Files
fail/src/experiments/cored-voter/experiment.cc
Christian Dietrich 844e15293d experiments: new cored-voter experiment
The experiment does support
- 1 bit faults in registers/memory/IP
- 2 bit faults in registers (all)
- n bit faults monte-carlo in registers

Change-Id: Ifdd7df6ec4bc88cfc75391b5e19e0d648fd0d087
2013-09-11 13:47:47 +02:00

551 lines
19 KiB
C++

#include <assert.h>
#include <iostream>
#include <fstream>
// getpid
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include "experiment.hpp"
#include "sal/SALConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/Memory.hpp"
#include "sal/Listener.hpp"
#include "sal/bochs/BochsListener.hpp"
#include <string>
#include <vector>
#include <set>
#include <algorithm>
#include "util/llvmdisassembler/LLVMtoFailTranslator.hpp"
#include "util/llvmdisassembler/LLVMtoFailBochs.hpp"
#include "campaign.hpp"
#include "cored_voter.pb.h"
using namespace std;
using namespace fail;
#define SAFESTATE (1)
// Check if configuration dependencies are satisfied:
#if !defined(CONFIG_EVENT_BREAKPOINTS) || !defined(CONFIG_SR_RESTORE) || \
!defined(CONFIG_SR_SAVE) || !defined(CONFIG_EVENT_MEMREAD) || !defined(CONFIG_EVENT_MEMWRITE) || !defined(CONFIG_EVENT_TRAP)
#error This experiment needs: breakpoints, traps, save, and restore. Enable these in the configuration.
#endif
void CoredVoter::redecodeCurrentInstruction() {
/* Flush Instruction Caches and Prefetch queue */
BX_CPU_C *cpu_context = simulator.getCPUContext();
cpu_context->invalidate_prefetch_q();
cpu_context->iCache.flushICacheEntries();
guest_address_t pc = simulator.getCPU(0).getInstructionPointer();
bxInstruction_c *currInstr = simulator.getCurrentInstruction();
m_log << "REDECODE INSTRUCTION!" << endl;
Bit32u eipBiased = pc + cpu_context->eipPageBias;
Bit8u instr_plain[32];
MemoryManager& mm = simulator.getMemoryManager();
mm.getBytes(pc, 32, instr_plain);
unsigned remainingInPage = cpu_context->eipPageWindowSize - eipBiased;
int ret;
#if BX_SUPPORT_X86_64
if (cpu_context->cpu_mode == BX_MODE_LONG_64)
ret = cpu_context->fetchDecode64(instr_plain, currInstr, remainingInPage);
else
#endif
ret = cpu_context->fetchDecode32(instr_plain, currInstr, remainingInPage);
if (ret < 0) {
// handle instrumentation callback inside boundaryFetch
cpu_context->boundaryFetch(instr_plain, remainingInPage, currInstr);
}
}
/** generate_random_bits does generate a vector of <count> bit numbers for a
<register_width> wide register. All contained bitnumbers are
unique, and the resulting vector is sorted in ascending order. The
ordering makes the vectors easily comparable. */
static
std::vector<unsigned char> generate_randoms_bits(int register_width, unsigned int count) {
std::vector<unsigned char> ret;
while (ret.size() != count) {
another_number:
unsigned char candidate = rand() & ((1<< register_width)-1);
for (std::vector<unsigned char>::const_iterator it = ret.begin(); it != ret.end(); ++it) {
if (*it == candidate)
goto another_number;
}
ret.push_back(candidate);
}
// Sort vector to avoid duplicates
std::sort(ret.begin(), ret.end());
return ret;
}
typedef std::pair<unsigned char, unsigned char> two_bit_error_t;
std::vector<two_bit_error_t> generate_two_bit_errors(int register_width_in_bits) {
std::vector<two_bit_error_t> ret;
for (unsigned char x = 0; x < register_width_in_bits; x++) {
for (unsigned char y = 0; y < x; y++) {
ret.push_back(std::make_pair(y, x));
}
}
return ret;
}
unsigned CoredVoter::injectBitFlip(address_t data_address, unsigned data_width, unsigned bitpos){
/* First 32 Registers, this might neeed adaption */
if (data_address < (32 << 8)) {
LLVMtoFailTranslator * ltof = new LLVMtoFailBochs;
LLVMtoFailTranslator::reginfo_t reginfo = LLVMtoFailTranslator::reginfo_t::fromDataAddress(data_address, data_width);
unsigned int value, injectedval;
value = ltof->getRegisterContent(simulator.getCPU(0), reginfo);
injectedval = value ^ (1 << bitpos);
ltof->setRegisterContent(simulator.getCPU(0), reginfo, injectedval);
m_log << "INJECTING register (" << dec << reginfo.id
<< " offset " << (int) reginfo.offset
<< ") bitpos: " << bitpos
<< " value: 0x" << hex << setw(2) << setfill('0') << value << " -> 0x" << setw(2) << setfill('0') << injectedval
<< dec << endl;
if (reginfo.id == RID_PC)
redecodeCurrentInstruction();
delete ltof;
return value;
} else {
MemoryManager& mm = simulator.getMemoryManager();
unsigned int value, injectedval;
value = mm.getByte(data_address);
injectedval = value ^ (1 << bitpos);
mm.setByte(data_address, injectedval);
m_log << "INJECTION at: 0x" << hex << setw(2) << setfill('0') << data_address
<< " value: 0x" << setw(2) << setfill('0') << value << " -> 0x" << setw(2) << setfill('0') << injectedval << endl;
/* If it is the current instruction redecode it */
guest_address_t pc = simulator.getCPU(0).getInstructionPointer();
bxInstruction_c *currInstr = simulator.getCurrentInstruction();
unsigned length_in_bytes = currInstr->ilen();
if (pc <= data_address && data_address <= (pc + length_in_bytes)) {
redecodeCurrentInstruction();
}
return value;
}
}
void handleEvent(CoredVoterProtoMsg_Result& result, CoredVoterProtoMsg_Result_ResultType restype, const std::string &msg) {
cout << msg << endl;
result.set_resulttype(restype);
result.set_details(msg);
}
std::string handleMemoryAccessEvent(fail::MemAccessListener& l_mem) {
stringstream sstr;
sstr << "mem access (";
switch (l_mem.getTriggerAccessType()) {
case MemAccessEvent::MEM_READ:
sstr << "r";
break;
case MemAccessEvent::MEM_WRITE:
sstr << "w";
break;
default: break;
}
sstr << ") @ 0x" << hex << l_mem.getTriggerAddress();
sstr << "; ip @ 0x" << hex << l_mem.getTriggerInstructionPointer();
return sstr.str();
}
bool CoredVoter::run() {
//******* Boot, and store state *******//
m_log << "STARTING EXPERIMENT" << endl;
timeval start;
gettimeofday(&start, NULL);
srand(start.tv_usec);
unsigned executed_jobs = 0;
// Setup exit points
const ElfSymbol &s_trace_end_marker = m_elf.getSymbol("_trace_end_marker");
BPSingleListener l_trace_end_marker(s_trace_end_marker.getAddress());
if (!s_trace_end_marker.isValid()) {
m_log << "Couldn't find symbol: _trace_end_marker" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_subexperiment_end = m_elf.getSymbol("_subexperiment_end");
BPSingleListener l_subexperiment_end(s_subexperiment_end.getAddress());
if (!s_subexperiment_end.isValid()) {
m_log << "Couldn't find symbol: _subexperiment_end" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_subexperiment_marker_1 = m_elf.getSymbol("_subexperiment_marker_1");
BPSingleListener l_subexperiment_marker_1(s_subexperiment_marker_1.getAddress());
if (!s_subexperiment_marker_1.isValid()) {
m_log << "Couldn't find symbol: _subexperiment_marker_1" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_subexperiment_marker_1_ptr = m_elf.getSymbol("subexperiment_marker_1");
BPSingleListener l_subexperiment_marker_1_ptr(s_subexperiment_marker_1_ptr.getAddress());
if (!s_subexperiment_marker_1_ptr.isValid()) {
m_log << "Couldn't find symbol: subexperiment_marker_1" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_experiment_number = m_elf.getSymbol("experiment_number");
if (!s_experiment_number.isValid()) {
m_log << "Couldn't find symbol: experiment_number" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_chose_right_input = m_elf.getSymbol("chose_right_input");
if (!s_chose_right_input.isValid()) {
m_log << "Couldn't find symbol: chose_right_input" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_chose_right_output = m_elf.getSymbol("chose_right_output");
if (!s_chose_right_output.isValid()) {
m_log << "Couldn't find symbol: chose_right_output" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_detected_error = m_elf.getSymbol("detected_error");
if (!s_detected_error.isValid()) {
m_log << "Couldn't find symbol: detected_error" << std::endl;
simulator.terminate(1);
}
const ElfSymbol &s_voterImpl = m_elf.getSymbol("voterImpl");
if (!s_voterImpl.isValid()) {
m_log << "Couldn't find symbol: voterImpl" << std::endl;
simulator.terminate(1);
}
address_t min_code = INT_MAX;
address_t max_code = 0;
std::vector<std::string> allowed_text_regions;
allowed_text_regions.push_back("voterImpl");
allowed_text_regions.push_back("Alpha::functionTaskTask0");
allowed_text_regions.push_back("do_experiment");
allowed_text_regions.push_back("_trace_end_marker");
allowed_text_regions.push_back("_subexperiment_end");
allowed_text_regions.push_back("_subexperiment_marker_1");
for (std::vector<std::string>::iterator it = allowed_text_regions.begin();
it != allowed_text_regions.end(); ++it) {
const ElfSymbol &sym = m_elf.getSymbol(*it);
if (!sym.isValid()) {
m_log << "Couldn't find symbol: " << (*it) << std::endl;
simulator.terminate(1);
}
min_code = std::min(min_code, sym.getStart());
max_code = std::max(max_code, sym.getEnd());
}
m_log << "_trace_end_marker: " << std::hex << s_trace_end_marker << std::endl;
m_log << "_subexperiment_end: " << std::hex << s_subexperiment_end << std::endl;
m_log << "code_region: " << std::hex << min_code << " -- " << max_code << std::endl;
TrapListener l_trap(ANY_TRAP);
TimerListener l_timeout(1000 * 1000); // 1 second in microseconds
BPRangeListener l_below_text(0, min_code - 1);
BPRangeListener l_above_text(max_code + 1, 0xfffffff0);
while (executed_jobs < 25 || m_jc.getNumberOfUndoneJobs() > 0) {
m_log << "asking jobserver for parameters" << endl;
CoredVoterExperimentData param;
if(!m_jc.getParam(param)){
m_log << "Dying." << endl; // We were told to die.
simulator.terminate(1);
}
// Get input data from Jobserver
unsigned injection_instr = param.msg.fsppilot().injection_instr();
address_t data_address = param.msg.fsppilot().data_address();
unsigned data_width = param.msg.fsppilot().data_width();
/* Detect wheter we should inject the PC and jump to a
random data address? */
bool pc_injection = param.msg.fsppilot().benchmark().find("jump") != std::string::npos;
bool random_injection = param.msg.fsppilot().benchmark().find("random") != std::string::npos;
int randomly_injected_bits = 0;
LLVMtoFailTranslator::reginfo_t reginfo;
std::vector<two_bit_error_t> two_bit_errors;
int experiments = 8;
if (pc_injection)
experiments = 1;
else if (random_injection) {
reginfo = LLVMtoFailTranslator::reginfo_t::fromDataAddress(data_address, data_width);
experiments = 256;
std::string benchmark = param.msg.fsppilot().benchmark();
size_t idx = benchmark.find("random") + 7;
std::stringstream ss(benchmark.substr(idx));
ss >> randomly_injected_bits;
if (randomly_injected_bits == 2) {
two_bit_errors = generate_two_bit_errors(data_width * 8);
experiments = two_bit_errors.size();
}
}
for (int experiment_id = 0; experiment_id < experiments; ++experiment_id) {
CoredVoterProtoMsg_Result *result = 0;
m_log << "restoring state" << endl;
// Restore to the image, which starts at address(main)
simulator.restore("state");
executed_jobs ++;
address_t stack_pointer = simulator.getCPU(0).getStackPointer();
m_log << "stackpointer: " << std::hex << stack_pointer << std::dec << std::endl;
// Fast forward to injection address
m_log << "Trying to inject @ instr #" << dec << injection_instr << endl;
if ((injection_instr + 2) > 0) {
simulator.clearListeners();
BPSingleListener bp;
bp.setWatchInstructionPointer(ANY_ADDR);
bp.setCounter(injection_instr + 2); // FIXME: FISHY!
simulator.addListener(&bp);
fail::BaseListener * listener = simulator.resume();
if (listener != &bp) {
result = param.msg.add_result();
handleEvent(*result, result->NOINJECTION, "WTF");
break;
}
}
// Not a working sanitiy check. Because of instruction
// offsets!
if (param.msg.fsppilot().has_injection_instr_absolute()) {
address_t PC = param.msg.fsppilot().injection_instr_absolute();
if (simulator.getCPU(0).getInstructionPointer() != PC) {
m_log << "Invalid Injection address EIP=0x"
<< std::hex << simulator.getCPU(0).getInstructionPointer()
<< " != injection_instr_absolute=0x" << PC << std::endl;
simulator.terminate(1);
}
}
// address_t stack_pointer = simulator.getCPU(0).getRegisterContent(simulator.getCPU(0).getRegister(RID_CSP));
// m_log << "stack pointer: " << std::hex << stack_pointer << std::endl;
// simulator.terminate(1);
MemoryManager& mm = simulator.getMemoryManager();
/* Which experiment was evaluated */
char experiment_number = mm.getByte(s_experiment_number.getAddress());
if (pc_injection) {
// Jump to data address */
address_t current_PC = simulator.getCPU(0).getInstructionPointer();
address_t new_PC = param.msg.fsppilot().data_address();
m_log << "jump from 0x" << hex << current_PC << " to 0x" << new_PC << std::endl;
simulator.getCPU(0).setRegisterContent(simulator.getCPU(0).getRegister(RID_PC),
new_PC ); // set
// program
// counter
result = param.msg.add_result();
result->set_bitoffset(0);
result->set_original_value(current_PC);
redecodeCurrentInstruction();
} else if (random_injection) {
// Inject random bitflips
LLVMtoFailTranslator * ltof = new LLVMtoFailBochs;
assert(reginfo.offset == 0);
m_log << "Inject " << randomly_injected_bits << " bit flips" << endl;
unsigned int ret_bitoffset = 0;
std::vector<unsigned char> bits;
if (randomly_injected_bits == 2) {
m_log << two_bit_errors.size() << " " << experiment_id << endl;
two_bit_error_t two_bit = two_bit_errors[experiment_id];
bits.push_back(two_bit.first);
bits.push_back(two_bit.second);
} else {
/* Generate a random vector */
bits = generate_randoms_bits(5, randomly_injected_bits);
}
bool original_value_set = false;
result = param.msg.add_result();
for (std::vector<unsigned char>::const_iterator it = bits.begin(); it != bits.end(); ++it) {
int bitoffset = *it;
ret_bitoffset = (ret_bitoffset << 5) | bitoffset;
int original_value = injectBitFlip(data_address, data_width, bitoffset);
if (!original_value_set) {
result->set_original_value(original_value);
original_value_set = true;
}
}
result->set_bitoffset(ret_bitoffset);
delete ltof;
} else {
// INJECT BITFLIP into Register:
// experiment_id == bitpos
result = param.msg.add_result();
result->set_bitoffset(experiment_id);
result->set_original_value(injectBitFlip(data_address, data_width, experiment_id));
result->set_experiment_number((unsigned int) experiment_number);
address_t PC = simulator.getCPU(0).getInstructionPointer();
if (PC < s_voterImpl.getStart() || PC > s_voterImpl.getEnd()) {
handleEvent(*result, result->ERR_OUTSIDE_TEXT, "injection");
simulator.clearListeners();
continue; // next experiment
}
}
result->set_experiment_number((unsigned int) experiment_number);
/* We use the current stackpointer to determine a region,
that is used by the function. This region includes the
working data and the used arguments. */
address_t min_data = stack_pointer - 152;
address_t max_data = min_data + 0x5C;
m_log << "data region: " << std::hex << min_data << " -- " << max_data << std::dec << std::endl;
MemAccessListener l_below_data(0);
l_below_data.setWatchWidth(min_data - 1);
MemAccessListener l_above_data(max_data + 1);
l_above_data.setWatchWidth(0xfffffff0);
simulator.clearListeners();
simulator.addListener(&l_trap);
simulator.addListener(&l_timeout);
simulator.addListener(&l_below_text);
simulator.addListener(&l_above_text);
simulator.addListener(&l_below_data);
simulator.addListener(&l_above_data);
simulator.addListener(&l_subexperiment_marker_1);
simulator.addListener(&l_subexperiment_end);
// simulator.addListener(&l_trace_end_marker);
m_log << "Resuming till the crash" << std::endl;
// resume and wait for results
fail::BaseListener* l = simulator.resume();
bool visited_marker_1 = false;
address_t mem_access = 0x0;
if (l == &l_below_data || l == &l_above_data) {
fail::MemAccessListener *lm = (fail::MemAccessListener *) l;
mem_access = lm->getTriggerAddress();
}
if (l == &l_subexperiment_marker_1 || mem_access == s_subexperiment_marker_1_ptr.getAddress()) {
visited_marker_1 = true;
simulator.clearListeners();
simulator.addListener(&l_subexperiment_end);
simulator.addListener(&l_trap);
simulator.addListener(&l_timeout);
l = simulator.resume();
}
// Evaluate result
if(l == &l_subexperiment_end) {
bool chose_right_output = mm.getByte(s_chose_right_output.getAddress());
bool chose_right_input = mm.getByte(s_chose_right_input.getAddress());
bool detected_error = mm.getByte(s_detected_error.getAddress());
/* When we did not visit marker 1 before end marker,
we took the wrong exit point. The MMU would have
caught this error. */
if (!visited_marker_1) {
handleEvent(*result, result->ERR_OUTSIDE_TEXT, "wrong exit point");
} else if (chose_right_output) {
if (chose_right_input) {
handleEvent(*result, result->OK, "OK");
} else {
handleEvent(*result, result->OK_WRONG_CONTROL_FLOW, "");
}
} else {
if (detected_error) {
handleEvent(*result, result->OK_DETECTED_ERROR, "");
} else {
handleEvent(*result, result->ERR_WRONG_RESULT, "");
}
}
} else if (l == &l_trap) {
stringstream sstr;
sstr << "trap #" << l_trap.getTriggerNumber();
handleEvent(*result, result->ERR_TRAP, sstr.str());
} else if ( l == &l_timeout ) {
handleEvent(*result, result->ERR_TIMEOUT, "timeout");
} else if (l == &l_below_text || l == &l_above_text) {
std::stringstream ss;
ss << ((l == &l_below_text) ? "< .text" : ">.text") << " ";
ss << handleMemoryAccessEvent(*(fail::MemAccessListener *)l);
handleEvent(*result, result->ERR_OUTSIDE_TEXT, ss.str());
} else if (l == &l_below_data || l == &l_above_data) {
std::stringstream ss;
ss << ((l == &l_below_text) ? "< .data" : ">.data") << " ";
ss << handleMemoryAccessEvent(*(fail::MemAccessListener *)l);
handleEvent(*result, result->ERR_OUTSIDE_DATA, ss.str());
} else {
handleEvent(*result, result->UNKNOWN, "WTF");
}
simulator.clearListeners();
// For RandomJump do only one experiment not 8
if (pc_injection)
break;
}
m_jc.sendResult(param);
}
// Explicitly terminate, or the simulator will continue to run.
simulator.terminate();
}