Refactor WASI-NN to simplify the support for multiple frameworks (#1834)

- Reorganize the library structure
- Use the latest version of `wasi-nn` wit (Oct 25, 2022):
    0f77c48ec1/wasi-nn.wit.md
- Split logic that converts WASM structs to native structs in a separate file
- Simplify addition of new frameworks
This commit is contained in:
tonibofarull
2023-01-25 11:32:40 +01:00
committed by GitHub
parent 965edff4df
commit 9eed6686df
24 changed files with 911 additions and 504 deletions

View File

@ -0,0 +1,63 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_LOGGER_H
#define WASI_NN_LOGGER_H
#include <stdio.h>
#include <string.h>
#define __FILENAME__ \
(strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
/* Disable a level by removing the define */
#define ENABLE_ERR_LOG
#define ENABLE_WARN_LOG
#define ENABLE_DBG_LOG
#define ENABLE_INFO_LOG
// Definition of the levels
#ifdef ENABLE_ERR_LOG
#define NN_ERR_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_ERR_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_WARN_LOG
#define NN_WARN_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_WARN_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_DBG_LOG
#define NN_DBG_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_DBG_PRINTF(fmt, ...)
#endif
#ifdef ENABLE_INFO_LOG
#define NN_INFO_PRINTF(fmt, ...) \
do { \
printf("[%s:%d] " fmt, __FILENAME__, __LINE__, ##__VA_ARGS__); \
printf("\n"); \
fflush(stdout); \
} while (0)
#else
#define NN_INFO_PRINTF(fmt, ...)
#endif
#endif

View File

@ -0,0 +1,163 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasi_nn_app_native.h"
static error
graph_builder_app_native(wasm_module_inst_t instance,
graph_builder_wasm *builder_wasm,
graph_builder *builder)
{
if (!wasm_runtime_validate_app_addr(instance, builder_wasm->buf_offset,
builder_wasm->size * sizeof(uint8_t))) {
NN_ERR_PRINTF("builder_wasm->buf_offset is invalid");
return invalid_argument;
}
builder->buf = (uint8_t *)wasm_runtime_addr_app_to_native(
instance, builder_wasm->buf_offset);
builder->size = builder_wasm->size;
return success;
}
error
graph_builder_array_app_native(wasm_module_inst_t instance,
graph_builder_array_wasm *builder_array_wasm,
graph_builder_array *builder_array)
{
if (!wasm_runtime_validate_native_addr(instance, builder_array_wasm,
sizeof(graph_builder_array_wasm))) {
NN_ERR_PRINTF("builder_array_wasm is invalid");
return invalid_argument;
}
NN_DBG_PRINTF("Graph builder array contains %d elements",
builder_array_wasm->size);
if (!wasm_runtime_validate_app_addr(
instance, builder_array_wasm->buf_offset,
builder_array_wasm->size * sizeof(graph_builder_wasm))) {
NN_ERR_PRINTF("builder_array_wasm->buf_offset is invalid");
return invalid_argument;
}
graph_builder_wasm *builder_wasm =
(graph_builder_wasm *)wasm_runtime_addr_app_to_native(
instance, builder_array_wasm->buf_offset);
graph_builder *builder = (graph_builder *)wasm_runtime_malloc(
builder_array_wasm->size * sizeof(graph_builder));
if (builder == NULL)
return missing_memory;
for (uint32_t i = 0; i < builder_array_wasm->size; ++i) {
error res;
if (success
!= (res = graph_builder_app_native(instance, &builder_wasm[i],
&builder[i]))) {
wasm_runtime_free(builder);
return res;
}
NN_DBG_PRINTF("Graph builder %d contains %d elements", i,
builder->size);
}
builder_array->buf = builder;
builder_array->size = builder_array_wasm->size;
return success;
}
static error
tensor_data_app_native(wasm_module_inst_t instance, uint32_t total_elements,
tensor_wasm *input_tensor_wasm, tensor_data *data)
{
if (!wasm_runtime_validate_app_addr(
instance, input_tensor_wasm->data_offset, total_elements)) {
NN_ERR_PRINTF("input_tensor_wasm->data_offset is invalid");
return invalid_argument;
}
*data = (tensor_data)wasm_runtime_addr_app_to_native(
instance, input_tensor_wasm->data_offset);
return success;
}
static error
tensor_dimensions_app_native(wasm_module_inst_t instance,
tensor_wasm *input_tensor_wasm,
tensor_dimensions **dimensions)
{
if (!wasm_runtime_validate_app_addr(instance,
input_tensor_wasm->dimensions_offset,
sizeof(tensor_dimensions_wasm))) {
NN_ERR_PRINTF("input_tensor_wasm->dimensions_offset is invalid");
return invalid_argument;
}
tensor_dimensions_wasm *dimensions_wasm =
(tensor_dimensions_wasm *)wasm_runtime_addr_app_to_native(
instance, input_tensor_wasm->dimensions_offset);
if (!wasm_runtime_validate_app_addr(instance, dimensions_wasm->buf_offset,
sizeof(tensor_dimensions))) {
NN_ERR_PRINTF("dimensions_wasm->buf_offset is invalid");
return invalid_argument;
}
*dimensions =
(tensor_dimensions *)wasm_runtime_malloc(sizeof(tensor_dimensions));
if (dimensions == NULL)
return missing_memory;
(*dimensions)->size = dimensions_wasm->size;
(*dimensions)->buf = (uint32_t *)wasm_runtime_addr_app_to_native(
instance, dimensions_wasm->buf_offset);
NN_DBG_PRINTF("Number of dimensions: %d", (*dimensions)->size);
return success;
}
error
tensor_app_native(wasm_module_inst_t instance, tensor_wasm *input_tensor_wasm,
tensor *input_tensor)
{
NN_DBG_PRINTF("Converting tensor_wasm to tensor");
if (!wasm_runtime_validate_native_addr(instance, input_tensor_wasm,
sizeof(tensor_wasm))) {
NN_ERR_PRINTF("input_tensor_wasm is invalid");
return invalid_argument;
}
error res;
tensor_dimensions *dimensions = NULL;
if (success
!= (res = tensor_dimensions_app_native(instance, input_tensor_wasm,
&dimensions))) {
NN_ERR_PRINTF("error when parsing dimensions");
return res;
}
uint32_t total_elements = 1;
for (uint32_t i = 0; i < dimensions->size; ++i) {
total_elements *= dimensions->buf[i];
NN_DBG_PRINTF("Dimension %d: %d", i, dimensions->buf[i]);
}
NN_DBG_PRINTF("Tensor type: %d", input_tensor_wasm->type);
NN_DBG_PRINTF("Total number of elements: %d", total_elements);
tensor_data data = NULL;
if (success
!= (res = tensor_data_app_native(instance, total_elements,
input_tensor_wasm, &data))) {
wasm_runtime_free(dimensions);
return res;
}
input_tensor->type = input_tensor_wasm->type;
input_tensor->dimensions = dimensions;
input_tensor->data = data;
return success;
}

View File

@ -0,0 +1,51 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_APP_NATIVE
#define WASI_NN_APP_NATIVE
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "wasi_nn.h"
#include "logger.h"
#include "bh_platform.h"
#include "wasm_export.h"
typedef struct {
uint32_t buf_offset;
uint32_t size;
} graph_builder_wasm;
typedef struct {
uint32_t buf_offset;
uint32_t size;
} graph_builder_array_wasm;
typedef struct {
uint32_t buf_offset;
uint32_t size;
} tensor_dimensions_wasm;
typedef struct {
uint32_t dimensions_offset;
tensor_type type;
uint32_t data_offset;
} tensor_wasm;
error
graph_builder_array_app_native(wasm_module_inst_t instance,
graph_builder_array_wasm *builder,
graph_builder_array *builder_native);
error
tensor_app_native(wasm_module_inst_t instance, tensor_wasm *input_tensor,
tensor *input_tensor_native);
#endif

View File

@ -0,0 +1,302 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include "wasi_nn.h"
#include "wasi_nn_app_native.h"
#include "logger.h"
#include "wasi_nn_tensorflowlite.hpp"
#include "bh_platform.h"
#include "wasm_export.h"
#include "wasm_runtime.h"
#include "aot_runtime.h"
/* Definition of 'wasi_nn.h' structs in WASM app format (using offset) */
typedef error (*LOAD)(graph_builder_array *, graph_encoding, execution_target,
graph *);
typedef error (*INIT_EXECUTION_CONTEXT)(graph, graph_execution_context *);
typedef error (*SET_INPUT)(graph_execution_context, uint32_t, tensor *);
typedef error (*COMPUTE)(graph_execution_context);
typedef error (*GET_OUTPUT)(graph_execution_context, uint32_t, tensor_data,
uint32_t *);
typedef struct {
LOAD load;
INIT_EXECUTION_CONTEXT init_execution_context;
SET_INPUT set_input;
COMPUTE compute;
GET_OUTPUT get_output;
} api_function;
/* Global variables */
static api_function lookup[] = {
{ NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL },
{ NULL, NULL, NULL, NULL, NULL },
{ tensorflowlite_load, tensorflowlite_init_execution_context,
tensorflowlite_set_input, tensorflowlite_compute,
tensorflowlite_get_output }
};
/* Utils */
static bool
is_encoding_implemented(graph_encoding encoding)
{
return lookup[encoding].load && lookup[encoding].init_execution_context
&& lookup[encoding].set_input && lookup[encoding].compute
&& lookup[encoding].get_output;
}
static error
is_model_initialized(WASINNContext *wasi_nn_ctx)
{
if (!wasi_nn_ctx->is_initialized) {
NN_ERR_PRINTF("Model not initialized.");
return runtime_error;
}
return success;
}
WASINNContext *
wasm_runtime_get_wasi_nn_ctx(wasm_module_inst_t instance)
{
WASINNContext *wasi_nn_ctx = NULL;
#if WASM_ENABLE_INTERP != 0
if (instance->module_type == Wasm_Module_Bytecode) {
NN_DBG_PRINTF("Getting ctx from WASM");
WASMModuleInstance *module_inst = (WASMModuleInstance *)instance;
wasi_nn_ctx = ((WASMModuleInstanceExtra *)module_inst->e)->wasi_nn_ctx;
}
#endif
#if WASM_ENABLE_AOT != 0
if (instance->module_type == Wasm_Module_AoT) {
NN_DBG_PRINTF("Getting ctx from AOT");
AOTModuleInstance *module_inst = (AOTModuleInstance *)instance;
wasi_nn_ctx = ((AOTModuleInstanceExtra *)module_inst->e)->wasi_nn_ctx;
}
#endif
bh_assert(wasi_nn_ctx != NULL);
NN_DBG_PRINTF("Returning ctx");
return wasi_nn_ctx;
}
/* WASI-NN implementation */
error
wasi_nn_load(wasm_exec_env_t exec_env, graph_builder_array_wasm *builder,
graph_encoding encoding, execution_target target, graph *g)
{
NN_DBG_PRINTF("Running wasi_nn_load [encoding=%d, target=%d]...", encoding,
target);
if (!is_encoding_implemented(encoding)) {
NN_ERR_PRINTF("Encoding not supported.");
return invalid_encoding;
}
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
error res;
graph_builder_array builder_native = { 0 };
if (success
!= (res = graph_builder_array_app_native(instance, builder,
&builder_native)))
return res;
if (!wasm_runtime_validate_native_addr(instance, g, sizeof(graph))) {
NN_ERR_PRINTF("graph is invalid");
res = invalid_argument;
goto fail;
}
res = lookup[encoding].load(&builder_native, encoding, target, g);
NN_DBG_PRINTF("wasi_nn_load finished with status %d [graph=%d]", res, *g);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
wasi_nn_ctx->current_encoding = encoding;
wasi_nn_ctx->is_initialized = true;
fail:
// XXX: Free intermediate structure pointers
if (builder_native.buf)
wasm_runtime_free(builder_native.buf);
return res;
}
error
wasi_nn_init_execution_context(wasm_exec_env_t exec_env, graph g,
graph_execution_context *ctx)
{
NN_DBG_PRINTF("Running wasi_nn_init_execution_context [graph=%d]...", g);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
if (!wasm_runtime_validate_native_addr(instance, ctx,
sizeof(graph_execution_context))) {
NN_ERR_PRINTF("ctx is invalid");
return invalid_argument;
}
res = lookup[wasi_nn_ctx->current_encoding].init_execution_context(g, ctx);
*ctx = g;
NN_DBG_PRINTF(
"wasi_nn_init_execution_context finished with status %d [ctx=%d]", res,
*ctx);
return res;
}
error
wasi_nn_set_input(wasm_exec_env_t exec_env, graph_execution_context ctx,
uint32_t index, tensor_wasm *input_tensor)
{
NN_DBG_PRINTF("Running wasi_nn_set_input [ctx=%d, index=%d]...", ctx,
index);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
tensor input_tensor_native = { 0 };
if (success
!= (res = tensor_app_native(instance, input_tensor,
&input_tensor_native)))
return res;
res = lookup[wasi_nn_ctx->current_encoding].set_input(ctx, index,
&input_tensor_native);
// XXX: Free intermediate structure pointers
if (input_tensor_native.dimensions)
wasm_runtime_free(input_tensor_native.dimensions);
NN_DBG_PRINTF("wasi_nn_set_input finished with status %d", res);
return res;
}
error
wasi_nn_compute(wasm_exec_env_t exec_env, graph_execution_context ctx)
{
NN_DBG_PRINTF("Running wasi_nn_compute [ctx=%d]...", ctx);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
res = lookup[wasi_nn_ctx->current_encoding].compute(ctx);
NN_DBG_PRINTF("wasi_nn_compute finished with status %d", res);
return res;
}
error
wasi_nn_get_output(wasm_exec_env_t exec_env, graph_execution_context ctx,
uint32_t index, tensor_data output_tensor,
uint32_t *output_tensor_size)
{
NN_DBG_PRINTF("Running wasi_nn_get_output [ctx=%d, index=%d]...", ctx,
index);
wasm_module_inst_t instance = wasm_runtime_get_module_inst(exec_env);
bh_assert(instance);
WASINNContext *wasi_nn_ctx = wasm_runtime_get_wasi_nn_ctx(instance);
error res;
if (success != (res = is_model_initialized(wasi_nn_ctx)))
return res;
if (!wasm_runtime_validate_native_addr(instance, output_tensor_size,
sizeof(uint32_t))) {
NN_ERR_PRINTF("output_tensor_size is invalid");
return invalid_argument;
}
res = lookup[wasi_nn_ctx->current_encoding].get_output(
ctx, index, output_tensor, output_tensor_size);
NN_DBG_PRINTF("wasi_nn_get_output finished with status %d [data_size=%d]",
res, *output_tensor_size);
return res;
}
/* Non-exposed public functions */
WASINNContext *
wasi_nn_initialize()
{
NN_DBG_PRINTF("Initializing wasi-nn");
WASINNContext *wasi_nn_ctx =
(WASINNContext *)wasm_runtime_malloc(sizeof(WASINNContext));
if (wasi_nn_ctx == NULL) {
NN_ERR_PRINTF("Error when allocating memory for WASI-NN context");
return NULL;
}
wasi_nn_ctx->is_initialized = true;
wasi_nn_ctx->current_encoding = 3;
return wasi_nn_ctx;
}
void
wasi_nn_destroy(WASINNContext *wasi_nn_ctx)
{
if (wasi_nn_ctx == NULL) {
NN_ERR_PRINTF(
"Error when deallocating memory. WASI-NN context is NULL");
return;
}
NN_DBG_PRINTF("Freeing wasi-nn");
NN_DBG_PRINTF("-> is_initialized: %d", wasi_nn_ctx->is_initialized);
NN_DBG_PRINTF("-> current_encoding: %d", wasi_nn_ctx->current_encoding);
tensorflowlite_destroy();
wasm_runtime_free(wasi_nn_ctx);
}
/* Register WASI-NN in WAMR */
/* clang-format off */
#define REG_NATIVE_FUNC(func_name, signature) \
{ #func_name, wasi_nn_##func_name, signature, NULL }
/* clang-format on */
static NativeSymbol native_symbols_wasi_nn[] = {
REG_NATIVE_FUNC(load, "(*ii*)i"),
REG_NATIVE_FUNC(init_execution_context, "(i*)i"),
REG_NATIVE_FUNC(set_input, "(ii*)i"),
REG_NATIVE_FUNC(compute, "(i)i"),
REG_NATIVE_FUNC(get_output, "(ii**)i"),
};
uint32_t
get_wasi_nn_export_apis(NativeSymbol **p_libc_wasi_apis)
{
*p_libc_wasi_apis = native_symbols_wasi_nn;
return sizeof(native_symbols_wasi_nn) / sizeof(NativeSymbol);
}

View File

@ -0,0 +1,30 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_PRIVATE_H
#define WASI_NN_PRIVATE_H
#include "wasi_nn_types.h"
typedef struct {
bool is_initialized;
graph_encoding current_encoding;
} WASINNContext;
/**
* @brief Initialize wasi-nn
*
*/
WASINNContext *
wasi_nn_initialize();
/**
* @brief Destroy wasi-nn on app exists
*
*/
void
wasi_nn_destroy(WASINNContext *wasi_nn_ctx);
#endif

View File

@ -0,0 +1,210 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include "wasi_nn.h"
#include "wasi_nn_tensorflowlite.hpp"
#include "logger.h"
#include "bh_common.h"
#include "bh_platform.h"
#include "platform_common.h"
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tensorflow/lite/optional_debug_tools.h>
#include <tensorflow/lite/error_reporter.h>
/* Global variables */
static std::unique_ptr<tflite::Interpreter> interpreter;
static std::unique_ptr<tflite::FlatBufferModel> model;
static char *model_pointer = NULL;
/* WASI-NN (tensorflow) implementation */
error
tensorflowlite_load(graph_builder_array *builder, graph_encoding encoding,
execution_target target, graph *g)
{
if (model_pointer != NULL) {
wasm_runtime_free(model_pointer);
model_pointer = NULL;
}
if (builder->size != 1) {
NN_ERR_PRINTF("Unexpected builder format.");
return invalid_argument;
}
if (encoding != tensorflowlite) {
NN_ERR_PRINTF("Encoding is not tensorflowlite.");
return invalid_argument;
}
if (target != cpu) {
NN_ERR_PRINTF("Only CPU target is supported.");
return invalid_argument;
}
uint32_t size = builder->buf[0].size;
model_pointer = (char *)wasm_runtime_malloc(size);
if (model_pointer == NULL) {
NN_ERR_PRINTF("Error when allocating memory for model.");
return missing_memory;
}
bh_memcpy_s(model_pointer, size, builder->buf[0].buf, size);
model = tflite::FlatBufferModel::BuildFromBuffer(model_pointer, size, NULL);
if (model == NULL) {
NN_ERR_PRINTF("Loading model error.");
wasm_runtime_free(model_pointer);
model_pointer = NULL;
return missing_memory;
}
// Build the interpreter with the InterpreterBuilder.
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder tflite_builder(*model, resolver);
tflite_builder(&interpreter);
if (interpreter == NULL) {
NN_ERR_PRINTF("Error when generating the interpreter.");
wasm_runtime_free(model_pointer);
model_pointer = NULL;
return missing_memory;
}
return success;
}
error
tensorflowlite_init_execution_context(graph g, graph_execution_context *ctx)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
return runtime_error;
}
interpreter->AllocateTensors();
return success;
}
error
tensorflowlite_set_input(graph_execution_context ctx, uint32_t index,
tensor *input_tensor)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
return runtime_error;
}
uint32_t num_tensors = interpreter->inputs().size();
NN_DBG_PRINTF("Number of tensors (%d)", num_tensors);
if (index + 1 > num_tensors) {
return runtime_error;
}
auto tensor = interpreter->input_tensor(index);
if (tensor == NULL) {
NN_ERR_PRINTF("Missing memory");
return missing_memory;
}
uint32_t model_tensor_size = 1;
for (int i = 0; i < tensor->dims->size; ++i)
model_tensor_size *= (uint32_t)tensor->dims->data[i];
uint32_t input_tensor_size = 1;
for (uint32_t i = 0; i < input_tensor->dimensions->size; i++)
input_tensor_size *= (uint32_t)input_tensor->dimensions->buf[i];
if (model_tensor_size != input_tensor_size) {
NN_ERR_PRINTF("Input tensor shape from the model is different than the "
"one provided");
return invalid_argument;
}
auto *input = interpreter->typed_input_tensor<float>(index);
if (input == NULL)
return missing_memory;
bh_memcpy_s(input, model_tensor_size * sizeof(float), input_tensor->data,
model_tensor_size * sizeof(float));
return success;
}
error
tensorflowlite_compute(graph_execution_context ctx)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
return runtime_error;
}
interpreter->Invoke();
return success;
}
error
tensorflowlite_get_output(graph_execution_context ctx, uint32_t index,
tensor_data output_tensor,
uint32_t *output_tensor_size)
{
if (interpreter == NULL) {
NN_ERR_PRINTF("Non-initialized interpreter.");
return runtime_error;
}
uint32_t num_output_tensors = interpreter->outputs().size();
NN_DBG_PRINTF("Number of tensors (%d)", num_output_tensors);
if (index + 1 > num_output_tensors) {
return runtime_error;
}
auto tensor = interpreter->output_tensor(index);
if (tensor == NULL) {
NN_ERR_PRINTF("Missing memory");
return missing_memory;
}
uint32_t model_tensor_size = 1;
for (int i = 0; i < (int)tensor->dims->size; ++i)
model_tensor_size *= (uint32_t)tensor->dims->data[i];
if (*output_tensor_size < model_tensor_size) {
NN_ERR_PRINTF("Insufficient memory to copy tensor %d", index);
return missing_memory;
}
float *tensor_f = interpreter->typed_output_tensor<float>(index);
for (uint32_t i = 0; i < model_tensor_size; ++i)
NN_DBG_PRINTF("output: %f", tensor_f[i]);
*output_tensor_size = model_tensor_size;
bh_memcpy_s(output_tensor, model_tensor_size * sizeof(float), tensor_f,
model_tensor_size * sizeof(float));
return success;
}
void
tensorflowlite_destroy()
{
/*
TensorFlow Lite memory is man
Related issues:
* https://github.com/tensorflow/tensorflow/issues/15880
*/
NN_DBG_PRINTF("Freeing memory.");
model.reset(nullptr);
model = NULL;
interpreter.reset(nullptr);
interpreter = NULL;
wasm_runtime_free(model_pointer);
model_pointer = NULL;
NN_DBG_PRINTF("Memory free'd.");
}

View File

@ -0,0 +1,41 @@
/*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#ifndef WASI_NN_TENSORFLOWLITE_HPP
#define WASI_NN_TENSORFLOWLITE_HPP
#include "wasi_nn.h"
#ifdef __cplusplus
extern "C" {
#endif
error
tensorflowlite_load(graph_builder_array *builder, graph_encoding encoding,
execution_target target, graph *g);
error
tensorflowlite_init_execution_context(graph g, graph_execution_context *ctx);
error
tensorflowlite_set_input(graph_execution_context ctx, uint32_t index,
tensor *input_tensor);
error
tensorflowlite_compute(graph_execution_context ctx);
error
tensorflowlite_get_output(graph_execution_context ctx, uint32_t index,
tensor_data output_tensor,
uint32_t *output_tensor_size);
void
tensorflowlite_destroy();
#ifdef __cplusplus
}
#endif
#endif