The experiment does support - 1 bit faults in registers/memory/IP - 2 bit faults in registers (all) - n bit faults monte-carlo in registers Change-Id: Ifdd7df6ec4bc88cfc75391b5e19e0d648fd0d087
551 lines
19 KiB
C++
551 lines
19 KiB
C++
#include <assert.h>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
// getpid
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include "experiment.hpp"
|
|
#include "sal/SALConfig.hpp"
|
|
#include "sal/SALInst.hpp"
|
|
#include "sal/Memory.hpp"
|
|
#include "sal/Listener.hpp"
|
|
|
|
#include "sal/bochs/BochsListener.hpp"
|
|
#include <string>
|
|
#include <vector>
|
|
#include <set>
|
|
#include <algorithm>
|
|
|
|
#include "util/llvmdisassembler/LLVMtoFailTranslator.hpp"
|
|
#include "util/llvmdisassembler/LLVMtoFailBochs.hpp"
|
|
#include "campaign.hpp"
|
|
#include "cored_voter.pb.h"
|
|
|
|
using namespace std;
|
|
using namespace fail;
|
|
|
|
#define SAFESTATE (1)
|
|
|
|
// Check if configuration dependencies are satisfied:
|
|
#if !defined(CONFIG_EVENT_BREAKPOINTS) || !defined(CONFIG_SR_RESTORE) || \
|
|
!defined(CONFIG_SR_SAVE) || !defined(CONFIG_EVENT_MEMREAD) || !defined(CONFIG_EVENT_MEMWRITE) || !defined(CONFIG_EVENT_TRAP)
|
|
#error This experiment needs: breakpoints, traps, save, and restore. Enable these in the configuration.
|
|
#endif
|
|
|
|
void CoredVoter::redecodeCurrentInstruction() {
|
|
/* Flush Instruction Caches and Prefetch queue */
|
|
BX_CPU_C *cpu_context = simulator.getCPUContext();
|
|
cpu_context->invalidate_prefetch_q();
|
|
cpu_context->iCache.flushICacheEntries();
|
|
|
|
|
|
guest_address_t pc = simulator.getCPU(0).getInstructionPointer();
|
|
bxInstruction_c *currInstr = simulator.getCurrentInstruction();
|
|
|
|
m_log << "REDECODE INSTRUCTION!" << endl;
|
|
|
|
Bit32u eipBiased = pc + cpu_context->eipPageBias;
|
|
Bit8u instr_plain[32];
|
|
|
|
MemoryManager& mm = simulator.getMemoryManager();
|
|
mm.getBytes(pc, 32, instr_plain);
|
|
|
|
unsigned remainingInPage = cpu_context->eipPageWindowSize - eipBiased;
|
|
int ret;
|
|
#if BX_SUPPORT_X86_64
|
|
if (cpu_context->cpu_mode == BX_MODE_LONG_64)
|
|
ret = cpu_context->fetchDecode64(instr_plain, currInstr, remainingInPage);
|
|
else
|
|
#endif
|
|
ret = cpu_context->fetchDecode32(instr_plain, currInstr, remainingInPage);
|
|
if (ret < 0) {
|
|
// handle instrumentation callback inside boundaryFetch
|
|
cpu_context->boundaryFetch(instr_plain, remainingInPage, currInstr);
|
|
}
|
|
|
|
}
|
|
|
|
/** generate_random_bits does generate a vector of <count> bit numbers for a
|
|
<register_width> wide register. All contained bitnumbers are
|
|
unique, and the resulting vector is sorted in ascending order. The
|
|
ordering makes the vectors easily comparable. */
|
|
static
|
|
std::vector<unsigned char> generate_randoms_bits(int register_width, unsigned int count) {
|
|
std::vector<unsigned char> ret;
|
|
while (ret.size() != count) {
|
|
another_number:
|
|
unsigned char candidate = rand() & ((1<< register_width)-1);
|
|
for (std::vector<unsigned char>::const_iterator it = ret.begin(); it != ret.end(); ++it) {
|
|
if (*it == candidate)
|
|
goto another_number;
|
|
}
|
|
ret.push_back(candidate);
|
|
}
|
|
|
|
// Sort vector to avoid duplicates
|
|
std::sort(ret.begin(), ret.end());
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
typedef std::pair<unsigned char, unsigned char> two_bit_error_t;
|
|
std::vector<two_bit_error_t> generate_two_bit_errors(int register_width_in_bits) {
|
|
std::vector<two_bit_error_t> ret;
|
|
for (unsigned char x = 0; x < register_width_in_bits; x++) {
|
|
for (unsigned char y = 0; y < x; y++) {
|
|
ret.push_back(std::make_pair(y, x));
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
unsigned CoredVoter::injectBitFlip(address_t data_address, unsigned data_width, unsigned bitpos){
|
|
|
|
/* First 32 Registers, this might neeed adaption */
|
|
if (data_address < (32 << 8)) {
|
|
LLVMtoFailTranslator * ltof = new LLVMtoFailBochs;
|
|
LLVMtoFailTranslator::reginfo_t reginfo = LLVMtoFailTranslator::reginfo_t::fromDataAddress(data_address, data_width);
|
|
|
|
unsigned int value, injectedval;
|
|
|
|
value = ltof->getRegisterContent(simulator.getCPU(0), reginfo);
|
|
injectedval = value ^ (1 << bitpos);
|
|
ltof->setRegisterContent(simulator.getCPU(0), reginfo, injectedval);
|
|
|
|
m_log << "INJECTING register (" << dec << reginfo.id
|
|
<< " offset " << (int) reginfo.offset
|
|
<< ") bitpos: " << bitpos
|
|
<< " value: 0x" << hex << setw(2) << setfill('0') << value << " -> 0x" << setw(2) << setfill('0') << injectedval
|
|
<< dec << endl;
|
|
if (reginfo.id == RID_PC)
|
|
redecodeCurrentInstruction();
|
|
delete ltof;
|
|
|
|
return value;
|
|
} else {
|
|
MemoryManager& mm = simulator.getMemoryManager();
|
|
unsigned int value, injectedval;
|
|
|
|
value = mm.getByte(data_address);
|
|
injectedval = value ^ (1 << bitpos);
|
|
mm.setByte(data_address, injectedval);
|
|
|
|
m_log << "INJECTION at: 0x" << hex << setw(2) << setfill('0') << data_address
|
|
<< " value: 0x" << setw(2) << setfill('0') << value << " -> 0x" << setw(2) << setfill('0') << injectedval << endl;
|
|
|
|
/* If it is the current instruction redecode it */
|
|
guest_address_t pc = simulator.getCPU(0).getInstructionPointer();
|
|
bxInstruction_c *currInstr = simulator.getCurrentInstruction();
|
|
unsigned length_in_bytes = currInstr->ilen();
|
|
|
|
if (pc <= data_address && data_address <= (pc + length_in_bytes)) {
|
|
redecodeCurrentInstruction();
|
|
}
|
|
|
|
return value;
|
|
}
|
|
}
|
|
|
|
|
|
void handleEvent(CoredVoterProtoMsg_Result& result, CoredVoterProtoMsg_Result_ResultType restype, const std::string &msg) {
|
|
cout << msg << endl;
|
|
result.set_resulttype(restype);
|
|
result.set_details(msg);
|
|
}
|
|
|
|
std::string handleMemoryAccessEvent(fail::MemAccessListener& l_mem) {
|
|
stringstream sstr;
|
|
sstr << "mem access (";
|
|
switch (l_mem.getTriggerAccessType()) {
|
|
case MemAccessEvent::MEM_READ:
|
|
sstr << "r";
|
|
break;
|
|
case MemAccessEvent::MEM_WRITE:
|
|
sstr << "w";
|
|
break;
|
|
default: break;
|
|
}
|
|
sstr << ") @ 0x" << hex << l_mem.getTriggerAddress();
|
|
|
|
sstr << "; ip @ 0x" << hex << l_mem.getTriggerInstructionPointer();
|
|
|
|
return sstr.str();
|
|
}
|
|
|
|
|
|
bool CoredVoter::run() {
|
|
//******* Boot, and store state *******//
|
|
m_log << "STARTING EXPERIMENT" << endl;
|
|
|
|
timeval start;
|
|
gettimeofday(&start, NULL);
|
|
srand(start.tv_usec);
|
|
|
|
unsigned executed_jobs = 0;
|
|
|
|
// Setup exit points
|
|
const ElfSymbol &s_trace_end_marker = m_elf.getSymbol("_trace_end_marker");
|
|
BPSingleListener l_trace_end_marker(s_trace_end_marker.getAddress());
|
|
if (!s_trace_end_marker.isValid()) {
|
|
m_log << "Couldn't find symbol: _trace_end_marker" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
|
|
const ElfSymbol &s_subexperiment_end = m_elf.getSymbol("_subexperiment_end");
|
|
BPSingleListener l_subexperiment_end(s_subexperiment_end.getAddress());
|
|
if (!s_subexperiment_end.isValid()) {
|
|
m_log << "Couldn't find symbol: _subexperiment_end" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
const ElfSymbol &s_subexperiment_marker_1 = m_elf.getSymbol("_subexperiment_marker_1");
|
|
BPSingleListener l_subexperiment_marker_1(s_subexperiment_marker_1.getAddress());
|
|
if (!s_subexperiment_marker_1.isValid()) {
|
|
m_log << "Couldn't find symbol: _subexperiment_marker_1" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
const ElfSymbol &s_subexperiment_marker_1_ptr = m_elf.getSymbol("subexperiment_marker_1");
|
|
BPSingleListener l_subexperiment_marker_1_ptr(s_subexperiment_marker_1_ptr.getAddress());
|
|
if (!s_subexperiment_marker_1_ptr.isValid()) {
|
|
m_log << "Couldn't find symbol: subexperiment_marker_1" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
|
|
|
|
const ElfSymbol &s_experiment_number = m_elf.getSymbol("experiment_number");
|
|
if (!s_experiment_number.isValid()) {
|
|
m_log << "Couldn't find symbol: experiment_number" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
const ElfSymbol &s_chose_right_input = m_elf.getSymbol("chose_right_input");
|
|
if (!s_chose_right_input.isValid()) {
|
|
m_log << "Couldn't find symbol: chose_right_input" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
const ElfSymbol &s_chose_right_output = m_elf.getSymbol("chose_right_output");
|
|
if (!s_chose_right_output.isValid()) {
|
|
m_log << "Couldn't find symbol: chose_right_output" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
const ElfSymbol &s_detected_error = m_elf.getSymbol("detected_error");
|
|
if (!s_detected_error.isValid()) {
|
|
m_log << "Couldn't find symbol: detected_error" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
const ElfSymbol &s_voterImpl = m_elf.getSymbol("voterImpl");
|
|
if (!s_voterImpl.isValid()) {
|
|
m_log << "Couldn't find symbol: voterImpl" << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
address_t min_code = INT_MAX;
|
|
address_t max_code = 0;
|
|
std::vector<std::string> allowed_text_regions;
|
|
allowed_text_regions.push_back("voterImpl");
|
|
allowed_text_regions.push_back("Alpha::functionTaskTask0");
|
|
allowed_text_regions.push_back("do_experiment");
|
|
allowed_text_regions.push_back("_trace_end_marker");
|
|
allowed_text_regions.push_back("_subexperiment_end");
|
|
allowed_text_regions.push_back("_subexperiment_marker_1");
|
|
|
|
|
|
|
|
for (std::vector<std::string>::iterator it = allowed_text_regions.begin();
|
|
it != allowed_text_regions.end(); ++it) {
|
|
const ElfSymbol &sym = m_elf.getSymbol(*it);
|
|
if (!sym.isValid()) {
|
|
m_log << "Couldn't find symbol: " << (*it) << std::endl;
|
|
simulator.terminate(1);
|
|
|
|
}
|
|
min_code = std::min(min_code, sym.getStart());
|
|
max_code = std::max(max_code, sym.getEnd());
|
|
}
|
|
|
|
|
|
m_log << "_trace_end_marker: " << std::hex << s_trace_end_marker << std::endl;
|
|
m_log << "_subexperiment_end: " << std::hex << s_subexperiment_end << std::endl;
|
|
m_log << "code_region: " << std::hex << min_code << " -- " << max_code << std::endl;
|
|
|
|
|
|
TrapListener l_trap(ANY_TRAP);
|
|
TimerListener l_timeout(1000 * 1000); // 1 second in microseconds
|
|
BPRangeListener l_below_text(0, min_code - 1);
|
|
BPRangeListener l_above_text(max_code + 1, 0xfffffff0);
|
|
|
|
|
|
while (executed_jobs < 25 || m_jc.getNumberOfUndoneJobs() > 0) {
|
|
m_log << "asking jobserver for parameters" << endl;
|
|
CoredVoterExperimentData param;
|
|
if(!m_jc.getParam(param)){
|
|
m_log << "Dying." << endl; // We were told to die.
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
// Get input data from Jobserver
|
|
unsigned injection_instr = param.msg.fsppilot().injection_instr();
|
|
address_t data_address = param.msg.fsppilot().data_address();
|
|
unsigned data_width = param.msg.fsppilot().data_width();
|
|
|
|
|
|
/* Detect wheter we should inject the PC and jump to a
|
|
random data address? */
|
|
bool pc_injection = param.msg.fsppilot().benchmark().find("jump") != std::string::npos;
|
|
bool random_injection = param.msg.fsppilot().benchmark().find("random") != std::string::npos;
|
|
|
|
int randomly_injected_bits = 0;
|
|
|
|
|
|
LLVMtoFailTranslator::reginfo_t reginfo;
|
|
std::vector<two_bit_error_t> two_bit_errors;
|
|
int experiments = 8;
|
|
if (pc_injection)
|
|
experiments = 1;
|
|
else if (random_injection) {
|
|
reginfo = LLVMtoFailTranslator::reginfo_t::fromDataAddress(data_address, data_width);
|
|
experiments = 256;
|
|
std::string benchmark = param.msg.fsppilot().benchmark();
|
|
size_t idx = benchmark.find("random") + 7;
|
|
std::stringstream ss(benchmark.substr(idx));
|
|
ss >> randomly_injected_bits;
|
|
|
|
if (randomly_injected_bits == 2) {
|
|
two_bit_errors = generate_two_bit_errors(data_width * 8);
|
|
experiments = two_bit_errors.size();
|
|
}
|
|
}
|
|
|
|
for (int experiment_id = 0; experiment_id < experiments; ++experiment_id) {
|
|
CoredVoterProtoMsg_Result *result = 0;
|
|
|
|
m_log << "restoring state" << endl;
|
|
|
|
// Restore to the image, which starts at address(main)
|
|
simulator.restore("state");
|
|
executed_jobs ++;
|
|
|
|
address_t stack_pointer = simulator.getCPU(0).getStackPointer();
|
|
m_log << "stackpointer: " << std::hex << stack_pointer << std::dec << std::endl;
|
|
|
|
// Fast forward to injection address
|
|
m_log << "Trying to inject @ instr #" << dec << injection_instr << endl;
|
|
|
|
if ((injection_instr + 2) > 0) {
|
|
simulator.clearListeners();
|
|
BPSingleListener bp;
|
|
bp.setWatchInstructionPointer(ANY_ADDR);
|
|
bp.setCounter(injection_instr + 2); // FIXME: FISHY!
|
|
simulator.addListener(&bp);
|
|
|
|
fail::BaseListener * listener = simulator.resume();
|
|
if (listener != &bp) {
|
|
result = param.msg.add_result();
|
|
handleEvent(*result, result->NOINJECTION, "WTF");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Not a working sanitiy check. Because of instruction
|
|
// offsets!
|
|
if (param.msg.fsppilot().has_injection_instr_absolute()) {
|
|
address_t PC = param.msg.fsppilot().injection_instr_absolute();
|
|
if (simulator.getCPU(0).getInstructionPointer() != PC) {
|
|
m_log << "Invalid Injection address EIP=0x"
|
|
<< std::hex << simulator.getCPU(0).getInstructionPointer()
|
|
<< " != injection_instr_absolute=0x" << PC << std::endl;
|
|
simulator.terminate(1);
|
|
}
|
|
}
|
|
|
|
// address_t stack_pointer = simulator.getCPU(0).getRegisterContent(simulator.getCPU(0).getRegister(RID_CSP));
|
|
// m_log << "stack pointer: " << std::hex << stack_pointer << std::endl;
|
|
// simulator.terminate(1);
|
|
|
|
MemoryManager& mm = simulator.getMemoryManager();
|
|
/* Which experiment was evaluated */
|
|
char experiment_number = mm.getByte(s_experiment_number.getAddress());
|
|
|
|
if (pc_injection) {
|
|
// Jump to data address */
|
|
address_t current_PC = simulator.getCPU(0).getInstructionPointer();
|
|
address_t new_PC = param.msg.fsppilot().data_address();
|
|
m_log << "jump from 0x" << hex << current_PC << " to 0x" << new_PC << std::endl;
|
|
simulator.getCPU(0).setRegisterContent(simulator.getCPU(0).getRegister(RID_PC),
|
|
new_PC ); // set
|
|
// program
|
|
// counter
|
|
result = param.msg.add_result();
|
|
result->set_bitoffset(0);
|
|
result->set_original_value(current_PC);
|
|
redecodeCurrentInstruction();
|
|
} else if (random_injection) {
|
|
// Inject random bitflips
|
|
LLVMtoFailTranslator * ltof = new LLVMtoFailBochs;
|
|
assert(reginfo.offset == 0);
|
|
|
|
m_log << "Inject " << randomly_injected_bits << " bit flips" << endl;
|
|
unsigned int ret_bitoffset = 0;
|
|
|
|
std::vector<unsigned char> bits;
|
|
if (randomly_injected_bits == 2) {
|
|
m_log << two_bit_errors.size() << " " << experiment_id << endl;
|
|
two_bit_error_t two_bit = two_bit_errors[experiment_id];
|
|
bits.push_back(two_bit.first);
|
|
bits.push_back(two_bit.second);
|
|
} else {
|
|
/* Generate a random vector */
|
|
bits = generate_randoms_bits(5, randomly_injected_bits);
|
|
}
|
|
|
|
bool original_value_set = false;
|
|
result = param.msg.add_result();
|
|
for (std::vector<unsigned char>::const_iterator it = bits.begin(); it != bits.end(); ++it) {
|
|
int bitoffset = *it;
|
|
ret_bitoffset = (ret_bitoffset << 5) | bitoffset;
|
|
int original_value = injectBitFlip(data_address, data_width, bitoffset);
|
|
if (!original_value_set) {
|
|
result->set_original_value(original_value);
|
|
original_value_set = true;
|
|
}
|
|
}
|
|
result->set_bitoffset(ret_bitoffset);
|
|
delete ltof;
|
|
} else {
|
|
// INJECT BITFLIP into Register:
|
|
// experiment_id == bitpos
|
|
result = param.msg.add_result();
|
|
result->set_bitoffset(experiment_id);
|
|
result->set_original_value(injectBitFlip(data_address, data_width, experiment_id));
|
|
result->set_experiment_number((unsigned int) experiment_number);
|
|
|
|
address_t PC = simulator.getCPU(0).getInstructionPointer();
|
|
if (PC < s_voterImpl.getStart() || PC > s_voterImpl.getEnd()) {
|
|
handleEvent(*result, result->ERR_OUTSIDE_TEXT, "injection");
|
|
simulator.clearListeners();
|
|
continue; // next experiment
|
|
}
|
|
}
|
|
|
|
result->set_experiment_number((unsigned int) experiment_number);
|
|
|
|
|
|
/* We use the current stackpointer to determine a region,
|
|
that is used by the function. This region includes the
|
|
working data and the used arguments. */
|
|
|
|
address_t min_data = stack_pointer - 152;
|
|
address_t max_data = min_data + 0x5C;
|
|
m_log << "data region: " << std::hex << min_data << " -- " << max_data << std::dec << std::endl;
|
|
|
|
MemAccessListener l_below_data(0);
|
|
l_below_data.setWatchWidth(min_data - 1);
|
|
MemAccessListener l_above_data(max_data + 1);
|
|
l_above_data.setWatchWidth(0xfffffff0);
|
|
|
|
simulator.clearListeners();
|
|
simulator.addListener(&l_trap);
|
|
simulator.addListener(&l_timeout);
|
|
simulator.addListener(&l_below_text);
|
|
simulator.addListener(&l_above_text);
|
|
simulator.addListener(&l_below_data);
|
|
simulator.addListener(&l_above_data);
|
|
simulator.addListener(&l_subexperiment_marker_1);
|
|
simulator.addListener(&l_subexperiment_end);
|
|
// simulator.addListener(&l_trace_end_marker);
|
|
|
|
m_log << "Resuming till the crash" << std::endl;
|
|
// resume and wait for results
|
|
fail::BaseListener* l = simulator.resume();
|
|
bool visited_marker_1 = false;
|
|
address_t mem_access = 0x0;
|
|
if (l == &l_below_data || l == &l_above_data) {
|
|
fail::MemAccessListener *lm = (fail::MemAccessListener *) l;
|
|
mem_access = lm->getTriggerAddress();
|
|
}
|
|
|
|
if (l == &l_subexperiment_marker_1 || mem_access == s_subexperiment_marker_1_ptr.getAddress()) {
|
|
visited_marker_1 = true;
|
|
simulator.clearListeners();
|
|
simulator.addListener(&l_subexperiment_end);
|
|
simulator.addListener(&l_trap);
|
|
simulator.addListener(&l_timeout);
|
|
l = simulator.resume();
|
|
}
|
|
|
|
// Evaluate result
|
|
if(l == &l_subexperiment_end) {
|
|
bool chose_right_output = mm.getByte(s_chose_right_output.getAddress());
|
|
bool chose_right_input = mm.getByte(s_chose_right_input.getAddress());
|
|
bool detected_error = mm.getByte(s_detected_error.getAddress());
|
|
|
|
/* When we did not visit marker 1 before end marker,
|
|
we took the wrong exit point. The MMU would have
|
|
caught this error. */
|
|
if (!visited_marker_1) {
|
|
handleEvent(*result, result->ERR_OUTSIDE_TEXT, "wrong exit point");
|
|
} else if (chose_right_output) {
|
|
if (chose_right_input) {
|
|
handleEvent(*result, result->OK, "OK");
|
|
} else {
|
|
handleEvent(*result, result->OK_WRONG_CONTROL_FLOW, "");
|
|
}
|
|
} else {
|
|
if (detected_error) {
|
|
handleEvent(*result, result->OK_DETECTED_ERROR, "");
|
|
} else {
|
|
handleEvent(*result, result->ERR_WRONG_RESULT, "");
|
|
}
|
|
}
|
|
} else if (l == &l_trap) {
|
|
stringstream sstr;
|
|
sstr << "trap #" << l_trap.getTriggerNumber();
|
|
handleEvent(*result, result->ERR_TRAP, sstr.str());
|
|
} else if ( l == &l_timeout ) {
|
|
handleEvent(*result, result->ERR_TIMEOUT, "timeout");
|
|
} else if (l == &l_below_text || l == &l_above_text) {
|
|
std::stringstream ss;
|
|
ss << ((l == &l_below_text) ? "< .text" : ">.text") << " ";
|
|
ss << handleMemoryAccessEvent(*(fail::MemAccessListener *)l);
|
|
handleEvent(*result, result->ERR_OUTSIDE_TEXT, ss.str());
|
|
} else if (l == &l_below_data || l == &l_above_data) {
|
|
std::stringstream ss;
|
|
ss << ((l == &l_below_text) ? "< .data" : ">.data") << " ";
|
|
ss << handleMemoryAccessEvent(*(fail::MemAccessListener *)l);
|
|
handleEvent(*result, result->ERR_OUTSIDE_DATA, ss.str());
|
|
} else {
|
|
handleEvent(*result, result->UNKNOWN, "WTF");
|
|
}
|
|
simulator.clearListeners();
|
|
|
|
// For RandomJump do only one experiment not 8
|
|
if (pc_injection)
|
|
break;
|
|
}
|
|
|
|
m_jc.sendResult(param);
|
|
}
|
|
// Explicitly terminate, or the simulator will continue to run.
|
|
simulator.terminate();
|
|
|
|
}
|
|
|