#ifndef __ARRAYLIST_INCLUDE_H_ #define __ARRAYLIST_INCLUDE_H_ // NOTE: I decided to implement this because I wanted some sort of dynamic array (for example for the keyeventmanager). // Also I wanted to template the Queue (for the scheduler) but with this I can just replace the Queue and use the // ArrayList instead, without additional effort. #include "user/lib/List.h" #include #include // I put most of the implementation in the header because the templating makes it cumbersome to split template class ArrayList : public List { public: using Type = typename List::Type; // Use this just in case T changes from the List type using Iterator = typename List::Iterator; private: static constexpr const std::size_t default_cap = 10; // Arbitrary but very small because this isn't a real OS :( static constexpr const std::size_t min_cap = 5; // Slots to allocate extra when array full Type* buf = nullptr; // Heap allocated as size needs to change during runtime // Can't use Array for the same reason so we use a C Style array std::size_t buf_pos = 0; std::size_t buf_cap = 0; void init() { buf = new Type[ArrayList::default_cap]; buf_cap = ArrayList::default_cap; } std::size_t get_rem_cap() const { return buf_cap - size(); } // Enlarges the buffer if we run out of space std::size_t expand() { // Init if necessary if (buf == nullptr) { init(); return buf_cap; // Dont have to realloc after init } // Since we only ever add single elements this should never get below zero if (get_rem_cap() < min_cap) { std::size_t new_cap = buf_cap + min_cap; // Alloc new array Type* new_buf = new Type[new_cap]; // Swap current elements to new array for (std::size_t i = 0; i < size(); ++i) { new_buf[i] = std::move(buf[i]); // Should I have just used a regular pointer? } // Move new array to buf, deleting the old array buf = new_buf; buf_cap = new_cap; delete buf; } return buf_cap; } // unsigned int shrink {} // Returns new pos, both do element copying if necessary, -1 if failed // Index is location where space should be made/removed std::size_t copy_right(std::size_t i) { if (i > size()) { // Error: No elements here return -1; } expand(); // Otherwise i == pos and we don't need to copy anything if (i < size()) { // Enough space to copy elements after pos i // Copy to the right to make space // // [0 1 2 3 _], expand(0) => [_ 0 1 2 3 _] // ^ | | // [0 1 2 3 _], expand(1) => [0 _ 1 2 3 _] // ^ | | // pos = 4 pos = 5 for (std::size_t idx = size(); idx > i; --idx) { // idx > i so idx - 1 is never < 0 buf[idx] = std::move(buf[idx - 1]); } // Only change pos if elements were copied ++buf_pos; } return size(); } // Don't realloc here, we don't need to shring the buffer every time // One could introduce a limit of free space but I don't care for now // Would be bad if the scheduler triggers realloc everytime a thread is removed (if used as readyqueue)... std::size_t copy_left(std::size_t i) { if (i >= size()) { // Error: No elements here return -1; } // Decrement before loop because we overwrite 1 element (1 copy less than expand) --buf_pos; // [0 1 2 3 _], shrink(1) => [0 2 3 _] // ^ | | // pos = 3 pos = 2 for (std::size_t idx = i; idx < size(); ++idx) { // idx < pos so idx + 1 is never outside of size limit buf[idx] = std::move(buf[idx + 1]); } return size(); } public: ~ArrayList() { delete[] buf; // Deleting nullptr has no effect } Iterator begin() override { return Iterator(&buf[0]); } Iterator end() override { return Iterator(&buf[size()]); } // Returns new pos std::size_t insert_at(Type e, std::size_t i) override { if (i > size()) { // Error: Space between elements return -1; } if (i == size()) { // Insert at end return insert_last(e); } copy_right(i); // Changes pos buf[i] = e; return size(); } std::size_t insert_first(Type e) override { return insert_at(e, 0); } std::size_t insert_last(Type e) override { expand(); buf[size()] = e; ++buf_pos; return size(); } // Returns removed element Type remove_at(std::size_t i) override { if (i >= size()) { // ERROR: No element here return NULL; } Type e = buf[i]; copy_left(i); return e; } Type remove_first() override { return remove_at(0); } Type remove_last() override { // If index -1 unsigned int will overflow and remove_at will catch that return remove_at(size() - 1); } // Returns true on success bool remove(Type e) override { for (std::size_t i = 0; i < size(); ++i) { if (buf[i] == e) { copy_left(i); return true; } } return false; } Type get(std::size_t i) const override { if (i >= size()) { // ERROR: No element there return NULL; } return buf[i]; } Type first() const override { return get(0); } Type last() const override { return get(size() - 1); // Underflow gets catched by get(unsigned int i) } bool empty() const override { return !size(); } std::size_t size() const override { return buf_pos; } void print(OutStream& out) const override { // if (empty()) { // out << "Print List (0 elements)" << endl; // return; // } // out << "Print List (" << dec << size() << " elements): "; // for (std::size_t i = 0; i < size(); ++i) { // out << dec << get(i) << " "; // } // out << endl; } }; #endif