Files
fail/src/experiments/ecos_kernel_test/experiment.cc
Horst Schirmeier 955f89b3eb ecos: make LOCAL builds compile again
Change-Id: Icd992aa20443426bbcaa507c39453d6ecb9174c0
2013-07-03 13:46:55 +02:00

721 lines
24 KiB
C++

#include <iostream>
#include <fstream>
//#include <string>
// getpid
#include <sys/types.h>
#include <unistd.h>
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "campaign.hpp"
#include "sal/SALConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/Memory.hpp"
#include "sal/bochs/BochsListener.hpp"
#include "sal/Listener.hpp"
#include "util/ElfReader.hpp"
#include "util/WallclockTimer.hpp"
#include "util/gzstream/gzstream.h"
#include "config/FailConfig.hpp"
#include "util/CommandLine.hpp"
// You need to have the tracing plugin enabled for this
#include "../plugins/tracing/TracingPlugin.hpp"
#define LOCAL 0
#ifndef PREREQUISITES
#error Configure experimentInfo.hpp properly!
#endif
// create/use multiple snapshots to speed up long experiments
// FIXME: doesn't work properly, trace changes! (reason unknown; incorrectly restored serial timers?)
#define MULTIPLE_SNAPSHOTS 0
#define MULTIPLE_SNAPSHOTS_DISTANCE 1000000
#define VIDEOMEM_START 0xb8000
#define VIDEOMEM_SIZE (80*25*2 *2) // two text mode screens
#define VIDEOMEM_END (VIDEOMEM_START + VIDEOMEM_SIZE)
using namespace std;
using namespace fail;
#if PREREQUISITES
bool EcosKernelTestExperiment::retrieveGuestAddresses(guest_address_t addr_finish, guest_address_t addr_data_start, guest_address_t addr_data_end) {
#if BASELINE_ASSESSMENT || STACKPROTECTION
log << "STEP 0: creating memory map spanning all of DATA and BSS" << endl;
MemoryMap mm;
mm.add(addr_data_start, addr_data_end - addr_data_start);
mm.writeToFile(EcosKernelTestCampaign::filename_memorymap(m_variant, m_benchmark).c_str());
#else
log << "STEP 0: record memory map with addresses of 'interesting' objects" << endl;
// run until func_finish is reached
BPSingleListener bp;
bp.setWatchInstructionPointer(addr_finish);
// memory map serialization
// FIXME: use MemoryMap::writeToFile()
ofstream mm(EcosKernelTestCampaign::filename_memorymap(m_variant, m_benchmark).c_str(), ios::out);
if (!mm.is_open()) {
log << "failed to open " << EcosKernelTestCampaign::filename_memorymap() << endl;
return false;
}
GuestListener g;
string *str = new string; // buffer for guest listeners' data
unsigned number_of_guest_events = 0;
while (simulator.addListenerAndResume(&g) == &g) {
if (g.getData() == '\t') {
// addr complete?
//cout << "full: " << *str << "sub: " << str->substr(str->find_last_of('x') - 1) << endl;
// interpret the string obtained by the guest listeners as address in hex
unsigned guest_addr;
stringstream converter(str->substr(str->find_last_of('x') + 1));
converter >> hex >> guest_addr;
mm << guest_addr << '\t';
str->clear();
} else if (g.getData() == '\n') {
// len complete?
// interpret the string obtained by the guest listeners as length in decimal
unsigned guest_len;
stringstream converter(*str);
converter >> dec >> guest_len;
mm << guest_len << '\n';
str->clear();
number_of_guest_events++;
} else if (g.getData() == 'Q') {
// when the guest system triggers the guest event 'Q',
// we can assume that we are in protected mode
simulator.addListener(&bp);
} else {
str->push_back(g.getData());
}
}
assert(number_of_guest_events > 0);
log << "Breakpoint at func_finish reached: created memory map (" << number_of_guest_events << " entries)" << endl;
delete str;
// close serialized mm
mm.close();
#endif
return true;
}
bool EcosKernelTestExperiment::establishState(guest_address_t addr_entry, guest_address_t addr_finish, guest_address_t addr_errors_corrected) {
log << "STEP 1: run until interesting function starts, and save state" << endl;
GuestListener g;
while (true) {
simulator.addListenerAndResume(&g);
if(g.getData() == 'Q') {
log << "Guest system triggered: " << g.getData() << endl;
break;
}
}
BPSingleListener bp;
bp.setWatchInstructionPointer(addr_entry);
simulator.addListenerAndResume(&bp);
log << "test function entry reached, saving state" << endl;
log << "EIP = " << hex << bp.getTriggerInstructionPointer() << endl;
//log << "error_corrected = " << dec << ((int)simulator.getMemoryManager().getByte(addr_errors_corrected)) << endl;
// run until 'ECOS_FUNC_FINISH' is reached
BPSingleListener finish;
finish.setWatchInstructionPointer(addr_finish);
// one save every MULTIPLE_SNAPSHOTS_DISTANCE instructions
BPSingleListener step;
step.setWatchInstructionPointer(ANY_ADDR);
step.setCounter(MULTIPLE_SNAPSHOTS_DISTANCE);
for (unsigned i = 0; ; ++i) {
log << "saving state at offset " << dec << (i * MULTIPLE_SNAPSHOTS_DISTANCE) << endl;
simulator.save(EcosKernelTestCampaign::filename_state(i * MULTIPLE_SNAPSHOTS_DISTANCE, m_variant, m_benchmark));
#if MULTIPLE_SNAPSHOTS
simulator.restore(EcosKernelTestCampaign::filename_state(i * MULTIPLE_SNAPSHOTS_DISTANCE, m_variant, m_benchmark));
simulator.addListener(&step);
simulator.addListener(&finish);
if (simulator.resume() == &finish) {
break;
}
#else
break;
#endif
}
return true;
}
bool EcosKernelTestExperiment::performTrace(guest_address_t addr_entry, guest_address_t addr_finish) {
log << "STEP 2: record trace for fault-space pruning" << endl;
log << "restoring state" << endl;
simulator.restore(EcosKernelTestCampaign::filename_state(0, m_variant, m_benchmark));
log << "EIP = " << hex << simulator.getCPU(0).getInstructionPointer() << endl;
assert(simulator.getCPU(0).getInstructionPointer() == addr_entry);
log << "enabling tracing" << endl;
TracingPlugin tp;
// restrict memory access logging to injection target
MemoryMap mm;
mm.readFromFile(EcosKernelTestCampaign::filename_memorymap(m_variant, m_benchmark).c_str());
tp.restrictMemoryAddresses(&mm);
// record trace
ogzstream of(EcosKernelTestCampaign::filename_trace(m_variant, m_benchmark).c_str());
tp.setTraceFile(&of);
// this must be done *after* configuring the plugin:
simulator.addFlow(&tp);
// again, run until 'ECOS_FUNC_FINISH' is reached
BPSingleListener bp;
bp.setWatchInstructionPointer(addr_finish);
simulator.addListener(&bp);
// on the way, count instructions // FIXME add SAL functionality for this?
BPSingleListener ev_count(ANY_ADDR);
simulator.addListener(&ev_count);
unsigned instr_counter = 0;
// measure elapsed time
simtime_t time_start = simulator.getTimerTicks();
// on the way, record lowest and highest memory address accessed
MemAccessListener ev_mem(ANY_ADDR, MemAccessEvent::MEM_READWRITE);
simulator.addListener(&ev_mem);
// range for mem accesses < 1M
unsigned mem1_low = 0xFFFFFFFFUL;
unsigned mem1_high = 0;
// range for mem accesses >= 1M
unsigned mem2_low = 0xFFFFFFFFUL;
unsigned mem2_high = 0;
// do the job, 'till the end
BaseListener* ev = simulator.resume();
while(ev != &bp) {
if(ev == &ev_count) {
if(instr_counter++ == 0xFFFFFFFFU) {
log << "ERROR: instr_counter overflowed" << endl;
return false;
}
simulator.addListener(&ev_count);
}
else if(ev == &ev_mem) {
unsigned lo = ev_mem.getTriggerAddress();
unsigned hi = lo + ev_mem.getTriggerWidth() - 1;
if (lo < VIDEOMEM_START || lo >= VIDEOMEM_END) {
if (hi < 1024*1024) { // < 1M
if (hi > mem1_high) { mem1_high = hi; }
if (lo < mem1_low) { mem1_low = lo; }
} else { // >= 1M
if (hi > mem2_high) { mem2_high = hi; }
if (lo < mem2_low) { mem2_low = lo; }
}
}
simulator.addListener(&ev_mem);
}
ev = simulator.resume();
}
unsigned long long estimated_timeout_overflow_check =
simulator.getTimerTicks() - time_start + 55000; // 1s/18.2
unsigned estimated_timeout =
(unsigned) (estimated_timeout_overflow_check * 1000000 / simulator.getTimerTicksPerSecond());
log << dec << "tracing finished after " << instr_counter << " instructions" << endl;
log << hex << "all memory accesses within [0x" << mem1_low << ", 0x" << mem1_high << "] u [0x" << mem2_low << ", 0x" << mem2_high << "] (ignoring VGA mem)" << endl;
log << dec << "elapsed simulated time (plus safety margin): " << (estimated_timeout / 1000000.0) << "s" << endl;
// sanitize memory ranges
if (mem1_low > mem1_high) {
mem1_low = mem1_high = 0;
}
if (mem2_low > mem2_high) {
mem2_low = mem2_high = 1024*1024;
}
// save these values for experiment STEP 3
EcosKernelTestCampaign::writeTraceInfo(instr_counter, estimated_timeout,
mem1_low, mem1_high, mem2_low, mem2_high, m_variant, m_benchmark);
simulator.removeFlow(&tp);
// serialize trace to file
if (of.fail()) {
log << "failed to write " << EcosKernelTestCampaign::filename_trace(m_variant, m_benchmark) << endl;
return false;
}
of.close();
log << "trace written to " << EcosKernelTestCampaign::filename_trace(m_variant, m_benchmark) << endl;
return true;
}
#else // !PREREQUISITES
void EcosKernelTestExperiment::handle_func_test_output(bool &test_failed, bool& test_passed)
{
// 1st argument of cyg_test_output shows what has happened (FAIL or PASS)
address_t stack_ptr = simulator.getCPU(0).getStackPointer(); // esp
int32_t cyg_test_output_argument = simulator.getMemoryManager().getByte(stack_ptr + 4); // 1st argument is at esp+4
log << "cyg_test_output_argument (#1): " << cyg_test_output_argument << endl;
/*
typedef enum {
CYGNUM_TEST_FAIL,
CYGNUM_TEST_PASS,
CYGNUM_TEST_EXIT,
CYGNUM_TEST_INFO,
CYGNUM_TEST_GDBCMD,
CYGNUM_TEST_NA
} Cyg_test_code;
*/
if (cyg_test_output_argument == 0) {
test_failed = true;
} else if (cyg_test_output_argument == 1) {
test_passed = true;
}
}
bool EcosKernelTestExperiment::faultInjection() {
log << "STEP 3: The actual experiment." << endl;
// trace info
unsigned instr_counter, estimated_timeout, mem1_low, mem1_high, mem2_low, mem2_high;
// ELF symbol addresses
guest_address_t addr_entry, addr_finish, addr_test_output, addr_errors_corrected,
addr_panic, addr_text_start, addr_text_end,
addr_data_start, addr_data_end;
BPSingleListener bp;
int experiments = 0;
#if !LOCAL
for (experiments = 0;
experiments < 500 || (m_jc.getNumberOfUndoneJobs() != 0); ) { // stop after ~500 experiments to prevent swapping
// 50 exp ~ 0.5GB RAM usage per instance (linearly increasing)
#endif
// get an experiment parameter set
log << "asking job server for experiment parameters" << endl;
EcosKernelTestExperimentData param;
#if !LOCAL
if (!m_jc.getParam(param)) {
log << "Dying." << endl;
// communicate that we were told to die
simulator.terminate(1);
}
#else
// XXX debug
param.msg.set_variant(m_variant);
param.msg.set_benchmark(m_benchmark);
param.msg.set_instr2_offset(7462);
//param.msg.set_instr_address(12345);
param.msg.set_mem_addr(44540);
#endif
WallclockTimer timer;
timer.startTimer();
int id = param.getWorkloadID();
m_variant = param.msg.variant();
m_benchmark = param.msg.benchmark();
int instr_offset = param.msg.instr2_offset();
int mem_addr = param.msg.mem_addr();
EcosKernelTestCampaign::readTraceInfo(instr_counter, estimated_timeout,
mem1_low, mem1_high, mem2_low, mem2_high, m_variant, m_benchmark);
readELFSymbols(addr_entry, addr_finish, addr_test_output,
addr_errors_corrected, addr_panic, addr_text_start, addr_text_end,
addr_data_start, addr_data_end);
int state_instr_offset = instr_offset - (instr_offset % MULTIPLE_SNAPSHOTS_DISTANCE);
string statename;
#if MULTIPLE_SNAPSHOTS
if (access(EcosKernelTestCampaign::filename_state(state_instr_offset, m_variant, m_benchmark).c_str(), R_OK) == 0) {
statename = EcosKernelTestCampaign::filename_state(state_instr_offset, m_variant, m_benchmark);
log << "using state at offset " << state_instr_offset << endl;
instr_offset -= state_instr_offset;
} else { // fallback
#endif
statename = EcosKernelTestCampaign::filename_state(0, m_variant, m_benchmark);
state_instr_offset = 0;
log << "using state at offset 0 (fallback)" << endl;
#if MULTIPLE_SNAPSHOTS
}
#endif
// for each job with the SINGLEBITFLIP fault model we're actually doing *8*
// experiments (one for each bit)
for (int bit_offset = 0; bit_offset < 8; ++bit_offset) {
++experiments;
// 8 results in one job
EcosKernelTestProtoMsg_Result *result = param.msg.add_result();
result->set_bit_offset(bit_offset);
log << dec << "job " << id << " " << m_variant << "/" << m_benchmark
<< " instr " << (instr_offset + state_instr_offset)
<< " mem " << mem_addr << "+" << bit_offset << endl;
log << "restoring state" << endl;
simulator.restore(statename);
// XXX debug
/*
stringstream fname;
fname << "job." << ::getpid();
ofstream job(fname.str().c_str());
job << "job " << id << " instr " << instr_offset << " (" << param.msg.instr_address() << ") mem " << mem_addr << "+" << bit_offset << endl;
job.close();
*/
// the outcome of ecos' test case
bool ecos_test_passed = false;
bool ecos_test_failed = false;
// reaching finish() could happen before OR after FI
BPSingleListener func_finish(addr_finish);
simulator.addListener(&func_finish);
// reaching cyg_test_output() could happen before OR after FI
// eCos' test output function, which will show if the test PASSed or FAILed
BPSingleListener func_test_output(addr_test_output);
simulator.addListener(&func_test_output);
BaseListener* ev;
// no need to wait if offset is 0
if (instr_offset > 0) {
// XXX could be improved with intermediate states (reducing runtime until injection)
bp.setWatchInstructionPointer(ANY_ADDR);
bp.setCounter(instr_offset);
simulator.addListener(&bp);
while (true) {
ev = simulator.resume();
if (ev == &func_test_output) {
// re-add this listener
simulator.addListener(&func_test_output);
handle_func_test_output(ecos_test_failed, ecos_test_passed);
} else if (ev == &func_finish) {
log << "experiment reached finish() before FI" << endl;
} else {
break;
}
}
}
// --- fault injection ---
MemoryManager& mm = simulator.getMemoryManager();
byte_t data = mm.getByte(mem_addr);
byte_t newdata;
if (param.msg.has_faultmodel() && param.msg.faultmodel() == param.msg.BURST) {
newdata = data ^ 0xff;
bit_offset = 8; // enforce loop termination
} else if (!param.msg.has_faultmodel() || param.msg.faultmodel() == param.msg.SINGLEBITFLIP) {
newdata = data ^ (1 << bit_offset);
} else {
// Won't happen with current campaign implementation. Keeps
// compiler happy.
newdata = data;
}
mm.setByte(mem_addr, newdata);
// note at what IP we did it
int32_t injection_ip = simulator.getCPU(0).getInstructionPointer();
param.msg.set_injection_ip(injection_ip);
log << "fault injected @ ip " << injection_ip
<< " 0x" << hex << ((int)data) << " -> 0x" << ((int)newdata) << endl;
// sanity check
if (param.msg.has_instr2_address() &&
injection_ip != param.msg.instr2_address()) {
stringstream ss;
ss << "SANITY CHECK FAILED: " << injection_ip
<< " != " << param.msg.instr2_address();
log << ss.str() << endl;
result->set_resulttype(result->UNKNOWN);
result->set_latest_ip(injection_ip);
result->set_ecos_test_result(result->FAIL);
result->set_details(ss.str());
continue;
}
if (param.msg.has_instr2_address()) {
log << "Absolute IP sanity check OK" << endl;
}
// --- aftermath ---
// possible outcomes:
// - trap, "crash"
// - jump outside text segment
// - (XXX unaligned jump inside text segment)
// - (XXX weird instructions?)
// - (XXX results displayed?)
// - reaches THE END
// - error detected, stop
// additional info:
// - #loop iterations before/after FI
// - (XXX "sane" display?)
// catch traps as "extraordinary" ending
TrapListener ev_trap(ANY_TRAP);
simulator.addListener(&ev_trap);
// jump outside text segment
BPRangeListener ev_below_text(ANY_ADDR, addr_text_start - 1);
BPRangeListener ev_beyond_text(addr_text_end + 1, ANY_ADDR);
simulator.addListener(&ev_below_text);
simulator.addListener(&ev_beyond_text);
// memory access outside of bound determined in the golden run
// [mem1_low, mem1_high] u [mem2_low, mem2_high]
// video memory accesses are OK, too
// FIXME: It would be nice to have a MemAccessListener that accepts a
// MemoryMap, to have MemoryMaps that store addresses in a compact way,
// and that are invertible.
assert(mem1_low < mem1_high && mem1_high < VIDEOMEM_START && VIDEOMEM_END < mem2_low && mem2_low < mem2_high);
MemAccessListener ev_mem_outside1(0x0, MemAccessEvent::MEM_READWRITE);
ev_mem_outside1.setWatchWidth(mem1_low);
MemAccessListener ev_mem_outside2(mem1_high + 1, MemAccessEvent::MEM_READWRITE);
ev_mem_outside2.setWatchWidth(VIDEOMEM_START - (mem1_high + 1));
MemAccessListener ev_mem_outside3(VIDEOMEM_END, MemAccessEvent::MEM_READWRITE);
ev_mem_outside3.setWatchWidth(mem2_low - VIDEOMEM_END);
MemAccessListener ev_mem_outside4(mem2_high + 1, MemAccessEvent::MEM_READWRITE);
ev_mem_outside4.setWatchWidth(0xFFFFFFFFU - (mem2_high + 1));
simulator.addListener(&ev_mem_outside1);
simulator.addListener(&ev_mem_outside2);
simulator.addListener(&ev_mem_outside3);
simulator.addListener(&ev_mem_outside4);
// timeout (e.g., stuck in a HLT instruction)
TimerListener ev_timeout(estimated_timeout);
simulator.addListener(&ev_timeout);
// remaining instructions until "normal" ending
// number of instructions that are executed additionally for error corrections
//BPSingleListener ev_end(ANY_ADDR);
//ev_end.setCounter(instr_counter - instr_offset + ECOS_RECOVERYINSTR);
//simulator.addListener(&ev_end);
// function called by ecc aspects, when an uncorrectable error is detected
BPSingleListener func_ecc_panic(addr_panic);
if (addr_panic != ADDR_INV) {
simulator.addListener(&func_ecc_panic);
}
#if LOCAL && 0
// XXX debug
log << "enabling tracing" << endl;
TracingPlugin tp;
tp.setLogIPOnly(true);
tp.setOstream(&cout);
// this must be done *after* configuring the plugin:
simulator.addFlow(&tp);
#endif
// wait until experiment-terminating event occurs
while (true) {
ev = simulator.resume();
if (ev == &func_test_output) {
// re-add this listener
simulator.addListener(&func_test_output);
handle_func_test_output(ecos_test_failed, ecos_test_passed);
// special case: except1 and clockcnv actively generate traps
} else if (ev == &ev_trap
&& ((m_benchmark == "except1" && ev_trap.getTriggerNumber() == 13)
|| (m_benchmark == "clockcnv" && ev_trap.getTriggerNumber() == 7))) {
// re-add this listener
simulator.addListener(&ev_trap);
} else {
// in any other case, the experiment is finished
break;
}
}
// record latest IP regardless of result
result->set_latest_ip(simulator.getCPU(0).getInstructionPointer());
// record error_corrected regardless of result
if (addr_errors_corrected != ADDR_INV) {
int32_t error_corrected = simulator.getMemoryManager().getByte(addr_errors_corrected);
result->set_error_corrected(error_corrected);
} else {
result->set_error_corrected(0);
}
// record ecos_test_result
if ( (ecos_test_passed == true) && (ecos_test_failed == false) ) {
result->set_ecos_test_result(result->PASS);
log << "Ecos Test PASS" << endl;
} else {
result->set_ecos_test_result(result->FAIL);
log << "Ecos Test FAIL" << endl;
}
if (ev == &func_finish) {
// do we reach finish?
log << "experiment finished ordinarily" << endl;
result->set_resulttype(result->FINISHED);
} else if (ev == &ev_timeout /*|| ev == &ev_end*/) {
log << "Result TIMEOUT" << endl;
result->set_resulttype(result->TIMEOUT);
} else if (ev == &ev_below_text || ev == &ev_beyond_text) {
log << "Result OUTSIDE" << endl;
result->set_resulttype(result->OUTSIDE);
} else if (ev == &ev_mem_outside1 || ev == &ev_mem_outside2
|| ev == &ev_mem_outside3 || ev == &ev_mem_outside4) {
log << "Result MEMORYACCESS" << endl;
result->set_resulttype(result->MEMORYACCESS);
} else if (ev == &ev_trap) {
log << dec << "Result TRAP #" << ev_trap.getTriggerNumber() << endl;
result->set_resulttype(result->TRAP);
stringstream ss;
ss << ev_trap.getTriggerNumber();
result->set_details(ss.str());
} else if (ev == &func_ecc_panic) {
log << "ECC Panic: uncorrectable error" << endl;
result->set_resulttype(result->DETECTED); // DETECTED <=> ECC_PANIC <=> reboot
} else {
log << "Result WTF?" << endl;
result->set_resulttype(result->UNKNOWN);
stringstream ss;
ss << "event addr " << ev << " EIP " << simulator.getCPU(0).getInstructionPointer();
result->set_details(ss.str());
}
}
// sanity check: do we have exactly 8 results?
if ((!param.msg.has_faultmodel() || param.msg.faultmodel() == param.msg.SINGLEBITFLIP)
&& param.msg.result_size() != 8) {
log << "WTF? param.msg.result_size() != 8" << endl;
} else {
param.msg.set_runtime(timer);
#if !LOCAL
m_jc.sendResult(param);
#endif
}
#if !LOCAL
}
#endif
return true;
}
#endif // PREREQUISITES
bool EcosKernelTestExperiment::readELFSymbols(
fail::guest_address_t& entry,
fail::guest_address_t& finish,
fail::guest_address_t& test_output,
fail::guest_address_t& errors_corrected,
fail::guest_address_t& panic,
fail::guest_address_t& text_start,
fail::guest_address_t& text_end,
fail::guest_address_t& data_start,
fail::guest_address_t& data_end)
{
ElfReader elfreader(EcosKernelTestCampaign::filename_elf(m_variant, m_benchmark).c_str());
entry = elfreader.getSymbol("cyg_start").getAddress();
finish = elfreader.getSymbol("cyg_test_exit").getAddress();
test_output = elfreader.getSymbol("cyg_test_output").getAddress();
errors_corrected = elfreader.getSymbol("errors_corrected").getAddress();
panic = elfreader.getSymbol("_Z9ecc_panicv").getAddress();
text_start = elfreader.getSymbol("_stext").getAddress();
text_end = elfreader.getSymbol("_etext").getAddress();
data_start = elfreader.getSymbol("__ram_data_start").getAddress();
data_end = elfreader.getSymbol("__bss_end").getAddress();
// it's OK if errors_corrected or ecc_panic are missing
if (entry == ADDR_INV || finish == ADDR_INV || test_output == ADDR_INV ||
text_start == ADDR_INV || text_end == ADDR_INV ||
data_start == ADDR_INV || data_end == ADDR_INV) {
return false;
}
return true;
}
void EcosKernelTestExperiment::parseOptions()
{
CommandLine &cmd = CommandLine::Inst();
cmd.addOption("", "", Arg::None, "USAGE: fail-client -Wf,[option] -Wf,[option] ... <BochsOptions...>");
CommandLine::option_handle HELP =
cmd.addOption("h", "help", Arg::None, "-h,--help \tPrint usage and exit");
CommandLine::option_handle VARIANT =
cmd.addOption("", "variant", Arg::Required, "--variant v \texperiment variant");
CommandLine::option_handle BENCHMARK =
cmd.addOption("", "benchmark", Arg::Required, "--benchmark b \tbenchmark");
if (!cmd.parse()) {
cerr << "Error parsing arguments." << endl;
simulator.terminate(1);
} else if (cmd[HELP]) {
cmd.printUsage();
simulator.terminate(0);
}
if (cmd[VARIANT].count() > 0 && cmd[BENCHMARK].count() > 0) {
m_variant = std::string(cmd[VARIANT].first()->arg);
m_benchmark = std::string(cmd[BENCHMARK].first()->arg);
} else {
cerr << "Please supply parameters for --variant and --benchmark." << endl;
simulator.terminate(1);
}
}
bool EcosKernelTestExperiment::run()
{
log << "startup" << endl;
#if PREREQUISITES || LOCAL
parseOptions();
#endif
#if PREREQUISITES
log << "retrieving ELF symbol addresses ..." << endl;
guest_address_t entry, finish, test_output, errors_corrected,
panic, text_start, text_end, data_start, data_end;
if (!readELFSymbols(entry, finish, test_output, errors_corrected,
panic, text_start, text_end, data_start, data_end)) {
log << "failed, essential symbols are missing!" << endl;
simulator.terminate(1);
}
// step 0
if (retrieveGuestAddresses(finish, data_start, data_end)) {
log << "STEP 0 finished: rebooting ..." << endl;
simulator.reboot();
} else { return false; }
// step 1
if (establishState(entry, finish, errors_corrected)) {
log << "STEP 1 finished: proceeding ..." << endl;
} else { return false; }
// step 2
if (performTrace(entry, finish)) {
log << "STEP 2 finished: terminating ..." << endl;
} else { return false; }
#else // !PREREQUISITES
// step 3
faultInjection();
#endif // PREREQUISITES
// Explicitly terminate, or the simulator will continue to run.
simulator.terminate();
return true;
}