
{
return !strcmp(reloc_sec_name, ".rela.literal");
}
static bool
do_text_relocation(AOTModule *module,
AOTRelocationGroup *group,
char *error_buf, uint32 error_buf_size)
{
uint8 *aot_text = module->code;
uint32 aot_text_size = module->code_size;
bool is_literal = is_literal_relocation(group->section_name);
uint8 *aot_text = is_literal ? module->literal : module->code;
uint32 aot_text_size = is_literal ? module->literal_size : module->code_size;
uint32 i, func_index, symbol_len;
char symbol_buf[128] = { 0 }, *symbol, *p;
void *symbol_addr;
@ -1248,6 +1262,9 @@ do_text_relocation(AOTModule *module,
goto check_symbol_fail;
}
}
else if (!strcmp(symbol, ".literal")) {
symbol_addr = module->literal;
}
else if (!(symbol_addr = resolve_target_sym(symbol, &symbol_index))) {
if (error_buf != NULL)
snprintf(error_buf, error_buf_size,
@ -1495,7 +1512,8 @@ load_relocation_section(const uint8 *buf, const uint8 *buf_end,
}
if (!strcmp(group->section_name, ".rel.text")
|| !strcmp(group->section_name, ".rela.text")) {
|| !strcmp(group->section_name, ".rela.text")
|| !strcmp(group->section_name, ".rela.literal")) {
if (!do_text_relocation(module, group, error_buf, error_buf_size))
return false;
}
@ -2079,8 +2097,11 @@ aot_unload(AOTModule *module)
if (module->const_str_set)
bh_hash_map_destroy(module->const_str_set);
if (module->code)
os_munmap(module->code, module->code_size);
if (module->code) {
uint8 *mmap_addr = module->literal - sizeof(module->literal_size);
uint32 total_size = sizeof(module->literal_size) + module->literal_size + module->code_size;
os_munmap(mmap_addr, total_size);
}
if (module->data_sections)
destroy_object_data_sections(module->data_sections,

View File

@ -125,6 +125,10 @@ typedef struct AOTModule {
void *code;
uint32 code_size;
/* literal for AOTed code, NULL for JIT mode */
uint8 *literal;
uint32 literal_size;
/* data sections in AOT object file, including .data, .rodata
* and .rodata.cstN. NULL for JIT mode. */
AOTObjectDataSection *data_sections;

View File

@ -5,10 +5,50 @@
#include "aot_reloc.h"
#define R_XTENSA_32 1 /* Direct 32 bit */
#define R_XTENSA_SLOT0_OP 20 /* PC relative */
/* for soft-float */
void __floatsidf();
void __divdf3();
void __ltdf2();
/* for mul32 */
void __mulsi3();
void __muldi3();
void __modsi3();
void __divdi3();
static SymbolMap target_sym_map[] = {
REG_COMMON_SYMBOLS
REG_COMMON_SYMBOLS,
/* API's for soft-float */
/* TODO: only register these symbols when Floating-Point Coprocessor
* Option is not enabled */
REG_SYM(__floatsidf),
REG_SYM(__divdf3),
REG_SYM(__ltdf2),
/* API's for 32-bit integer multiply */
/* TODO: only register these symbols when 32-bit Integer Multiply Option
* is not enabled */
REG_SYM(__mulsi3),
REG_SYM(__muldi3),
REG_SYM(__modsi3),
REG_SYM(__divdi3),
};
static void
set_error_buf(char *error_buf, uint32 error_buf_size, const char *string)
{
if (error_buf != NULL)
snprintf(error_buf, error_buf_size, "%s", string);
}
SymbolMap *
get_target_symbol_map(uint32 *sym_num)
{
@ -40,6 +80,67 @@ get_plt_table_size()
return get_plt_item_size() * (sizeof(target_sym_map) / sizeof(SymbolMap));
}
static bool
check_reloc_offset(uint32 target_section_size,
uint64 reloc_offset, uint32 reloc_data_size,
char *error_buf, uint32 error_buf_size)
{
if (!(reloc_offset < (uint64)target_section_size
&& reloc_offset + reloc_data_size <= (uint64)target_section_size)) {
set_error_buf(error_buf, error_buf_size,
"AOT module load failed: invalid relocation offset.");
return false;
}
return true;
}
/*
* CPU like esp32 can read and write data through the instruction bus, but only
* in a word aligned manner; non-word-aligned access will cause a CPU exception.
* This function uses a world aligned manner to write 16bit value to instruction
* addreess.
*/
static void
put_imm16_to_addr(int16 imm16, int16 *addr)
{
int8 bytes[8];
int32 *addr_aligned1, *addr_aligned2;
addr_aligned1 = (int32*)((intptr_t)addr & ~3);
if ((intptr_t)addr % 4 != 3) {
*(int32*)bytes = *addr_aligned1;
*(int16*)(bytes + ((intptr_t)addr % 4)) = imm16;
memcpy(addr_aligned1, bytes, 4);
}
else {
addr_aligned2 = (int32*)(((intptr_t)addr + 3) & ~3);
*(int32*)bytes = *addr_aligned1;
*(int32*)(bytes + 4) = *addr_aligned2;
*(int16*)(bytes + 3) = imm16;
memcpy(addr_aligned1, bytes, 8);
}
}
static union {
int a;
char b;
} __ue = { .a = 1 };
#define is_little_endian() (__ue.b == 1)
typedef union {
struct l32r_le {
int8 other;
int16 imm16;
} __packed l;
struct l32r_be {
int16 imm16;
int8 other;
} __packed b;
} l32r_insn_t;
bool
apply_relocation(AOTModule *module,
uint8 *target_section_addr, uint32 target_section_size,
@ -48,7 +149,73 @@ apply_relocation(AOTModule *module,
char *error_buf, uint32 error_buf_size)
{
switch (reloc_type) {
/* TODO: implement relocation for xtensa */
case R_XTENSA_32:
{
uint8 *insn_addr = target_section_addr + reloc_offset;
int32 initial_addend;
/* (S + A) */
if ((intptr_t)insn_addr & 3) {
set_error_buf(error_buf, error_buf_size,
"AOT module load failed: "
"instruction address unaligned.");
return false;
}
CHECK_RELOC_OFFSET(4);
initial_addend = *(int32*)insn_addr;
*(uint8**)insn_addr
= (uint8*)symbol_addr + initial_addend + reloc_addend;
break;
}
case R_XTENSA_SLOT0_OP:
{
uint8 *insn_addr = target_section_addr + reloc_offset;
/* Currently only l32r instruction generates R_XTENSA_SLOT0_OP relocation */
l32r_insn_t *l32r_insn = (l32r_insn_t *)insn_addr;
uint8 *reloc_addr;
int32 relative_offset/*, initial_addend */;
int16 imm16;
CHECK_RELOC_OFFSET(3); /* size of l32r instruction */
/*
imm16 = is_little_endian() ?
l32r_insn->l.imm16 : l32r_insn->b.imm16;
initial_addend = (int32)imm16 << 2;
*/
reloc_addr = (uint8*)symbol_addr + reloc_addend;
if ((intptr_t)reloc_addr & 3) {
set_error_buf(error_buf, error_buf_size,
"AOT module load failed: "
"relocation address unaligned.");
return false;
}
relative_offset = (int32)
((intptr_t)reloc_addr -
(((intptr_t)insn_addr + 3) & ~(intptr_t)3));
/* relative_offset += initial_addend; */
/* check relative offset boundary */
if (relative_offset < -256 * BH_KB || relative_offset > -4) {
set_error_buf(error_buf, error_buf_size,
"AOT module load failed: "
"target address out of range.");
return false;
}
imm16 = (int16)(relative_offset >> 2);
/* write back the imm16 to the l32r instruction */
if (is_little_endian())
put_imm16_to_addr(imm16, &l32r_insn->l.imm16);
else
put_imm16_to_addr(imm16, &l32r_insn->b.imm16);
break;
}
default:
if (error_buf != NULL)

View File

@ -49,6 +49,10 @@ typedef struct AOTObjectData {
void *text;
uint32 text_size;
/* literal data and size */
void *literal;
uint32 literal_size;
AOTObjectDataSection *data_sections;
uint32 data_sections_count;
@ -379,7 +383,7 @@ get_init_data_section_size(AOTCompData *comp_data, AOTObjectData *obj_data)
static uint32
get_text_section_size(AOTObjectData *obj_data)
{
return obj_data->text_size;
return (sizeof(uint32) + obj_data->literal_size + obj_data->text_size + 3) & ~3;
}
static uint32
@ -1118,13 +1122,20 @@ aot_emit_text_section(uint8 *buf, uint8 *buf_end, uint32 *p_offset,
{
uint32 section_size = get_text_section_size(obj_data);
uint32 offset = *p_offset;
uint8 placeholder = 0;
*p_offset = offset = align_uint(offset, 4);
EMIT_U32(AOT_SECTION_TYPE_TEXT);
EMIT_U32(section_size);
EMIT_U32(obj_data->literal_size);
if (obj_data->literal_size > 0)
EMIT_BUF(obj_data->literal, obj_data->literal_size);
EMIT_BUF(obj_data->text, obj_data->text_size);
while (offset & 3)
EMIT_BUF(&placeholder, 1);
if (offset - *p_offset != section_size + sizeof(uint32) * 2) {
aot_set_last_error("emit text section failed.");
return false;
@ -1449,6 +1460,29 @@ aot_resolve_text(AOTObjectData *obj_data)
return true;
}
static bool
aot_resolve_literal(AOTObjectData *obj_data)
{
LLVMSectionIteratorRef sec_itr;
char *name;
if (!(sec_itr = LLVMObjectFileCopySectionIterator(obj_data->binary))) {
aot_set_last_error("llvm get section iterator failed.");
return false;
}
while (!LLVMObjectFileIsSectionIteratorAtEnd(obj_data->binary, sec_itr)) {
if ((name = (char *)LLVMGetSectionName(sec_itr)) && !strcmp(name, ".literal")) {
obj_data->literal = (char *)LLVMGetSectionContents(sec_itr);
obj_data->literal_size = (uint32)LLVMGetSectionSize(sec_itr);
break;
}
LLVMMoveToNextSection(sec_itr);
}
LLVMDisposeSectionIterator(sec_itr);
return true;
}
static bool
is_data_section(char *section_name)
{
@ -1701,6 +1735,7 @@ is_relocation_section(char *section_name)
{
return (!strcmp(section_name, ".rela.text")
|| !strcmp(section_name, ".rel.text")
|| !strcmp(section_name, ".rela.literal")
|| !strcmp(section_name, ".rela.data")
|| !strcmp(section_name, ".rel.data")
|| !strcmp(section_name, ".rela.rodata")
@ -1873,6 +1908,7 @@ aot_obj_data_create(AOTCompContext *comp_ctx)
/* resolve target info/text/relocations/functions */
if (!aot_resolve_target_info(comp_ctx, obj_data)
|| !aot_resolve_text(obj_data)
|| !aot_resolve_literal(obj_data)
|| !aot_resolve_object_data_sections(obj_data)
|| !aot_resolve_object_relocation_groups(obj_data)
|| !aot_resolve_functions(comp_ctx, obj_data))

View File

@ -858,18 +858,63 @@ fail:
}
static bool
is_targeting_soft_float(LLVMTargetMachineRef target_machine)
is_target_arm(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "arm", 3) ||
!strncmp(comp_ctx->target_arch, "thumb", 5);
}
static bool
is_target_x86(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "x86_64", 6) ||
!strncmp(comp_ctx->target_arch, "i386", 4);
}
static bool
is_target_xtensa(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "xtensa", 6);
}
static bool
is_target_mips(AOTCompContext *comp_ctx)
{
return !strncmp(comp_ctx->target_arch, "mips", 4);
}
static bool
is_targeting_soft_float(AOTCompContext *comp_ctx, bool is_f32)
{
bool ret = false;
char *feature_string;
if (!(feature_string =
LLVMGetTargetMachineFeatureString(target_machine))) {
LLVMGetTargetMachineFeatureString(comp_ctx->target_machine))) {
aot_set_last_error("llvm get target machine feature string fail.");
return false;
}
ret = strstr(feature_string, "+soft-float") ? true : false;
/* Note:
* LLVM CodeGen uses FPU Coprocessor registers by default,
* so user must specify '--cpu-features=+soft-float' to wamrc if the target
* doesn't have or enable FPU on arm, x86 or mips. */
if (is_target_arm(comp_ctx) ||
is_target_x86(comp_ctx) ||
is_target_mips(comp_ctx))
ret = strstr(feature_string, "+soft-float") ? true : false;
else if (is_target_xtensa(comp_ctx))
/* Note:
* 1. The Floating-Point Coprocessor Option of xtensa only support
* single-precision floating-point operations, so must use soft-float
* for f64(i.e. double).
* 2. LLVM CodeGen uses Floating-Point Coprocessor registers by default,
* so user must specify '--cpu-features=-fp' to wamrc if the target
* doesn't have or enable Floating-Point Coprocessor Option on xtensa. */
ret = (!is_f32 || strstr(feature_string, "-fp")) ? true : false;
else
ret = true;
LLVMDisposeMessage(feature_string);
return ret;
}
@ -880,7 +925,7 @@ compile_op_float_arithmetic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
{
switch (arith_op) {
case FLOAT_ADD:
if (is_targeting_soft_float(comp_ctx->target_machine))
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(LLVMBuildFAdd(comp_ctx->builder, left, right, "fadd"),
"llvm build fadd fail.");
else
@ -897,7 +942,7 @@ compile_op_float_arithmetic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
NULL);
return true;
case FLOAT_SUB:
if (is_targeting_soft_float(comp_ctx->target_machine))
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(LLVMBuildFSub(comp_ctx->builder, left, right, "fsub"),
"llvm build fsub fail.");
else
@ -914,7 +959,7 @@ compile_op_float_arithmetic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
NULL);
return true;
case FLOAT_MUL:
if (is_targeting_soft_float(comp_ctx->target_machine))
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(LLVMBuildFMul(comp_ctx->builder, left, right, "fmul"),
"llvm build fmul fail.");
else
@ -931,7 +976,7 @@ compile_op_float_arithmetic(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
NULL);
return true;
case FLOAT_DIV:
if (is_targeting_soft_float(comp_ctx->target_machine))
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_BINARY_OP(LLVMBuildFDiv(comp_ctx->builder, left, right, "fdiv"),
"llvm build fdiv fail.");
else
@ -1050,7 +1095,7 @@ compile_op_float_math(AOTCompContext *comp_ctx, AOTFuncContext *func_ctx,
NULL);
return true;
case FLOAT_SQRT:
if (is_targeting_soft_float(comp_ctx->target_machine))
if (is_targeting_soft_float(comp_ctx, is_f32))
DEF_FP_UNARY_OP(call_llvm_float_math_intrinsic(comp_ctx,
is_f32 ? "llvm.sqrt.f32" :
"llvm.sqrt.f64",

View File

@ -740,6 +740,7 @@ typedef struct ArchItem {
static ArchItem valid_archs[] = {
{ "x86_64", false },
{ "i386", false },
{ "xtensa", false},
{ "mips", true },
{ "aarch64v8", false },
{ "aarch64v8.1", false },

View File

@ -77,4 +77,24 @@ unsigned long long int strtoull(const char *nptr, char **endptr, int base);
double strtod(const char *nptr, char **endptr);
float strtof(const char *nptr, char **endptr);
/**
* @brief Allocate executable memroy
*
* @param size size of the memory to be allocated
*
* @return the address of the allocated memory if not NULL
*/
typedef void* (*exec_mem_alloc_func_t)(unsigned int size);
/**
* @brief Release executable memroy
*
* @param the address of the executable memory to be released
*/
typedef void (*exec_mem_free_func_t)(void *addr);
/* Below function are called by external project to set related function pointers that
* will be used to malloc/free executable memory. Otherwise default mechanise will be used. */
void set_exec_mem_alloc_func(exec_mem_alloc_func_t alloc_func, exec_mem_free_func_t free_func);
#endif

View File

@ -6,6 +6,10 @@
#include "platform_api_vmcore.h"
#include "platform_api_extension.h"
/* function pointers for executable memory management */
static exec_mem_alloc_func_t exec_mem_alloc_func = NULL;
static exec_mem_free_func_t exec_mem_free_func = NULL;
#if WASM_ENABLE_AOT != 0
#ifdef CONFIG_ARM_MPU
/**
@ -108,13 +112,19 @@ os_vprintf(const char *fmt, va_list ap)
void *
os_mmap(void *hint, unsigned int size, int prot, int flags)
{
return BH_MALLOC(size);
if (exec_mem_alloc_func)
return exec_mem_alloc_func(size);
else
return BH_MALLOC(size);
}
void
os_munmap(void *addr, uint32 size)
{
return BH_FREE(addr);
if (exec_mem_free_func)
exec_mem_free_func(addr);
else
BH_FREE(addr);
}
int
@ -133,3 +143,11 @@ os_dcache_flush()
irq_unlock(key);
#endif
}
void set_exec_mem_alloc_func(exec_mem_alloc_func_t alloc_func,
exec_mem_free_func_t free_func)
{
exec_mem_alloc_func = alloc_func;
exec_mem_free_func = free_func;
}