Files
fail/tools/import-trace/DCiAOKernelImporter.cc
Christian Dietrich c24ed774b0 experiments/dciao-kernelstructs: new database driven experiment for DCiAO
The dciao-kernelstructs experiment does a trace imported by the
DCiAOKernelImporter:

   bin/import-trace -t trace.pb  -i DCiAOKernelImporter --elf-file app.elf

Pruned by the basic method:

   bin/prune-trace

and does CiAO fault injection experiments, where the results are
stored in the database.

Change-Id: I485dc2e5097b3ebaf354241f474ee3d317213707
2013-04-03 10:39:51 +02:00

113 lines
3.2 KiB
C++

#include <iostream>
#include <set>
#include "util/Logger.hpp"
static fail::Logger LOG("DCiAOKernelImporter");
using namespace fail;
#include "DCiAOKernelImporter.hpp"
bool DCiAOKernelImporter::inDynamicKernelMemory(fail::address_t addr) {
const std::string &name = m_elf->getSymbol(addr).getDemangledName();
bool dynamic = name.find("os::data::dynamic", 0) != std::string::npos;
// bool stack = name.find("_stack") != std::string::npos;
// return dynamic && !stack;
return dynamic;
}
bool DCiAOKernelImporter::copy_to_database(fail::ProtoIStream &ps) {
if (m_elf == 0) {
LOG << "Please give an ELF Binary as a parameter" << std::endl;
exit(-1);
}
if (getEnterKernelAddress() == 0 || getLeaveKernelAddress() == 0) {
LOG << "Pleave give a valid CiAO Binary with kernel dependability options enabled" << std::endl;
exit(-1);
}
unsigned row_count = 0;
// instruction counter within trace
unsigned instr = 0;
unsigned instr_last_kernel_leave = 0;
address_t enter_kernel_addr = getEnterKernelAddress();
address_t leave_kernel_addr = getLeaveKernelAddress();
Trace_Event ev;
// Collect all memory addresses that
std::set<address_t> already_written_addresses;
bool in_kernel_space = false;
while (ps.getNext(&ev)) {
// instruction events just get counted
if (!ev.has_memaddr()) {
// new instruction
instr++;
if (ev.ip() == enter_kernel_addr) {
in_kernel_space = true;
}
if (ev.ip() == leave_kernel_addr) {
instr_last_kernel_leave = instr;
in_kernel_space = false;
already_written_addresses.clear();
}
continue;
}
if (in_kernel_space && inDynamicKernelMemory(ev.memaddr())) {
if (ev.accesstype() == ev.WRITE) {
/* If a address is written in the protected kernel
space, we ignore it for further injections */
address_t from = ev.memaddr(), to = ev.memaddr() + ev.width();
// Iterate over all accessed bytes
for (address_t data_address = from; data_address < to; ++data_address) {
already_written_addresses.insert(data_address);
}
} else {
/* Read address was not written in this kernel section
-> Insert an trace event */
address_t from = ev.memaddr(), to = ev.memaddr() + ev.width();
// Iterate over all accessed bytes
for (address_t data_address = from; data_address < to; ++data_address) {
int instr1 = instr_last_kernel_leave;
int instr2 = instr; // the current instruction
/* Was the byte already written in this kernel
space */
if (already_written_addresses.find(data_address)
== already_written_addresses.end())
continue;
ev.set_memaddr(data_address);
ev.set_width(1);
// we now have an interval-terminating R/W event to the memaddr
// we're currently looking at; the EC is defined by
// data_address [last_kernel_leave, read_instr] (instr_absolute)
if (!add_trace_event(instr1, instr2, ev)) {
LOG << "add_trace_event failed" << std::endl;
return false;
}
row_count ++;
if (row_count % 1000 == 0) {
LOG << "Imported " << row_count << " traces into the database" << std::endl;
}
}
}
}
}
LOG << "Inserted " << row_count << " traces into the database" << std::endl;
return true;
}