Files
fail/debuggers/openocd/openocd_wrapper.cc
Lars Rademacher c086800e58 openocd: added opcode parser
Added opcode parser of the F.E.H.L.E.R-project for analysis of
memory access in mmu-abort handling, tracing, etc.

Change-Id: I5912fa4a4d51ee0501817c43bae05e87ac0e9b90
2014-01-22 17:54:09 +01:00

1834 lines
51 KiB
C++

#include "openocd_wrapper.hpp"
extern "C" {
#include "config.h"
#include "src/helper/system.h"
#include "src/helper/log.h"
#include "src/helper/time_support.h"
#include "src/helper/command.h"
#include "src/helper/configuration.h"
#include "src/helper/util.h"
#include "src/helper/ioutil.h"
#include "src/jtag/jtag.h"
#include "src/target/algorithm.h"
#include "src/target/breakpoints.h"
#include "src/target/register.h"
#include "src/target/target_type.h"
#include "src/target/target.h"
#include "src/target/cortex_a.h"
#include "src/target/arm_adi_v5.h"
#include "src/target/armv7a.h"
#include "src/target/arm_opcodes.h"
#include "jimtcl/jim.h"
extern struct command_context *setup_command_handler(Jim_Interp *interp);
#include "opcode_parser/arm-opcode.h"
}
#include <cassert>
#include <ostream>
#include <vector>
#include <sys/time.h>
#include "config/VariantConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/SALConfig.hpp"
#include "sal/arm/ArmArchitecture.hpp"
#include "util/ElfReader.hpp"
#include "util/Logger.hpp"
using std::endl;
using std::cout;
using std::cerr;
using std::hex;
using std::dec;
/*
* Flag for finishing main loop execution.
*/
static bool oocdw_exection_finished = false;
static int oocdw_exCode;
/*
* Initially set target struct pointers for use in
* multiple functions.
*/
static struct target *target_a9;
static struct arm *arm_a9;
static struct target *target_m3;
static struct command_context *cmd_ctx;
/*
* State variable for propagation of a coming horizontal hop.
* For correct execution of a horizontal hop, an additional
* single-step needs to be executed before resuming target
* execution.
* Variable is set while setting new halt_conditions on basis of
* current instruction and its memory access(es).
*/
static bool horizontal_step = false;
/*
* As the normal loop execution is
* resume - wait for halt - trigger events and set next halt condition(s),
* single-stepping is different. It is accomplished by setting this state
* variable.
*/
static bool single_step_requested = false;
static bool single_step_watch_memory = false;
/*
* Variables for monitoring BP/WP resources
* Reset at reboot
*/
static uint8_t free_watchpoints = 4;
static uint8_t free_breakpoints = 6;
/*
* Elf reader for reading symbols in startup-code
*/
static fail::ElfReader elf_reader;
static uint32_t sym_GenericTrapHandler, sym_MmuFaultBreakpointHook,
sym_SafetyLoopBegin, sym_SafetyLoopEnd,
sym_addr_PageTableFirstLevel, sym_addr_PageTableSecondLevel;
/*
* MMU related structures
*/
enum descriptor_e {
DESCRIPTOR_SECTION,
DESCRIPTOR_PAGE,
};
struct mmu_first_lvl_descr {
enum descriptor_e type;
bool mapped;
bool *second_lvl_mapped;
};
static bool mmu_recovery_needed = false;
static uint32_t mmu_recovery_address;
static struct halt_condition mmu_recovery_bp;
static struct mmu_first_lvl_descr mmu_conf [4096];
struct mem_range {
uint32_t address;
uint32_t width;
};
static std::vector<struct mem_range> mmu_watch_add_waiting_list;
static std::vector<struct mem_range> mmu_watch_del_waiting_list;
static std::vector<struct mem_range> mmu_watch;
/*
* Timer related structures
*/
#define P_MAX_TIMERS 32
struct timer{
bool inUse; // Timer slot is in-use (currently registered).
uint64_t timeToFire; // Time to fire next in microseconds
struct timeval time_begin; // Timer value at activation of timer
bool active; // 0=inactive, 1=active.
p_timer_handler_t funct; // A callback function for when the
// timer fires.
void *this_ptr; // The this-> pointer for C++ callbacks
// has to be stored as well.
bool freezed;
#define PMaxTimerIDLen 32
char id[PMaxTimerIDLen]; // String ID of timer.
};
static struct timer timers[P_MAX_TIMERS];
fail::Logger LOG("OpenOCD", false);
/** FORWARD DECLARATIONS **/
static void update_timers();
static void freeze_timers();
static void unfreeze_timers();
static struct watchpoint *getHaltingWatchpoint();
static bool getCurrentMemAccess(struct halt_condition *accesses);
static uint32_t getCurrentPC();
static struct reg *get_reg_by_number(unsigned int num);
static void read_dpm_register(uint32_t reg_num, uint32_t *data);
static void init_symbols();
static void invalidate_tlb();
static void update_mmu_watch();
static bool update_mmu_watch_add();
static bool update_mmu_watch_remove();
static void get_range_diff(std::vector<struct mem_range> &before, std::vector<struct mem_range> &after, std::vector<struct mem_range> &diff);
static void unmap_page_section(uint32_t address);
static std::vector<struct mem_range>::iterator find_mem_range_in_vector(struct mem_range &elem, std::vector<struct mem_range> &vec);
static void execute_buffered_writes(std::vector<std::pair<uint32_t, uint32_t> > &buf) ;
static void merge_mem_ranges (std::vector<struct mem_range> &in_out);
static bool compareByAddress(const struct mem_range &a, const struct mem_range &b);
static void force_page_alignment_mem_range (std::vector<struct mem_range> &in, std::vector<struct mem_range> &out);
/*
* Main entry and main loop.
*
* States:
* 0) Init
* 1) Reset
* 2) Wait for navigational commands from experiment
* 3) (Execute single-steps if requested)
* 3) Resume execution
* 4) Wait for halt
* 5) Fire event
* 6) update timers
* 7) goto 2
*/
int main(int argc, char *argv[])
{
int ret;
/* === INITIALIZATION === */
// Redirect output to logfile
FILE *file = fopen("oocd.log", "w");
set_log_output(NULL, file);
/* initialize commandline interface */
cmd_ctx = setup_command_handler(NULL);
if (util_init(cmd_ctx) != ERROR_OK)
return 1;//EXIT_FAILURE;
if (ioutil_init(cmd_ctx) != ERROR_OK)
return 1;//EXIT_FAILURE;
command_context_mode(cmd_ctx, COMMAND_CONFIG);
command_set_output_handler(cmd_ctx, configuration_output_handler, NULL);
/* Start the executable meat that can evolve into thread in future. */
//ret = openocd_thread(argc, argv, cmd_ctx);
if (parse_cmdline_args(cmd_ctx, argc, argv) != ERROR_OK)
return EXIT_FAILURE;
/*if (server_preinit() != ERROR_OK)
return EXIT_FAILURE;*/
// set path to configuration file
add_script_search_dir(OOCD_CONF_FILES_PATH);
add_config_command("script "OOCD_CONF_FILE_PATH);
ret = parse_config_file(cmd_ctx);
if (ret != ERROR_OK) {
LOG << "Error in openocd configuration!\nFor more detailed information refer to oocd.log" << endl;
return EXIT_FAILURE;
}
// Servers (gdb/telnet) are not being activated
/* ret = server_init(cmd_ctx);
if (ERROR_OK != ret)
return EXIT_FAILURE;*/
ret = command_run_line(cmd_ctx, (char*)"init");
if (ret != ERROR_OK) {
LOG << "Error in openocd initialization!\nFor more detailed information refer to oocd.log" << endl;
return EXIT_FAILURE;
}
// Find target cortex_a9 core 0
target_a9 = get_target("omap4460.cpu");
if (!target_a9) {
LOG << "FATAL ERROR: Target omap4460.cpu not found!" << endl;
return 1;
}
// Find target cortex_m3 core 0
target_m3 = get_target("omap4460.m30");
if (!target_m3) {
LOG << "FATAL ERROR: Target omap4460.m30 not found!" << endl;
return 1;
}
arm_a9 = target_to_arm(target_a9);
jtag_poll_set_enabled (false);
LOG << "OpenOCD 0.7.0 for Fail* and Pandaboard initialized" << endl;
for (int i=0; i<P_MAX_TIMERS; i++) {
timers[i].inUse = false;
}
init_symbols();
/* === INITIALIZATION COMPLETE => MAIN LOOP === */
/*
* Initial reboot
*/
oocdw_reboot();
/*
* Switch to experiment for navigational instructions
*/
fail::simulator.startup();
while (!oocdw_exection_finished) {
/*
* At this point the device should always be in halted state
* So single-stepping is done loop-wise, here.
* For having functional timers anyways, we need to update
* in every loop iteration
*/
while (single_step_requested) {
if (target_step(target_a9, 1, 0, 1)) {
LOG << "FATAL ERROR: Single-step could not be executed" << endl;
return 1;
}
/*
* Because this is a micro main-loop, we need to update
* timers. This loop can be executed several times (e.g.
* in tracing mode), so timers would be neglected otherwise.
*/
update_timers();
uint32_t pc = getCurrentPC();
/*
* Reset request flag. Needs to be done before calling
* onBreakpoint, because otherwise it would reset a
* newly activated request after coroutine switch.
*/
single_step_requested = false;
/*
* Get current memory access(es)
*/
if (single_step_watch_memory) {
struct halt_condition mem_access;
if (getCurrentMemAccess(&mem_access)) {
freeze_timers();
fail::simulator.onMemoryAccess(NULL,
mem_access.address,
mem_access.addr_len,
mem_access.type == HALT_TYPE_WP_WRITE,
pc);
unfreeze_timers();
}
}
freeze_timers();
fail::simulator.onBreakpoint(NULL, pc, fail::ANY_ADDR);
unfreeze_timers();
}
// Shortcut loop exit for tracing
if (oocdw_exection_finished) {
break;
}
/*
* In the following loop stage it is assumed, that the target is
* running, so execution needs to be resumed, if the target is
* halted.
* Before we resume, any potential MMU modifications must be
* programmed into the device
* As this programming should be done offline, we need to freeze the
* timers for the configuration period.
*/
freeze_timers();
update_mmu_watch();
unfreeze_timers();
if (target_a9->state == TARGET_HALTED) {
LOG << "Resume" << endl;
if (target_resume(target_a9, 1, 0, 1, 1)) {
LOG << "FATAL ERROR: Target could not be resumed!" << endl;
return 1;
}
}
// Wait for target to halt
while (target_a9->state != TARGET_HALTED) {
// Polling needs to be done to detect target halt state changes.
if (target_poll(target_a9)) {
LOG << "FATAL ERROR: Error polling after resume!" << endl;
return 1;
}
// Update timers, so waiting can be aborted
update_timers();
}
// Check for halt and trigger event accordingly
if (target_a9->state == TARGET_HALTED) {
// ToDo: Outsource
uint32_t pc = getCurrentPC();
// After coroutine-switch, dbg-reason might change, so it must
// be stored
enum target_debug_reason current_dr = target_a9->debug_reason;
switch (current_dr) {
case DBG_REASON_WPTANDBKPT:
/* Fall through for handling of BP and WP*/
case DBG_REASON_BREAKPOINT:
if (mmu_recovery_needed) {
// Check for correct pc
if (pc != mmu_recovery_bp.address) {
LOG << "FATAL ERROR: Something went wrong while handling mmu event" << endl;
exit(-1);
}
// Reset mapping at mmu_recovery_address
// write into memory at mmu_recovery_address to map page/section
unmap_page_section(mmu_recovery_address);
invalidate_tlb();
// remove this BP
oocdw_delete_halt_condition(&mmu_recovery_bp);
mmu_recovery_needed = false;
} else if (pc == sym_MmuFaultBreakpointHook) {
uint32_t lr_abt;
oocdw_read_reg(fail::RI_LR_ABT, &lr_abt);
// ToDo: GP register read faster? DFAR also available in reg 3
uint32_t dfar;
oocdw_read_reg(fail::RI_DFAR, &dfar);
/*
* Analyze instruction to get access width. Also the base-address may differ from this in multiple
* data access instructions with decrement option.
* As some Register values have changed in the handler, we first must find the original values.
* This is easy for a static abort handler (pushed to stack), but must be adjusted, if handler
* is adjusted
*/
uint32_t opcode;
oocdw_read_from_memory(lr_abt - 8, 4, 1, (uint8_t*)(&opcode));
uint32_t sp_abt;
oocdw_read_reg(fail::RI_SP_ABT, &sp_abt);
arm_regs_t regs;
oocdw_read_from_memory(sp_abt, 4, 4, (uint8_t*)(&regs.r[2]));
for (int i = 0; i < 16; i++) {
if (i >=2 && i <=5) {
continue;
}
oocdw_read_reg(i, &(regs.r[i]));
}
oocdw_read_reg(fail::RI_CPSR, &regs.cpsr);
oocdw_read_reg(fail::RI_SPSR_ABT, &regs.spsr);
arm_instruction_t op;
decode_instruction(opcode, &regs, &op);
/*
* set BP on the instruction, which caused the abort, singlestep and recover previous mmu state
* ToDO: This might be inefficient, because often the event trigger will cause a system reset
* and so this handling is done for nothing, but we must not do anything after triggering a event.
*/
mmu_recovery_bp.address = lr_abt - 8;
mmu_recovery_bp.addr_len = 4;
mmu_recovery_bp.type = HALT_TYPE_BP;
// ToDO: If all BPs used, delete and memorize any of these
// as we will for sure first halt in the recovery_bp, we can
// then readd it
oocdw_set_halt_condition(&mmu_recovery_bp);
mmu_recovery_needed = true;
if (op.flags & (OP_FLAG_READ | OP_FLAG_WRITE)) {
fail::simulator.onMemoryAccess(NULL, op.mem_addr, op.mem_size, op.flags & OP_FLAG_WRITE, lr_abt - 8);
} else {
LOG << "FATAL ERROR: Disassembling instruction in mmu handler failed" << endl;
exit(-1);
}
} else if (pc == sym_GenericTrapHandler) {
freeze_timers();
fail::simulator.onTrap(NULL, fail::ANY_TRAP);
unfreeze_timers();
// ToDo: Check for handling by experiment (reboot) and throw error otherwise
} else {
freeze_timers();
fail::simulator.onBreakpoint(NULL, pc, fail::ANY_ADDR);
unfreeze_timers();
}
if (current_dr == DBG_REASON_BREAKPOINT) {
break;
}
/* Potential fall through (Breakpoint and Watchpoint)*/
case DBG_REASON_WATCHPOINT:
{
// ToDo: Replace with calls of every current memory access
struct watchpoint *wp = getHaltingWatchpoint();
if (!wp) {
// ToDo: Determine address by interpreting instruction and register contents
LOG << "FATAL ERROR: Can't determine memory-access address of halt cause" << endl;
return 1;
}
int iswrite;
switch (wp->rw) {
case WPT_READ:
iswrite = 0;
break;
case WPT_WRITE:
iswrite = 1;
break;
case WPT_ACCESS:
// ToDo: Can't tell if read or write
iswrite = 1;
break;
default:
LOG << "FATAL ERROR: Can't determine memory-access type of halt cause" << endl;
return 1;
break;
}
freeze_timers();
fail::simulator.onMemoryAccess(NULL, wp->address, wp->length, iswrite, pc);
unfreeze_timers();
}
break;
case DBG_REASON_SINGLESTEP:
LOG << "FATAL ERROR: Single-step is handled in previous loop phase" << endl;
exit (-1);
break;
default:
LOG << "FATAL ERROR: Target halted in unexpected cpu state " << current_dr << endl;
exit (-1);
break;
}
/*
* Execute single-step if horizontal hop was detected
*/
if (target_a9->state == TARGET_HALTED && horizontal_step) {
if (target_step(target_a9, 1, 0, 1)) {
LOG << "FATAL ERROR: Single-step could not be executed!" << endl;
exit (-1);
}
// Reset horizontal hop flag
horizontal_step = false;
}
}
// Update timers. Granularity will be coarse, because this is done after polling the device
update_timers();
}
/* === FINISHING UP === */
unregister_all_commands(cmd_ctx, NULL);
/* free commandline interface */
command_done(cmd_ctx);
adapter_quit();
fclose(file);
LOG << "finished" << endl;
exit(oocdw_exCode);
}
void oocdw_finish(int exCode)
{
oocdw_exection_finished = true;
oocdw_exCode = exCode;
}
void oocdw_set_halt_condition(struct halt_condition *hc)
{
assert((target_a9->state == TARGET_HALTED) && "Target not halted");
assert((hc != NULL) && "No halt condition defined");
// ToDo: Does this work for multiple halt conditions?
horizontal_step = false;
if (hc->type == HALT_TYPE_BP) {
LOG << "Adding BP " << hex << hc->address << dec << ":" << hc->addr_len << endl;
if (!free_breakpoints) {
LOG << "FATAL ERROR: No free breakpoints left" << endl;
exit(-1);
}
if (breakpoint_add(target_a9, hc->address,
hc->addr_len, BKPT_HARD)) {
LOG << "FATAL ERROR: Breakpoint could not be set" << endl;
exit(-1);
}
free_breakpoints--;
// Compare current pc with set breakpoint (potential horizontal hop)
if (hc->address == getCurrentPC()) {
horizontal_step = true;
}
} else if (hc->type == HALT_TYPE_SINGLESTEP) {
single_step_requested = true;
} else if ((hc->type == HALT_TYPE_WP_READ) ||
(hc->type == HALT_TYPE_WP_WRITE) ||
(hc->type == HALT_TYPE_WP_READWRITE)) {
if ((hc->addr_len > 4) || !free_watchpoints) {
// Use MMU for watching
LOG << "Setting up MMU to watch memory range " << hex << hc->address << ":" << hc->addr_len << dec << endl;
struct mem_range mr;
mr.address = hc->address;
mr.width = hc->addr_len;
mmu_watch_add_waiting_list.push_back(mr);
return;
}
if (hc->address == fail::ANY_ADDR) {
single_step_watch_memory = true;
return;
}
LOG << "Adding WP " << hex << hc->address << dec << ":" << hc->addr_len << ":" <<
((hc->type == HALT_TYPE_WP_READ)? "R" : (hc->type == HALT_TYPE_WP_WRITE)? "W" : "R/W")<< endl;
enum watchpoint_rw rw = WPT_ACCESS;
if (hc->type == HALT_TYPE_WP_READ) {
rw = WPT_READ;
} else if (hc->type == HALT_TYPE_WP_WRITE) {
rw = WPT_WRITE;
} else if (hc->type == HALT_TYPE_WP_READWRITE) {
rw = WPT_ACCESS;
}
// No masking => value = 0; mask = 0xffffffff
// length const 1, because functional correct and smallest
// hit surface
if (watchpoint_add(target_a9, hc->address, hc->addr_len,
rw, 0x0, 0xffffffff)) {
LOG << "FATAL ERROR: Watchpoint could not be set" << endl;
exit(-1);
}
free_watchpoints--;
// Compare current memory access event with set watchpoint
// (potential horizontal hop)
struct halt_condition mem_access;
if (getCurrentMemAccess(&mem_access)) {
if (mem_access.type == hc->type) {
if ((mem_access.address < hc->address) && (mem_access.address + mem_access.addr_len >= hc->address)) {
horizontal_step = true;
} else if ((mem_access.address >= hc->address) && (hc->address + hc->addr_len >= mem_access.address)) {
horizontal_step = true;
}
}
}
} else {
LOG << "FATAL ERROR: Could not determine halt condition type" << endl;
exit(-1);
}
}
void oocdw_delete_halt_condition(struct halt_condition *hc)
{
assert((target_a9->state == TARGET_HALTED) && "Target not halted");
assert((hc != NULL) && "No halt condition defined");
// Remove halt condition from pandaboard
if (hc->type == HALT_TYPE_BP) {
LOG << "Removing BP " << hex << hc->address << dec << ":" << hc->addr_len << endl;
breakpoint_remove(target_a9, hc->address);
free_breakpoints++;
} else if (hc->type == HALT_TYPE_SINGLESTEP) {
// Do nothing. Single-stepping event hits one time and
// extinguishes itself automatically
} else if ((hc->type == HALT_TYPE_WP_READWRITE) ||
(hc->type == HALT_TYPE_WP_READ) ||
(hc->type == HALT_TYPE_WP_WRITE)) {
// Watched by mmu?
struct mem_range mr;
mr.address = hc->address;
mr.width = hc->addr_len;
std::vector<struct mem_range>::iterator search;
search = find_mem_range_in_vector(mr, mmu_watch);
if (search != mmu_watch.end()) {
LOG << "Setting up MMU to NO LONGER watch memory range " << hex << hc->address << ":" << hc->addr_len << dec << endl;
mmu_watch_del_waiting_list.push_back(mr);
return;
}
if (hc->address == fail::ANY_ADDR) {
single_step_watch_memory = false;
return;
}
watchpoint_remove(target_a9, hc->address);
free_watchpoints++;
LOG << hex << "Removing WP " << hc->address << ":" << hc->addr_len << ":" <<
((hc->type == HALT_TYPE_WP_READ)? "R" : (hc->type == HALT_TYPE_WP_WRITE)? "W" : "R/W") << dec<< endl;
}
}
bool oocdw_halt_target()
{
if (target_halt(target_a9)) {
LOG << "FATAL ERROR: Target could not be halted" << endl;
return false;
}
/*
* Wait for target to actually stop.
*/
long long then = timeval_ms();
if (target_poll(target_a9)) {
LOG << "FATAL ERROR: Target polling failed" << endl;
return false;
}
while (target_a9->state != TARGET_HALTED) {
if (target_poll(target_a9)) {
LOG << "FATAL ERROR: Target polling failed" << endl;
return false;
}
if (timeval_ms() > then + 1000) {
LOG << "FATAL ERROR: Timeout waiting for target halt" << endl;
return false;
}
}
return true;
}
// ToDo: read from elf-file
#define SAFETYLOOP_BEGIN 0x8300008c
#define SAFETYLOOP_END 0x830000a8
/*
* As "reset halt" and "reset init" fail irregularly on the pandaboard, resulting in
* a device freeze, from which only a manual reset can recover the state, a different
* approach is used to reset the device and navigate to main entry.
* A "reset run" command is executed, which does not cause a device freeze.
* Afterwards the pandaboard is immediately halted, so the halt normally triggers
* in the initialization phase. Afterwards a breakpoint is set on the target
* instruction, so the device is set for navigation to the target dynamic instructions.
*
* 1) The indirection of navigating to the main entry is needed, because
* the first halt condition might be a watchpoint, which could also
* trigger in the binary loading phase.
* 2) Because it is not guaranteed, that the immediate halt is triggered
* before main entry, a "safety loop" is executed before the main
* entry. It is therefore necessary to first navigate into this loop
* and then jump over it by modifying the program counter.
*/
void oocdw_reboot()
{
int retval, fail_counter = 1;
bool reboot_success = false;
for (int i=0; i<P_MAX_TIMERS; i++) {
timers[i].freezed = false;
timers[i].active = false;
}
while (!reboot_success) {
LOG << "Rebooting device" << endl;
reboot_success = true;
// If target is not halted, reset will result in freeze
if (target_a9->state != TARGET_HALTED) {
if (!oocdw_halt_target()) {
reboot_success = false;
if (fail_counter++ > 4) {
LOG << "FATAL ERROR: Rebooting not possible" << endl;
exit(-1);
}
usleep(100*1000);
continue;
}
}
/*
* Clear all halt conditions
*/
breakpoint_clear_target(target_a9);
watchpoint_clear_target(target_a9);
/*
* Reset state structures
*/
free_watchpoints = 4;
free_breakpoints = 6;
mmu_recovery_needed = false;
mmu_watch.clear();
mmu_watch_add_waiting_list.clear();
mmu_watch_del_waiting_list.clear();
// Standard configuration: Sections only, all mapped
for (int i = 0; i < 4096; i++) {
if (mmu_conf[i].type == DESCRIPTOR_PAGE) {
delete[] mmu_conf[i].second_lvl_mapped;
mmu_conf[i].type = DESCRIPTOR_SECTION;
}
mmu_conf[i].mapped = true;
}
/*
* The actual reset command executed by OpenOCD jimtcl-engine
*/
retval = Jim_Eval(cmd_ctx->interp, "reset");
retval = target_call_timer_callbacks_now();
if (retval) {
LOG << "target_call_timer_callbacks_now() Error" << endl;
exit(-1);
}
struct target *target;
for (target = all_targets; target; target = target->next)
target->type->check_reset(target);
usleep(750*1000);
// Immediate halt after reset.
if (!oocdw_halt_target()) {
reboot_success = false;
if (fail_counter++ > 4) {
LOG << "FATAL ERROR: Rebooting not possible" << endl;
exit(-1);
}
usleep(100*1000);
continue;
}
// Check if halted in safety loop
uint32_t pc = getCurrentPC();
if (pc < sym_SafetyLoopBegin || pc >= sym_SafetyLoopEnd) {
LOG << "NOT IN LOOP!!! PC: " << hex << pc << dec << std::endl;
// BP on entering main
struct halt_condition hc;
// ToDo: Non static MAIN ENTRY
hc.address = sym_SafetyLoopEnd - 4;
hc.addr_len = 4;
hc.type = HALT_TYPE_BP;
oocdw_set_halt_condition(&hc);
if (target_resume(target_a9, 1, 0, 1, 1)) {
LOG << "FATAL ERROR: Target could not be resumed" << endl;
exit(-1);
}
long long then;
then = timeval_ms();
while (target_a9->state != TARGET_HALTED) {
int retval = target_poll(target_a9);
if (retval != ERROR_OK) {
LOG << "FATAL ERROR: Target polling failed" << endl;
exit(-1);
}
// ToDo: Adjust timeout
if (timeval_ms() > then + 2000) {
LOG << "Error: Timeout waiting for main entry" << endl;
reboot_success = false;
if (fail_counter++ > 4) {
LOG << "FATAL ERROR: Rebooting not possible" << endl;
exit(-1);
}
oocdw_halt_target();
break;
}
}
// Remove temporary
oocdw_delete_halt_condition(&hc);
} else {
LOG << "Stopped in loop. PC: " << hex << pc << dec << std::endl;
}
if (reboot_success) {
/*
* Jump over safety loop (set PC)
* This can be done, because we know that the following code does
* not use any register values, which could be set in the loop
*/
oocdw_write_reg(15, sym_SafetyLoopEnd);
}
// Initially set BP for generic traps
struct halt_condition hc;
hc.type = HALT_TYPE_BP;
hc.address = sym_GenericTrapHandler;
hc.addr_len = 4;
oocdw_set_halt_condition(&hc);
// Initially set BP for mmu abort handler
hc.type = HALT_TYPE_BP;
hc.address = sym_MmuFaultBreakpointHook;
hc.addr_len = 4;
oocdw_set_halt_condition(&hc);
}
}
/*
* Register access as in target.c: COMMAND_HANDLER(handle_reg_command)
*/
static struct reg *get_reg_by_number(unsigned int num)
{
struct reg *reg = NULL;
struct reg_cache *cache = target_a9->reg_cache;
unsigned int count = 0;
while (cache) {
unsigned i;
for (i = 0; i < cache->num_regs; i++) {
if (count++ == num) {
reg = &cache->reg_list[i];
break;
}
}
if (reg) {
break;
}
cache = cache->next;
}
return reg;
}
static void read_dpm_register(uint32_t reg_num, uint32_t *data)
{
struct armv7a_common *armv7a = target_to_armv7a(target_a9);
struct arm_dpm *dpm = armv7a->arm.dpm;
int retval;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK) {
LOG << "Unable to prepare for reading dpm register" << endl;
}
if (reg_num == fail::RI_DFAR) {
// MRC p15, 0, <Rt>, c6, c0, 0
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 6, 0, 0),
data);
} else if (reg_num == fail::RI_DFSR) {
// MRC p15, 0, <Rt>, c5, c0, 0
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 5, 0, 0),
data);
} else {
LOG << "FATAL ERROR: Reading dpm register with id " << reg_num << " is not supported." << endl;
exit (-1);
}
if (retval != ERROR_OK) {
LOG << "Unable to read DFAR-Register" << endl;
}
dpm->finish(dpm);
}
static inline void read_processor_register(uint32_t reg_num, uint32_t *data)
{
struct reg *reg;
reg = get_reg_by_number(reg_num);
if (reg->valid == 0) {
reg->type->get(reg);
}
*data = *((uint32_t*)(reg->value));
}
void oocdw_read_reg(uint32_t reg_num, uint32_t *data)
{
assert((target_a9->state == TARGET_HALTED) && "Target not halted");
switch (reg_num) {
case fail::RI_DFAR:
/* fall through */
case fail::RI_DFSR:
read_dpm_register(reg_num, data);
break;
case fail::RI_R0:
/* fall through */
case fail::RI_R1:
/* fall through */
case fail::RI_R2:
/* fall through */
case fail::RI_R3:
/* fall through */
case fail::RI_R4:
/* fall through */
case fail::RI_R5:
/* fall through */
case fail::RI_R6:
/* fall through */
case fail::RI_R7:
/* fall through */
case fail::RI_R8:
/* fall through */
case fail::RI_R9:
/* fall through */
case fail::RI_R10:
/* fall through */
case fail::RI_R11:
/* fall through */
case fail::RI_R12:
/* fall through */
case fail::RI_R13:
/* fall through */
case fail::RI_R14:
/* fall through */
case fail::RI_R15:
read_processor_register(reg_num, data);
break;
case fail::RI_R8_FIQ:
read_processor_register(16, data);
break;
case fail::RI_R9_FIQ:
read_processor_register(17, data);
break;
case fail::RI_R10_FIQ:
read_processor_register(18, data);
break;
case fail::RI_R11_FIQ:
read_processor_register(19, data);
break;
case fail::RI_R12_FIQ:
read_processor_register(20, data);
break;
case fail::RI_SP_FIQ:
read_processor_register(21, data);
break;
case fail::RI_LR_FIQ:
read_processor_register(22, data);
break;
case fail::RI_SP_IRQ:
read_processor_register(23, data);
break;
case fail::RI_LR_IRQ:
read_processor_register(24, data);
break;
case fail::RI_SP_SVC:
read_processor_register(25, data);
break;
case fail::RI_LR_SVC:
read_processor_register(26, data);
break;
case fail::RI_SP_ABT:
read_processor_register(27, data);
break;
case fail::RI_LR_ABT:
read_processor_register(28, data);
break;
case fail::RI_SP_UND:
read_processor_register(29, data);
break;
case fail::RI_LR_UND:
read_processor_register(30, data);
break;
case fail::RI_CPSR:
read_processor_register(31, data);
break;
case fail::RI_SPSR_FIQ:
read_processor_register(32, data);
break;
case fail::RI_SPSR_IRQ:
read_processor_register(33, data);
break;
case fail::RI_SPSR_SVC:
read_processor_register(34, data);
break;
case fail::RI_SPSR_ABT:
read_processor_register(35, data);
break;
case fail::RI_SPSR_UND:
read_processor_register(36, data);
break;
case fail::RI_SP_MON:
read_processor_register(37, data);
break;
case fail::RI_LR_MON:
read_processor_register(38, data);
break;
case fail::RI_SPSR_MON:
read_processor_register(39, data);
break;
default:
LOG << "ERROR: Register with id " << reg_num << " unknown." << endl;
break;
}
}
void oocdw_write_reg(uint32_t reg_num, uint32_t data)
{
assert((target_a9->state == TARGET_HALTED) && "Target not halted");
switch (reg_num) {
case fail::RI_R0:
/* fall through */
case fail::RI_R1:
/* fall through */
case fail::RI_R2:
/* fall through */
case fail::RI_R3:
/* fall through */
case fail::RI_R4:
/* fall through */
case fail::RI_R5:
/* fall through */
case fail::RI_R6:
/* fall through */
case fail::RI_R7:
/* fall through */
case fail::RI_R8:
/* fall through */
case fail::RI_R9:
/* fall through */
case fail::RI_R10:
/* fall through */
case fail::RI_R11:
/* fall through */
case fail::RI_R12:
/* fall through */
case fail::RI_R13:
/* fall through */
case fail::RI_R14:
/* fall through */
case fail::RI_R15:
{
struct reg *reg = get_reg_by_number(reg_num);
reg->type->set(reg, (uint8_t*)(&data));
}
break;
default:
LOG << "ERROR: Register with id " << reg_num << " unknown." << endl;
break;
}
}
void oocdw_read_from_memory(uint32_t address, uint32_t chunk_size,
uint32_t chunk_num, uint8_t *data)
{
if (target_read_memory(target_a9, address, chunk_size, chunk_num, data)) {
LOG << "FATAL ERROR: Reading from memory failed." << endl;
exit(-1);
}
}
void oocdw_write_to_memory(uint32_t address, uint32_t chunk_size,
uint32_t chunk_num, uint8_t const *data,
bool cache_inval)
{
struct target *write_target;
if (cache_inval) {
// A9 writes and invalidates
write_target = target_a9;
} else {
// M3 writes and does not invalidate
write_target = target_m3;
}
if (target_write_memory(write_target, address, chunk_size, chunk_num, data)) {
LOG << "FATAL ERROR: Writing to memory failed." << endl;
exit(-1);
}
}
int oocdw_register_timer(void *this_ptr, p_timer_handler_t funct, uint64_t useconds,
bool active, const char *id)
{
for (int i=0; i<P_MAX_TIMERS; i++ ) {
// find unused timer
if (!timers[i].inUse) {
timers[i].this_ptr = this_ptr;
timers[i].funct = funct;
timers[i].timeToFire = useconds;
gettimeofday(&(timers[i].time_begin), NULL);
timers[i].active = active;
strcpy(timers[i].id, id);
timers[i].inUse = true;
return i;
}
}
return -1;
}
bool oocdw_unregisterTimer(unsigned timerID)
{
if (!timers[timerID].inUse) {
return false;
}
timers[timerID].inUse = false;
return true;
}
void oocdw_deactivate_timer(unsigned timer_index)
{
timers[timer_index].active = false;
}
static void update_timers()
{
for (int i=0; i<P_MAX_TIMERS; i++ ) {
if (timers[i].inUse && timers[i].active) {
struct timeval t_now, t_diff;
gettimeofday(&t_now, NULL);
timersub(&t_now, &timers[i].time_begin, &t_diff);
uint64_t useconds_delta = t_diff.tv_sec * 1000000 + t_diff.tv_usec;
if (timers[i].timeToFire <= useconds_delta) {
// Halt target to get defined halted state at experiment end
oocdw_halt_target();
// Fire
timers[i].funct(timers[i].this_ptr);
}
}
}
}
static uint32_t getCurrentPC()
{
return buf_get_u32(arm_a9->pc->value, 0, 32);
}
/*
* Returns all memory access events of current instruction in
* 0-terminated (0 in address field) array of max length.
* TODO implement analysis of current instruction in combination
* with register contents
*/
static bool getCurrentMemAccess(struct halt_condition *access)
{
// ToDo: Get all memory access events of current
// instruction. For now return empty array.
uint32_t pc = getCurrentPC();
uint32_t opcode;
oocdw_read_from_memory(pc, 4 , 1, (uint8_t*)(&opcode));
arm_regs_t regs;
for (int i = 0; i < 16; i++) {
oocdw_read_reg(i, &(regs.r[i]));
}
oocdw_read_reg(fail::RI_CPSR, &regs.cpsr);
arm_instruction_t op;
decode_instruction(opcode, &regs, &op);
if (op.flags & (OP_FLAG_READ | OP_FLAG_WRITE)) {
access->address = op.mem_addr;
access->addr_len = op.mem_size;
access->type = (op.flags & OP_FLAG_READ) ? HALT_TYPE_WP_READ : HALT_TYPE_WP_WRITE;
return true;
}
return false;
}
/*
* If only one watchpoint is active, this checkpoint gets returned by
* this function
* Will be eliminated by disassembling and evaluating instruction
*/
static struct watchpoint *getHaltingWatchpoint()
{
struct watchpoint *watchpoint = target_a9->watchpoints;
if (!watchpoint || watchpoint->next) {
// Multiple watchpoints activated? No single answer possible
return NULL;
}
return watchpoint;
}
static uint32_t cc_overflow = 0;
uint64_t oocdw_read_cycle_counter()
{
struct armv7a_common *armv7a = target_to_armv7a(target_a9);
struct arm_dpm *dpm = armv7a->arm.dpm;
int retval;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK) {
LOG << "Unable to prepare for reading dpm register" << endl;
}
uint32_t data, flags;
// PMCCNTR
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 9, 13, 0),
&data);
if (retval != ERROR_OK) {
LOG << "Unable to read PMCCNTR-Register" << endl;
}
// PMOVSR
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 9, 12, 3),
&flags);
if (retval != ERROR_OK) {
LOG << "Unable to read PMOVSR-Register" << endl;
}
if (flags & (1 << 31)) {
cc_overflow++;
flags ^= (1 << 31);
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MCR(15, 0, 0, 9, 12, 3),
flags);
if (retval != ERROR_OK) {
LOG << "Unable to read PMOVSR-Register" << endl;
}
}
dpm->finish(dpm);
return (uint64_t)data + ((uint64_t)cc_overflow << 32);
}
static void init_symbols()
{
sym_GenericTrapHandler = elf_reader.getSymbol("GenericTrapHandler").getAddress();
sym_MmuFaultBreakpointHook = elf_reader.getSymbol("MmuFaultBreakpointHook").getAddress();
sym_SafetyLoopBegin = elf_reader.getSymbol("SafetyloopBegin").getAddress();
sym_SafetyLoopEnd = elf_reader.getSymbol("SafetyloopEnd").getAddress();
sym_addr_PageTableFirstLevel = elf_reader.getSymbol("A9TTB").getAddress();
sym_addr_PageTableSecondLevel = elf_reader.getSymbol("A9TTB_L2").getAddress();
LOG << hex << "SYMBOLS READ: " << endl <<
"GenericTrapHandler " << sym_GenericTrapHandler << endl <<
"MmuFaultBreakpointHook " << sym_MmuFaultBreakpointHook << endl <<
"SafetyLoopBegin " << sym_SafetyLoopBegin << endl <<
"SafetyLoopEnd " << sym_SafetyLoopEnd << endl <<
"A9TTB " << sym_addr_PageTableFirstLevel << endl <<
"A9TTB_L2 " << sym_addr_PageTableSecondLevel << dec << endl;
if (!sym_GenericTrapHandler || !sym_MmuFaultBreakpointHook || !sym_SafetyLoopBegin || !sym_SafetyLoopEnd
|| !sym_addr_PageTableFirstLevel || !sym_addr_PageTableSecondLevel) {
LOG << "FATAL ERROR: Not all relevant symbols were found" << endl;
exit(-1);
}
}
static void invalidate_tlb()
{
struct armv7a_common *armv7a = target_to_armv7a(target_a9);
struct arm_dpm *dpm = armv7a->arm.dpm;
int retval;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK) {
LOG << "FATAL ERROR: Unable to prepare for reading dpm register" << endl;
exit (-1);
}
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MCR(15, 0, 0, 8, 7, 0),
0);
if (retval != ERROR_OK) {
LOG << "FATAL ERROR: Unable to invalidate TLB" << endl;
exit (-1);
}
dpm->finish(dpm);
}
struct mmu_page_section {
enum descriptor_e type;
uint32_t index;
};
static void divide_into_pages_and_sections(const struct mem_range &in, std::vector<struct mmu_page_section> &out)
{
struct mmu_page_section ps;
uint32_t address = in.address;
uint32_t width = in.width;
// add pre-section pages
while ((width > 0) && ((address % 0x100000) != 0)) {
// LOG << "PAGE: " << hex << address << endl;
ps.index = ((address >> 20) * 256) + ((address >> 12) & 0xFF);
ps.type = DESCRIPTOR_PAGE;
out.push_back(ps);
address += 0x1000;
width -= 0x1000;
}
// add sections
while (width >= 0x100000) {
// LOG << "SECTION: " << hex << address << endl;
ps.index = address >> 20;
ps.type = DESCRIPTOR_SECTION;
out.push_back(ps);
address += 0x100000;
width -= 0x100000;
}
// add post-section pages
while (width > 0) {
// LOG << "PAGE: " << hex << address << endl;
ps.index = ((address >> 20) * 256) + ((address >> 12) & 0xFF);
ps.type = DESCRIPTOR_PAGE;
out.push_back(ps);
address += 0x1000;
width -= 0x1000;
}
}
static void force_page_alignment_mem_range (std::vector<struct mem_range> &in, std::vector<struct mem_range> &out)
{
std::vector<struct mem_range>::iterator it;
for (it = in.begin(); it != in.end(); it++) {
struct mem_range tmp;
if ((it->address % 0x1000) != 0) {
tmp.address = it->address - (it->address % 0x1000);
tmp.width = it->width + (it->address % 0x1000);
} else {
tmp.address = it->address;
tmp.width = it->width;
}
if ((tmp.width % 0x1000) != 0) {
tmp.width += 0x1000 - (tmp.width % 0x1000);
}
out.push_back(tmp);
}
}
static bool compareByAddress(const struct mem_range &a, const struct mem_range &b)
{
return a.address < b.address;
}
static void merge_mem_ranges (std::vector<struct mem_range> &in_out)
{
// sort ascending by address
std::sort(in_out.begin(), in_out.end(), compareByAddress);
std::vector<struct mem_range>::iterator it, next_it;
it = in_out.begin();
next_it = it; next_it++;
while(it != in_out.end() && next_it != in_out.end()) {
if ((it->address + it->width) >= next_it->address) {
uint32_t additive_width = (next_it->address - it->address) + next_it->width;
if (additive_width > it->width) {
it->width = additive_width;
}
in_out.erase(next_it);
next_it = it; next_it++;
} else {
it++; next_it++;
}
}
}
/*
* ToDo: Sort buffer first? (will be problematic with order of writes)
* ToDo: Bigger buffer size?
* ToDo: Use this for all writes?
*/
static void execute_buffered_writes(std::vector<std::pair<uint32_t, uint32_t> > &buf) {
std::vector<std::pair<uint32_t, uint32_t> >::iterator it_buf = buf.begin(), it_next;
it_next = it_buf; it_next++;
if (it_buf != buf.end()) {
uint32_t start_address = it_buf->first;
uint32_t data [256];
int data_idx = 0;
for (; it_buf != buf.end(); it_buf++) {
data[data_idx++] = it_buf->second;
if (it_next == buf.end() || (it_buf->first + 4) != it_next->first || data_idx == 256) {
LOG << "Writing " << data_idx << " buffered items to address " << hex << start_address << dec << endl;
oocdw_write_to_memory(start_address, 4, data_idx, (unsigned char*)(data), true);
if (it_next == buf.end()) {
break;
}
data_idx = 0;
start_address = it_next->first;
}
it_next++;
}
}
}
static bool update_mmu_watch_add()
{
bool invalidate = false;
std::vector<struct mem_range>::iterator it;
for (it = mmu_watch_add_waiting_list.begin(); it != mmu_watch_add_waiting_list.end(); it++) {
// already watched?
std::vector<struct mem_range>::iterator search;
search = find_mem_range_in_vector(*it, mmu_watch);
if (search != mmu_watch.end()) {
LOG << hex << "FATAL ERROR: Memory Range already watched. Address: "
<< it->address << ", width: " << it->width << dec << endl;
exit(-1);
}
// memorise exact range to watch
mmu_watch.push_back(*it);
}
mmu_watch_add_waiting_list.clear();
std::vector<struct mem_range> mmu_watch_aligned;
force_page_alignment_mem_range(mmu_watch, mmu_watch_aligned);
// Merge existing and new configuration and merge direct neighbours
merge_mem_ranges(mmu_watch_aligned);
std::vector<std::pair<uint32_t, uint32_t> >buffer_for_chunked_write;
// We don't calculate a diff of previous and new configuration, because the
// descriptor structures will tell us, if a targeted part was already unmapped
// In this case we just do nothing
for (it = mmu_watch_aligned.begin(); it != mmu_watch_aligned.end(); it++) {
std::vector<struct mmu_page_section> candidates;
divide_into_pages_and_sections(*it, candidates);
std::vector<struct mmu_page_section>::iterator cand_it;
for (cand_it = candidates.begin(); cand_it != candidates.end(); cand_it++) {
struct mmu_first_lvl_descr *first_lvl;
if (cand_it->type == DESCRIPTOR_PAGE) {
first_lvl = &mmu_conf[cand_it->index/256];
if (first_lvl->type == DESCRIPTOR_SECTION) {
if (!first_lvl->mapped) {
continue;
}
// Set 1st lvl descriptor to link to 2nd-lvl table
uint32_t pageTableAddress =sym_addr_PageTableSecondLevel + ((cand_it->index - (cand_it->index % 256)) * 4);
uint32_t descr_content = pageTableAddress | 0x1e9;
uint32_t target_address = sym_addr_PageTableFirstLevel + ((cand_it->index / 256) * 4);
LOG << "Writing to " << hex << target_address << dec << endl;
oocdw_write_to_memory(target_address , 4, 1, (unsigned char*)(&descr_content), true);
invalidate = true;
first_lvl->second_lvl_mapped = new bool[256];
for (int i = 0; i < 256; i++) {
first_lvl->second_lvl_mapped[i] = true;
descr_content = (((cand_it->index - (cand_it->index % 256)) + i) << 12) | 0x32;
buffer_for_chunked_write.push_back(std::pair<uint32_t, uint32_t>(
pageTableAddress + (i * 4),
descr_content));
}
first_lvl->type = DESCRIPTOR_PAGE;
}
// as the type of the first_lvl descriptor should have changed, this if-condition
// will also be executed, if the previous one was and if the section was not
// already unmapped
if (first_lvl->type == DESCRIPTOR_PAGE) {
if (first_lvl->second_lvl_mapped[cand_it->index % 256]) {
uint32_t descr_content = (cand_it->index << 12) | 0x30;
buffer_for_chunked_write.push_back(std::pair<uint32_t, uint32_t>(
sym_addr_PageTableSecondLevel + (cand_it->index * 4),
descr_content));
first_lvl->second_lvl_mapped[cand_it->index % 256] = false;
invalidate = true;
}
}
} else if (cand_it->type == DESCRIPTOR_SECTION) {
first_lvl = &mmu_conf[cand_it->index];
if (first_lvl->type == DESCRIPTOR_PAGE) {
// Bring up to Section descriptor
first_lvl->type = DESCRIPTOR_SECTION;
// This information is not entirely valid, but it will be used
// by the next if-clause to unmap the whole section.
// Whatever configuration was made on page-lvl won't be used any more
first_lvl->mapped = true;
delete[] first_lvl->second_lvl_mapped;
// all the rest is handled in the next if condition
}
if (first_lvl->type == DESCRIPTOR_SECTION) {
if (first_lvl->mapped) {
uint32_t descr_content = (cand_it->index << 20) | 0xc00;
uint32_t descr_addr = sym_addr_PageTableFirstLevel + (cand_it->index * 4);
LOG << "Writing to " << hex << descr_addr << dec << endl;
oocdw_write_to_memory(descr_addr, 4, 1, (unsigned char*)(&descr_content), true);
LOG << "Writing entry at " << hex << descr_addr << " content: " << descr_content << dec << endl;
first_lvl->mapped = false;
invalidate = true;
}
}
}
}
}
execute_buffered_writes(buffer_for_chunked_write);
return invalidate;
}
static void get_range_diff(std::vector<struct mem_range> &before, std::vector<struct mem_range> &after, std::vector<struct mem_range> &diff)
{
// sort both before and after vector ascending by address
std::sort(before.begin(), before.end(), compareByAddress);
std::sort(after.begin(), after.end(), compareByAddress);
/*
* There are now 5 possible cases for every entry in <before>:
*
* 1) 2) 3) 4) 5)
* Before: |------| |------| |------| |------| |------|
* After: |------| |----| |----| |--|
*/
std::vector<struct mem_range>::iterator it_before;
std::vector<struct mem_range>::iterator it_after = after.begin();
for (it_before = before.begin(); it_before != before.end(); it_before++) {
// case 1
if (it_after == after.end() || (it_after->address > (it_before->address + it_before->width))) {
diff.push_back(*it_before);
} else if (it_after->address == it_before->address) {
if (it_after->width == it_before->width) { // case 2
continue;
} else if (it_after->width < it_before->width) { // case 3
struct mem_range tmp;
tmp.address = it_after->address + it_after->width;
tmp.width = it_before->width - it_after->width;
diff.push_back(tmp);
} else {
LOG << "FATAL ERROR: Unexpected result in mmu diff calculation" << endl;
exit(-1);
}
} else if (it_after->address > it_before->address) {
uint32_t address_diff = it_after->address - it_before->address;
if ((it_after->width + address_diff) == it_before->width) { // case 4
struct mem_range tmp;
tmp.address = it_before->address;
tmp.width = address_diff;
diff.push_back(tmp);
} else if ((it_after->width + address_diff) < it_before->width) { // case 5
struct mem_range tmp_a, tmp_b;
tmp_a.address = it_before->address;
tmp_a.width = address_diff;
tmp_b.address = it_after->address + it_after->width;
tmp_b.width = it_before->width - address_diff - it_after->width;
diff.push_back(tmp_a);
diff.push_back(tmp_b);
} else {
LOG << "FATAL ERROR: Unexpected result in mmu diff calculation" << endl;
exit(-1);
}
} else {
LOG << "FATAL ERROR: Unexpected result in mmu diff calculation" << endl;
exit(-1);
}
}
}
static bool update_mmu_watch_remove()
{
bool invalidate = false;
std::vector<struct mem_range> mmu_watch_aligned_before;
force_page_alignment_mem_range(mmu_watch, mmu_watch_aligned_before);
std::vector<struct mem_range>::iterator it;
for (it = mmu_watch_del_waiting_list.begin(); it != mmu_watch_del_waiting_list.end(); it++) {
// Remove from mmu_watch
std::vector<struct mem_range>::iterator search;
search = find_mem_range_in_vector(*it, mmu_watch);
if (search == mmu_watch.end()) {
LOG << hex << "FATAL ERROR: MMU could not be configured to no longer watch address: "
<< it->address << ", width: " << it->width << dec << endl;
exit(-1);
}
mmu_watch.erase(search);
}
mmu_watch_del_waiting_list.clear();
std::vector<struct mem_range> mmu_watch_aligned_after;
force_page_alignment_mem_range(mmu_watch, mmu_watch_aligned_after);
std::vector<struct mem_range> mmu_watch_aligned_diff;
get_range_diff(mmu_watch_aligned_before, mmu_watch_aligned_after, mmu_watch_aligned_diff);
std::vector<std::pair<uint32_t, uint32_t> >buffer_for_chunked_write;
// Remove difference from mmu conf
for (it = mmu_watch_aligned_diff.begin(); it != mmu_watch_aligned_diff.end(); it++) {
std::vector<struct mmu_page_section> candidates;
divide_into_pages_and_sections(*it, candidates);
std::vector<struct mmu_page_section>::iterator cand_it;
for (cand_it = candidates.begin(); cand_it != candidates.end(); cand_it++) {
struct mmu_first_lvl_descr *first_lvl;
if (cand_it->type == DESCRIPTOR_PAGE) {
first_lvl = &mmu_conf[cand_it->index/256];
if (first_lvl->type == DESCRIPTOR_SECTION) {
if (first_lvl->mapped) {
// ToDo: Throw error? This is unexpected!
continue;
}
// Set 1st lvl descriptor to link to 2nd-lvl table
uint32_t pageTableAddress = sym_addr_PageTableSecondLevel + ((cand_it->index - (cand_it->index % 256)) * 4);
uint32_t descr_content = pageTableAddress | 0x1e9;
uint32_t target_address = sym_addr_PageTableFirstLevel + ((cand_it->index / 256) * 4);
LOG << "Writing to " << hex << target_address << dec << endl;
oocdw_write_to_memory(target_address, 4, 1, (unsigned char*)(&descr_content), true);
invalidate = true;
first_lvl->second_lvl_mapped = new bool[256];
// prepare chunk
for (int i = 0; i < 256; i++) {
first_lvl->second_lvl_mapped[i] = false;
descr_content = (((cand_it->index - (cand_it->index % 256)) + i) << 12) | 0x30;
buffer_for_chunked_write.push_back(std::pair<uint32_t, uint32_t>(
pageTableAddress + (i * 4),
descr_content));
}
first_lvl->type = DESCRIPTOR_PAGE;
}
if (first_lvl->type == DESCRIPTOR_PAGE) {
if (!first_lvl->second_lvl_mapped[cand_it->index % 256]) {
uint32_t descr_content = (cand_it->index << 12) | 0x32;
buffer_for_chunked_write.push_back(std::pair<uint32_t, uint32_t>(
sym_addr_PageTableSecondLevel + (cand_it->index * 4),
descr_content));
first_lvl->second_lvl_mapped[cand_it->index % 256] = true;
}
}
} else if (cand_it->type == DESCRIPTOR_SECTION) {
first_lvl = &mmu_conf[cand_it->index];
if (first_lvl->type == DESCRIPTOR_PAGE) {
// Bring up to Section descriptor
first_lvl->type = DESCRIPTOR_SECTION;
// This information is not entirely valid, but it will be used
// by the next if-clause to map the whole section.
// Whatever configuration was made on page-lvl won't be used any more
first_lvl->mapped = false;
delete[] first_lvl->second_lvl_mapped;
// all the rest is handled in the next if condition
}
if (first_lvl->type == DESCRIPTOR_SECTION) {
if (!first_lvl->mapped) {
uint32_t descr_content = (cand_it->index << 20) | 0xc02;
uint32_t descr_addr = sym_addr_PageTableFirstLevel + (cand_it->index * 4);
LOG << "Write to " << hex << descr_addr << dec << endl;
oocdw_write_to_memory(descr_addr, 4, 1, (unsigned char*)(&descr_content), true);
LOG << "Writing entry at " << hex << descr_addr << " content: " << descr_content << dec << endl;
first_lvl->mapped = true;
}
}
}
}
}
// execute buffered writes
execute_buffered_writes(buffer_for_chunked_write);
exit(0);
return invalidate;
}
static void update_mmu_watch()
{
LOG << "UPDATE MMU" << endl;
bool invalidate = false;
/*
* ADDITION
*/
if (mmu_watch_add_waiting_list.size() > 0) {
invalidate = update_mmu_watch_add();
}
/*
* REMOVAL
*/
if (mmu_watch_del_waiting_list.size() > 0) {
if (update_mmu_watch_remove()) {
invalidate = true;
}
}
if (invalidate) {
invalidate_tlb();
}
}
static void unmap_page_section(uint32_t address)
{
uint32_t data;
oocdw_read_from_memory(address, 4, 1, (unsigned char*)(&(data)));
// clear 2 lsb
data &= 0xfffffffc;
oocdw_write_to_memory(address, 4, 1, (unsigned char*)(&(data)), true);
}
static std::vector<struct mem_range>::iterator find_mem_range_in_vector(struct mem_range &elem, std::vector<struct mem_range> &vec)
{
std::vector<struct mem_range>::iterator search;
for (search = vec.begin(); search != vec.end(); search++) {
if ((elem.address == search->address) && (elem.width == search->width)) {
break;
}
}
return search;
}
static struct timeval freeze_begin;
static void freeze_timers()
{
// LOG << "FREEZE TIMERS" << endl;
gettimeofday(&freeze_begin, NULL);
for (int i = 0; i < P_MAX_TIMERS; i++) {
if (timers[i].inUse) {
timers[i].freezed = true;
}
}
}
static void unfreeze_timers()
{
// LOG << "UNFREEZE TIMERS" << endl;
struct timeval freeze_end, freeze_delta;
gettimeofday(&freeze_end, NULL);
timersub(&freeze_end, &freeze_begin, &freeze_delta);
for (int i = 0; i < P_MAX_TIMERS; i++) {
if (timers[i].inUse && timers[i].freezed) {
struct timeval tmp = timers[i].time_begin;
timeradd(&tmp, &freeze_delta, &timers[i].time_begin);
timers[i].freezed = false;
}
}
}