1
Files
lecture-operating-system-de…/c_os/user/lib/ArrayList.h
2022-07-19 00:15:02 +02:00

239 lines
7.1 KiB
C++

#ifndef __ARRAYLIST_INCLUDE_H_
#define __ARRAYLIST_INCLUDE_H_
// NOTE: I decided to implement this because I wanted some sort of dynamic array (for example for the keyeventmanager).
// Also I wanted to template the Queue (for the scheduler) but with this I can just replace the Queue and use the
// ArrayList instead, without additional effort.
// It's also cool to use the allocator a bit more and introduce realloc because I coded that thing
#include "user/lib/List.h"
#include <cstddef>
#include <memory>
// I put most of the implementation in the header because the templating makes it cumbersome to split
template<typename T>
class ArrayList : public List<T> {
public:
using Type = typename List<T>::Type; // Use this just in case T changes from the List type
using Iterator = typename List<T>::Iterator;
private:
static constexpr const std::size_t default_cap = 10; // Arbitrary but very small because this isn't a real OS :(
static constexpr const std::size_t min_cap = 5; // Slots to allocate extra when array full
std::unique_ptr<Type[]> buf; // Heap allocated as size needs to change during runtime
// Can't use Array for the same reason so we use a C Style array
// NOTE: Normally I wouldn't use smart pointers for low level data structers
// but in this case it's ok as buf doesn't change often
// and the unique_ptr basically has no overhead.
// At least I didn't have to write any of the 3 deletes that would
// be necessary otherwise ¯\_(ツ)_/¯
std::size_t buf_pos = 0;
std::size_t buf_cap = 0;
void init() {
buf = std::make_unique<Type[]>(default_cap);
buf_cap = ArrayList::default_cap;
}
std::size_t get_rem_cap() const {
return buf_cap - size();
}
// Enlarges the buffer if we run out of space
std::size_t expand() {
// Init if necessary
if (!buf) {
init();
return buf_cap; // Dont have to realloc after init
}
// Since we only ever add single elements this should never get below zero
if (get_rem_cap() < min_cap) {
std::size_t new_cap = buf_cap + min_cap;
// Alloc new array
std::unique_ptr<Type[]> new_buf = std::make_unique<Type[]>(new_cap);
// Swap current elements to new array
for (std::size_t i = 0; i < size(); ++i) {
new_buf.get()[i] = std::move(buf.get()[i]); // Should I have just used a regular pointer?
}
// Move new array to buf, deleting the old array
buf = std::move(new_buf);
buf_cap = new_cap;
}
return buf_cap;
}
// unsigned int shrink {}
// Returns new pos, both do element copying if necessary, -1 if failed
// Index is location where space should be made/removed
std::size_t copy_right(std::size_t i) {
if (i > size()) {
// Error: No elements here
return -1;
}
expand();
// Otherwise i == pos and we don't need to copy anything
if (i < size()) {
// Enough space to copy elements after pos i
// Copy to the right to make space
//
// [0 1 2 3 _], expand(0) => [_ 0 1 2 3 _]
// ^ | |
// [0 1 2 3 _], expand(1) => [0 _ 1 2 3 _]
// ^ | |
// pos = 4 pos = 5
for (std::size_t idx = size(); idx > i; --idx) { // idx > i so idx - 1 is never < 0
buf.get()[idx] = std::move(buf.get()[idx - 1]);
}
// Only change pos if elements were copied
++buf_pos;
}
return size();
}
// Don't realloc here, we don't need to shring the buffer every time
// One could introduce a limit of free space but I don't care for now
// Would be bad if the scheduler triggers realloc everytime a thread is removed (if used as readyqueue)...
std::size_t copy_left(std::size_t i) {
if (i >= size()) {
// Error: No elements here
return -1;
}
// Decrement before loop because we overwrite 1 element (1 copy less than expand)
--buf_pos;
// [0 1 2 3 _], shrink(1) => [0 2 3 _]
// ^ | |
// pos = 3 pos = 2
for (std::size_t idx = i; idx < size(); ++idx) { // idx < pos so idx + 1 is never outside of size limit
buf.get()[idx] = std::move(buf.get()[idx + 1]);
}
return size();
}
public:
Iterator begin() override {
return Iterator(&buf.get()[0]);
}
Iterator end() override {
return Iterator(&buf.get()[size()]);
}
// Returns new pos
std::size_t insert_at(Type e, std::size_t i) override {
if (i > size()) {
// Error: Space between elements
return -1;
}
if (i == size()) {
// Insert at end
return insert_last(e);
}
copy_right(i); // Changes pos
buf.get()[i] = e;
return size();
}
std::size_t insert_first(Type e) override {
return insert_at(e, 0);
}
std::size_t insert_last(Type e) override {
expand();
buf.get()[size()] = e;
++buf_pos;
return size();
}
// Returns removed element
Type remove_at(std::size_t i) override {
if (i >= size()) {
// ERROR: No element here
return NULL;
}
Type e = buf.get()[i];
copy_left(i);
return e;
}
Type remove_first() override {
return remove_at(0);
}
Type remove_last() override {
// If index -1 unsigned int will overflow and remove_at will catch that
return remove_at(size() - 1);
}
// Returns true on success
bool remove(Type e) override {
for (std::size_t i = 0; i < size(); ++i) {
if (buf.get()[i] == e) {
copy_left(i);
return true;
}
}
return false;
}
Type get(std::size_t i) const override {
if (i >= size()) {
// ERROR: No element there
return NULL;
}
return buf.get()[i];
}
Type first() const override {
return get(0);
}
Type last() const override {
return get(size() - 1); // Underflow gets catched by get(unsigned int i)
}
bool empty() const override {
return !size();
}
std::size_t size() const override {
return buf_pos;
}
void print(OutStream& out) const override {
if (empty()) {
out << "Print List (0 elements)" << endl;
return;
}
out << "Print List (" << dec << size() << " elements): ";
for (std::size_t i = 0; i < size(); ++i) {
out << dec << get(i) << " ";
}
out << endl;
}
};
#endif