Files
fail/core/SAL/Register.hpp

277 lines
8.2 KiB
C++

#ifndef __REGISTER_HPP__
#define __REGISTER_HPP__
#include <vector>
#include <cstdlib>
#include <cassert>
#include <string>
#include <stdint.h>
#include "SALConfig.hpp"
namespace sal
{
/**
* \enum RegisterType
* Lists the different register types. You need to expand this enumeration
* to provide more detailed types for your concrete derived register classes
* specific to a simulator.
*/
enum RegisterType
{
RT_GP, //!< general purpose
RT_PC, //!< program counter / instruction pointer
RT_ST //!< status register
};
/**
* \class Register
* Represents the basic generic register class. A set of registers is composed
* of classes which had been derived from this class.
*/
class Register
{
protected:
RegisterType m_Type; //!< the type of this register
regwidth_t m_Width; //!< the register width
unsigned int m_Id; //!< the unique id of this register
//! \c true if register has already been assigned, \c false otherwise
bool m_Assigned;
//! The index in it's register set if assigned (\c -1 otherwise)
size_t m_Index;
std::string m_Name; //!< The (optional) name, maybe empty
friend class UniformRegisterSet;
public:
/**
* Creates a new register.
* @param id the unique id of this register (simulator specific)
* @param t the type of the register to be constructed
* @param w the width of the register in bits
*/
Register(unsigned int id, RegisterType t, regwidth_t w)
: m_Type(t), m_Width(w), m_Id(id), m_Assigned(false),
m_Index(static_cast<size_t>(-1)) { }
/**
* Returns the (fixed) type of this register.
* @return the type of this register
*/
RegisterType getType() const { return (m_Type); }
/**
* Returns the (fixed) width of this register.
* @return the width in bits
*/
regwidth_t getWidth() const { return (m_Width); }
/**
* Returns the data referenced by this register. In a concrete
* derived class this method has to be defined appropriately.
* @return the current data
*/
virtual regdata_t getData() /*!const*/ = 0;
/**
* Sets new data to be stored in this register.
* @param data the data to be written to the register
*/
virtual void setData(regdata_t data) = 0;
/**
* Sets the (optional) name of this register.
* @param name the textual register name, e.g. "EAX"
*/
void setName(const std::string& name) { m_Name = name; }
/**
* Retrieves the register name.
* @return the textual register description
*/
const std::string& getName() const { return (m_Name); }
/**
* Retrieves the unique index within it's assigned register set.
* If the register has not been assigned, \c (size_t)-1 will be
* returned.
* @return the register index or -1 if not assigned
* @see isAssigned()
*/
size_t getIndex() const { return (m_Index); }
/**
* Checks whether this register has already been assigned. On
* creation the register isn't initially assigned.
* @return \c true if assigned, \c false otherwise
*/
bool isAssigned() const { return (m_Assigned); }
/**
* Returns the unique id of this register.
* @return the unique id
*/
unsigned int getId() const { return (m_Id); }
};
/**
* \class UniformRegisterSet
* Represents a (type-uniform) set of registers, e.g. all general purpose
* registers. The granularity of the register type is determined by the
* enumeration \c RegisterType. (All registers within this set must be of the
* same register type.) The capacity of the set is managed automatically.
*/
class UniformRegisterSet
{
private:
std::vector< Register* > m_Regs; //!< the unique set of registers
RegisterType m_Type; //!< the overall type of this container (set)
void m_add(Register* preg);
friend class RegisterManager;
public:
/**
* The iterator of this class used to loop through the list of
* added registers. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef std::vector< Register* >::iterator iterator;
/**
* Returns an iterator to the beginning of the internal data structure.
* \code
* [1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_Regs.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_Regs.end()); }
/**
* Constructs a new register set with type \a containerType.
* @param containerType the type of registers which should be stored
* in this set
*/
UniformRegisterSet(RegisterType containerType)
: m_Type(containerType) { }
/**
* Returns the type of this set.
* @return the type
*/
RegisterType getType() const { return (m_Type); }
/**
* Gets the number of registers of this set.
* @return the number of registers
*/
size_t count() const { return (m_Regs.size()); }
/**
* Retrieves the \a i-th register within this set.
* @return a pointer to the \a i-th register; if \a i is invalid, an
* assertion is thrown
*/
Register* getRegister(size_t i);
/**
* Retrieves the first register within this set (syntactical sugar).
* @return a pointer to the first register (if existing -- otherwise an
* assertion is thrown)
*/
virtual Register* first() { return (getRegister(0)); }
};
/**
* \class RegisterManager
* Represents a complete set of (inhomogeneous) registers specific to a concrete
* architecture, e.g. x86 or ARM.
*/
class RegisterManager
{
protected:
std::vector< Register* > m_Registers;
//!< the managed set of homogeneous sets
std::vector< UniformRegisterSet* > m_Subsets;
public:
/**
* The iterator of this class used to loop through the list of
* added registers. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef std::vector< Register* >::iterator iterator;
/**
* Returns an iterator to the beginning of the internal data structure.
* \code
* [1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_Registers.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_Registers.end()); }
RegisterManager() { }
~RegisterManager() { clear(); }
/**
* Retrieves the total number of registers over all homogeneous sets.
* @return the total register count
*/
virtual size_t count() const;
/**
* Retrieves the number of managed homogeneous register sets.
* @return the number of sets
*/
virtual size_t subsetCount() const { return (m_Subsets.size()); }
/**
* Gets the \a i-th register set.
* @param i the index of the set to be returned
* @return a reference to the uniform register set
* @see subsetCount()
*/
virtual UniformRegisterSet& getSet(size_t i);
/**
* Returns the set with register type \a t. The set can be used to
* loop over all registers of type \a t.
* @param t the type to check for
* @return a pointer to the retrieved register set (if found), NULL
* otherwise
*/
virtual UniformRegisterSet* getSetOfType(RegisterType t);
/**
* Adds a new register to this set. The register object needs to be
* typed (see Register::getType).
* @param reg a pointer to the register object to be added
* @see getType()
*/
void add(Register* reg);
/**
* Retrieves the \a i-th register.
* @return a pointer to the \a i-th register; if \a i is invalid, an
* assertion is thrown
*/
Register* getRegister(size_t i);
/**
* Removes all registers and sets from the RegisterManager.
*/
virtual void clear();
/**
* Returns the current instruction pointer.
* @return the current eip
*/
virtual address_t getInstructionPointer() = 0;
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
virtual address_t getStackPointer() = 0;
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
virtual address_t getBasePointer() = 0;
};
} // end-of-namespace: sal
#endif /* __REGISTER_HPP__ */