Files
fail/core/SAL/bochs/BochsController.cc

274 lines
8.1 KiB
C++

#include <sstream>
#include "BochsController.hpp"
#include "BochsMemory.hpp"
#include "BochsRegister.hpp"
#include "../Register.hpp"
#include "../SALInst.hpp"
namespace sal
{
#ifdef DANCEOS_RESTORE
bx_bool restore_bochs_request = false;
bx_bool save_bochs_request = false;
string sr_path = "";
#endif
bx_bool reboot_bochs_request = false;
bx_bool interrupt_injection_request = false;
int interrupt_to_fire = -1;
BochsController::BochsController()
: SimulatorController(new BochsRegisterManager(), new BochsMemoryManager())
{
// -------------------------------------
// Add the general purpose register:
#if BX_SUPPORT_X86_64
// -- 64 bit register --
const string names[] = { "RAX", "RCX", "RDX", "RBX", "RSP", "RBP", "RSI",
"RDI", "R8", "R9", "R10", "R11", "R12", "R13",
"R14", "R15" };
for(unsigned short i = 0; i < 16; i++)
{
BxGPReg* pReg = new BxGPReg(i, 64, &(BX_CPU(0)->gen_reg[i].rrx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#else
// -- 32 bit register --
const string names[] = { "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI",
"EDI" };
for(unsigned short i = 0; i < 8; i++)
{
BxGPReg* pReg = new BxGPReg(i, 32, &(BX_CPU(0)->gen_reg[i].dword.erx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#endif // BX_SUPPORT_X86_64
#ifdef DEBUG
m_Regularity = 0; // disabled
m_Counter = 0;
m_pDest = NULL;
#endif
// -------------------------------------
// Add the Program counter register:
#if BX_SUPPORT_X86_64
BxPCReg* pPCReg = new BxPCReg(RID_PC, 64, &(BX_CPU(0)->gen_reg[BX_64BIT_REG_RIP].rrx));
pPCReg->setName("RIP");
#else
BxPCReg* pPCReg = new BxPCReg(RID_PC, 32, &(BX_CPU(0)->gen_reg[BX_32BIT_REG_EIP].dword.erx));
pPCReg->setName("EIP");
#endif // BX_SUPPORT_X86_64
// -------------------------------------
// Add the Status register (x86 cpu FLAGS):
BxFlagsReg* pFlagReg = new BxFlagsReg(RID_FLAGS, reinterpret_cast<regdata_t*>(&(BX_CPU(0)->eflags)));
// Note: "eflags" is (always) of type Bit32u which matches the regdata_t only in
// case of the 32 bit version (id est !BX_SUPPORT_X86_64). Therefor we need
// to ensure to assign only 32 bit to the Bochs internal register variable
// (see SAL/bochs/BochsRegister.hpp, setData) if we are in 64 bit mode.
pFlagReg->setName("FLAGS");
m_Regs->add(pFlagReg);
m_Regs->add(pPCReg);
}
BochsController::~BochsController()
{
for(RegisterManager::iterator it = m_Regs->begin(); it != m_Regs->end(); it++)
delete (*it); // free the memory, allocated in the constructor
m_Regs->clear();
delete m_Regs;
delete m_Mem;
}
#ifdef DEBUG
void BochsController::dbgEnableInstrPtrOutput(unsigned regularity, std::ostream* dest)
{
m_Regularity = regularity;
m_pDest = dest;
m_Counter = 0;
}
#endif // DEBUG
void BochsController::onInstrPtrChanged(address_t instrPtr, address_t address_space)
{
#ifdef DEBUG
if(m_Regularity != 0 && ++m_Counter % m_Regularity == 0)
(*m_pDest) << "0x" << std::hex << instrPtr;
#endif
// Check for active breakpoint-events:
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Maybe we need to improve the performance of this check.
fi::BPEvent* pEvBreakpt = dynamic_cast<fi::BPEvent*>(*it);
if(pEvBreakpt && pEvBreakpt->isMatching(instrPtr, address_space))
{
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
it++;
}
m_EvList.fireActiveEvents();
// Note: SimulatorController::onBreakpointEvent will not be invoked in this
// implementation.
}
void BochsController::onIOPortEvent(unsigned char data, unsigned port, bool out) {
// Check for active breakpoint-events:
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Maybe we need to improve the performance of this check.
fi::IOPortEvent* pIOPt = dynamic_cast<fi::IOPortEvent*>(*it);
if(pIOPt && pIOPt->isMatching(port, out))
{
pIOPt->setData(data);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
it++;
}
m_EvList.fireActiveEvents();
// Note: SimulatorController::onBreakpointEvent will not be invoked in this
// implementation.
}
void BochsController::save(const string& path)
{
int stat;
stat = mkdir(path.c_str(), 0777);
if(!(stat == 0 || errno == EEXIST))
std::cout << "[FAIL] Can not create target-directory to save!" << std::endl;
// TODO: (Non-)Verbose-Mode? Maybe better: use return value to indicate failure?
save_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::saveDone()
{
save_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::restore(const string& path)
{
clearEvents();
restore_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::restoreDone()
{
restore_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::reboot()
{
clearEvents();
reboot_bochs_request = true;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::rebootDone()
{
reboot_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::fireInterrupt(unsigned irq)
{
interrupt_injection_request = true;
interrupt_to_fire = irq;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::fireInterruptDone()
{
interrupt_injection_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::m_onTimerTrigger(void* thisPtr)
{
// FIXME: The timer logic can be modified to use only one timer in Bochs.
// (For now, this suffices.)
fi::TimerEvent* pTmEv = static_cast<fi::TimerEvent*>(thisPtr);
// Check for a matching TimerEvent. (In fact, we are only
// interessted in the iterator pointing at pTmEv.):
fi::EventList::iterator it = std::find(simulator.m_EvList.begin(),
simulator.m_EvList.end(), pTmEv);
// TODO: This has O(|m_EvList|) time complexity. We can further improve this
// by creating a method such that makeActive(pTmEv) works as well,
// reducing the time complexity to O(1).
simulator.m_EvList.makeActive(it);
simulator.m_EvList.fireActiveEvents();
}
timer_id_t BochsController::m_registerTimer(fi::TimerEvent* pev)
{
assert(pev != NULL);
return static_cast<timer_id_t>(
bx_pc_system.register_timer(pev, m_onTimerTrigger, pev->getTimeout(), !pev->getOnceFlag(),
1/*start immediately*/, "Fail*: BochsController"/*name*/));
}
bool BochsController::m_unregisterTimer(fi::TimerEvent* pev)
{
assert(pev != NULL);
bx_pc_system.deactivate_timer(static_cast<unsigned>(pev->getId()));
return bx_pc_system.unregisterTimer(static_cast<unsigned>(pev->getId()));
}
bool BochsController::onEventAddition(fi::BaseEvent* pev)
{
fi::TimerEvent* tmev;
// Register the timer event in the Bochs simulator:
if ((tmev = dynamic_cast<fi::TimerEvent*>(pev)) != NULL) {
tmev->setId(m_registerTimer(tmev));
if(tmev->getId() == -1)
return false; // unable to register the timer (error in Bochs' function call)
}
// Note: Maybe more stuff to do here for other event types.
return true;
}
void BochsController::onEventDeletion(fi::BaseEvent* pev)
{
fi::TimerEvent* tmev;
// Unregister the time event:
if ((tmev = dynamic_cast<fi::TimerEvent*>(pev)) != NULL) {
m_unregisterTimer(tmev);
}
// Note: Maybe more stuff to do here for other event types.
}
void BochsController::onEventTrigger(fi::BaseEvent* pev)
{
fi::TimerEvent* tmev;
// Unregister the time event, if once-flag is true:
if ((tmev = dynamic_cast<fi::TimerEvent*>(pev)) != NULL) {
if (tmev->getOnceFlag()) // deregister the timer (timer = single timeout)
m_unregisterTimer(tmev);
else // re-add the event (repetitive timer), tunneling the onEventAddition-handler
m_EvList.add(tmev, tmev->getParent());
}
// Note: Maybe more stuff to do here for other event types.
}
} // end-of-namespace: sal