- getSection/getSymbol now returns an ElfSymbol reference. Searching by address now searches if address is within symbol address and symbol address + size. So we can test, if we are *within* a function, object or section and not only at the start address.
201 lines
6.4 KiB
C++
201 lines
6.4 KiB
C++
#include <iostream>
|
|
#include <fstream>
|
|
|
|
// getpid
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include "experiment.hpp"
|
|
#include "experimentInfo.hpp"
|
|
#include "sal/SALConfig.hpp"
|
|
#include "sal/SALInst.hpp"
|
|
#include "sal/Memory.hpp"
|
|
#include "sal/Listener.hpp"
|
|
|
|
#include "sal/bochs/BochsListener.hpp"
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "campaign.hpp"
|
|
#include "kesoref.pb.h"
|
|
|
|
using namespace std;
|
|
using namespace fail;
|
|
|
|
#define SAFESTATE (1)
|
|
|
|
// Check if configuration dependencies are satisfied:
|
|
#if !defined(CONFIG_EVENT_BREAKPOINTS) || !defined(CONFIG_SR_RESTORE) || \
|
|
!defined(CONFIG_SR_SAVE)
|
|
#error This experiment needs: breakpoints, traps, save, and restore. Enable these in the configuration.
|
|
#endif
|
|
//
|
|
//void KESOrefs::printEIP() {
|
|
// m_log << "EIP = 0x" << hex << simulator.getCPU(0).getInstructionPointer() <<" "<< m_elf.getNameByAddress(simulator.getCPU(0).getInstructionPointer()) << endl;
|
|
//}
|
|
|
|
unsigned KESOrefs::injectBitFlip(address_t data_address, unsigned bitpos){
|
|
|
|
MemoryManager& mm = simulator.getMemoryManager();
|
|
unsigned value, injectedval;
|
|
|
|
mm.getBytes(data_address, 4, (void*)&value);
|
|
injectedval = value ^ bitpos;
|
|
mm.setBytes(data_address, 4, (void*)&injectedval);
|
|
|
|
m_log << "INJECTION at: 0x" << hex << setw(8) << setfill('0') << data_address;
|
|
cout << " value: 0x" << setw(8) << setfill('0') << value << " -> 0x" << setw(8) << setfill('0') << injectedval << endl;
|
|
|
|
return value;
|
|
}
|
|
|
|
|
|
void handleEvent(KesoRefExperimentData& param, KesoRefProtoMsg_ResultType restype, const std::string &msg){
|
|
cout << msg << endl;
|
|
param.msg.set_resulttype(restype);
|
|
param.msg.set_details(msg);
|
|
}
|
|
|
|
void handleMemoryAccessEvent(KesoRefExperimentData& param, const fail::MemAccessListener& l_mem){
|
|
stringstream sstr;
|
|
sstr << "mem access (";
|
|
switch (l_mem.getTriggerAccessType()) {
|
|
case MemAccessEvent::MEM_READ:
|
|
sstr << "r";
|
|
break;
|
|
case MemAccessEvent::MEM_WRITE:
|
|
sstr << "w";
|
|
break;
|
|
default: break;
|
|
}
|
|
sstr << ") @ 0x" << hex << l_mem.getTriggerAddress();
|
|
|
|
sstr << " ip @ 0x" << hex << l_mem.getTriggerInstructionPointer();
|
|
|
|
handleEvent(param, param.msg.MEMACCESS, sstr.str());
|
|
}
|
|
|
|
bool KESOrefs::run()
|
|
{
|
|
//******* Boot, and store state *******//
|
|
m_log << "STARTING EXPERIMENT" << endl;
|
|
#if SAFESTATE // define SS (SafeState) when building: make -DSS
|
|
#warning "Building safe state variant"
|
|
m_log << "Booting, and saving state at main" << std::endl;
|
|
// m_elf.printSections();
|
|
// m_elf.printDemangled();
|
|
|
|
simulator.terminate();
|
|
BPSingleListener bp;
|
|
// STEP 1: run until interesting function starts, and save state
|
|
bp.setWatchInstructionPointer(m_elf.getSymbol("main").getAddress());
|
|
if(simulator.addListenerAndResume(&bp) == &bp){
|
|
m_log << "main function entry reached, saving state" << endl;
|
|
}
|
|
|
|
simulator.save("keso.state");
|
|
simulator.terminate();
|
|
#else
|
|
|
|
//******* Fault injection *******//
|
|
#warning "Building restore state variant"
|
|
|
|
for (int experiment_count = 0; experiment_count < 200 || (m_jc.getNumberOfUndoneJobs() != 0) ; ) { // only do 200 sequential experiments, to prevent swapping
|
|
|
|
m_log << "asking jobserver for parameters" << endl;
|
|
KesoRefExperimentData param;
|
|
if(!m_jc.getParam(param)){
|
|
m_log << "Dying." << endl; // We were told to die.
|
|
simulator.terminate(1);
|
|
}
|
|
|
|
// Get input data from Jobserver
|
|
address_t injectionPC = param.msg.pc_address();
|
|
address_t data_address = param.msg.ram_address();
|
|
unsigned bitpos = param.msg.bit_offset();
|
|
|
|
simulator.restore("keso.state");
|
|
// Goto injection point
|
|
BPSingleListener injBP;
|
|
m_log << "Trying to inject @ " << hex << m_elf.getSymbol(injectionPC).getAddress() << endl;
|
|
|
|
injBP.setWatchInstructionPointer(injectionPC);
|
|
|
|
simulator.addListenerAndResume(&injBP);
|
|
/// INJECT BITFLIP:
|
|
param.msg.set_original_value(injectBitFlip(data_address, bitpos));
|
|
|
|
// Setup exit points
|
|
BPSingleListener l_error(m_elf.getSymbol("keso_throw_error").getAddress());
|
|
BPSingleListener l_nullp(m_elf.getSymbol("keso_throw_nullpointer").getAddress());
|
|
BPSingleListener l_parity(m_elf.getSymbol("keso_throw_parity").getAddress());
|
|
BPSingleListener l_oobounds(m_elf.getSymbol("keso_throw_index_out_of_bounds").getAddress());
|
|
BPSingleListener l_dump(m_elf.getSymbol("c17_Main_m4_dumpResults_console").getAddress());
|
|
|
|
ElfSymbol sym = m_elf.getSection(".text");
|
|
MemAccessListener l_mem_text(sym.getStart(), , AccessEvent::MEM_WRITE); l_mem_text.setWatchWidth(sym.getSize());
|
|
|
|
sym = m_elf.getSection(".text.cdx_det");
|
|
MemAccessListener l_mem_textcdx_det(sym.getStart(), MemAccessEvent::MEM_WRITE ); l_mem_textcdx_det.setWatchWidth(sym.getSize());
|
|
|
|
sym = m_elf.getSection(".copy_sec");
|
|
MemAccessListener l_mem_outerspace( sym.getStart() ); l_mem_outerspace.setWatchWidth(0xfffffff0);
|
|
TrapListener l_trap(ANY_TRAP);
|
|
|
|
cout << " outerspace : " << l_mem_outerspace.getWatchWidth() << " --- @ :" << l_mem_outerspace.getWatchAddress() << endl;
|
|
simulator.addListener(&l_trap);
|
|
simulator.addListener(&l_error);
|
|
simulator.addListener(&l_nullp);
|
|
simulator.addListener(&l_oobounds);
|
|
simulator.addListener(&l_dump);
|
|
simulator.addListener(&l_parity);
|
|
simulator.addListener(&l_mem_text);
|
|
simulator.addListener(&l_mem_outerspace);
|
|
simulator.addListener(&l_mem_textcdx_det);
|
|
// resume and wait for results
|
|
fail::BaseListener* l = simulator.resume();
|
|
|
|
// Evaluate result
|
|
if(l == &l_error) {
|
|
handleEvent(param, param.msg.EXC_ERROR, "exc error");
|
|
|
|
} else if ( l == &l_nullp ) {
|
|
handleEvent(param, param.msg.EXC_NULLPOINTER, "exc nullpointer");
|
|
|
|
} else if ( l == &l_oobounds ) {
|
|
handleEvent(param, param.msg.EXC_OOBOUNDS, "exc out of bounds");
|
|
|
|
} else if (l == &l_dump) {
|
|
handleEvent(param, param.msg.CALCDONE, "calculation done");
|
|
|
|
} else if (l == &l_parity) {
|
|
handleEvent(param, param.msg.EXC_PARITY, "exc parity");
|
|
|
|
} else if (l == &l_trap) {
|
|
stringstream sstr;
|
|
sstr << "trap #" << l_trap.getTriggerNumber();
|
|
handleEvent(param, param.msg.TRAP, sstr.str());
|
|
|
|
} else if (l == &l_mem_text){
|
|
handleMemoryAccessEvent(param, l_mem_text);
|
|
|
|
} else if (l == &l_mem_textcdx_det){
|
|
handleMemoryAccessEvent(param, l_mem_textcdx_det);
|
|
|
|
} else if (l == &l_mem_outerspace){
|
|
handleMemoryAccessEvent(param, l_mem_outerspace);
|
|
|
|
} else {
|
|
handleEvent(param, param.msg.UNKNOWN, "UNKNOWN event");
|
|
}
|
|
simulator.clearListeners();
|
|
m_jc.sendResult(param);
|
|
} // end while (1)
|
|
// Explicitly terminate, or the simulator will continue to run.
|
|
#endif
|
|
simulator.terminate();
|
|
}
|
|
|