918 lines
30 KiB
C++
918 lines
30 KiB
C++
#include <iostream>
|
|
#include <map>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "experiment.hpp"
|
|
#include "experimentInfo.hpp"
|
|
#include "UDIS86.hpp"
|
|
#include "InstructionFilter.hpp"
|
|
#include "aluinstr.hpp"
|
|
#include "campaign.hpp"
|
|
#include "conversion.hpp"
|
|
|
|
#include "sal/SALConfig.hpp"
|
|
#include "sal/SALInst.hpp"
|
|
#include "sal/Memory.hpp"
|
|
#include "sal/Listener.hpp"
|
|
#include "config/FailConfig.hpp"
|
|
#include "util/ProtoStream.hpp"
|
|
#include "TracePlugin.pb.h"
|
|
#include "util/gzstream/gzstream.h"
|
|
|
|
#include "l4sys.pb.h"
|
|
|
|
using namespace std;
|
|
using namespace fail;
|
|
|
|
// Check if configuration dependencies are satisfied:
|
|
#if !defined(CONFIG_EVENT_BREAKPOINTS) || !defined(CONFIG_SR_RESTORE) || \
|
|
!defined(CONFIG_EVENT_MEMREAD) || !defined(CONFIG_EVENT_MEMWRITE) || \
|
|
!defined(CONFIG_SR_SAVE) || \
|
|
!defined(CONFIG_EVENT_IOPORT)
|
|
#error This experiment needs: breakpoints, memory accesses, I/O port events, \
|
|
save, and restore. Enable these in the configuration.
|
|
#endif
|
|
|
|
//string golden_run;
|
|
extern L4SysConversion l4sysRegisterConversion;
|
|
|
|
string L4SysExperiment::sanitised(const string &in_str) {
|
|
string result;
|
|
int in_str_size = in_str.size();
|
|
result.reserve(in_str_size);
|
|
for (int idx = 0; idx < in_str_size; idx++) {
|
|
char cur_char = in_str[idx];
|
|
unsigned cur_char_value = static_cast<unsigned>(cur_char);
|
|
// also exclude the delimiter (',')
|
|
if (cur_char_value < 0x20 || cur_char_value > 0x7E || cur_char_value == ',') {
|
|
char str_nr[5];
|
|
sprintf(str_nr, "\\%03o", cur_char_value);
|
|
result += str_nr;
|
|
} else {
|
|
result += cur_char;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
BaseListener* L4SysExperiment::waitIOOrOther(bool clear_output) {
|
|
IOPortListener ev_ioport(0x3F8, true);
|
|
BaseListener* ev = NULL;
|
|
if (clear_output)
|
|
currentOutput.clear();
|
|
while (true) {
|
|
simulator.addListener(&ev_ioport);
|
|
ev = simulator.resume();
|
|
//log << "hello " << simulator.getListenerCount() << std::endl;
|
|
//simulator.removeListener(&ev_ioport);
|
|
if (ev == &ev_ioport) {
|
|
currentOutput += ev_ioport.getData();
|
|
//log << currentOutput << std::endl;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return ev;
|
|
}
|
|
|
|
Bit32u L4SysExperiment::eipBiased() {
|
|
BX_CPU_C *cpu_context = simulator.getCPUContext();
|
|
Bit32u EIP = cpu_context->gen_reg[BX_32BIT_REG_EIP].dword.erx;
|
|
return EIP + cpu_context->eipPageBias;
|
|
}
|
|
|
|
const Bit8u *L4SysExperiment::calculateInstructionAddress() {
|
|
// pasted in from various nested Bochs functions and macros - I hope
|
|
// they will not change too soon (as do the Bochs developers, probably)
|
|
BX_CPU_C *cpu_context = simulator.getCPUContext();
|
|
const Bit8u *result = cpu_context->eipFetchPtr + eipBiased();
|
|
return result;
|
|
}
|
|
|
|
bx_bool L4SysExperiment::fetchInstruction(BX_CPU_C *instance,
|
|
const Bit8u *instr, bxInstruction_c *iStorage) {
|
|
unsigned remainingInPage = instance->eipPageWindowSize - eipBiased();
|
|
int ret;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
|
|
ret = instance->fetchDecode64(instr, iStorage, remainingInPage);
|
|
else
|
|
#endif
|
|
ret = instance->fetchDecode32(instr, iStorage, remainingInPage);
|
|
|
|
if (ret < 0) {
|
|
// handle instrumentation callback inside boundaryFetch
|
|
instance->boundaryFetch(instr, remainingInPage, iStorage);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void L4SysExperiment::logInjection() {
|
|
// XXX fixme
|
|
#if 0
|
|
// explicit type assignment necessary before sending over output stream
|
|
int id = param->getWorkloadID();
|
|
int instr_offset = param->msg.instr_offset();
|
|
int bit_offset = param->msg.bit_offset();
|
|
int exp_type = param->msg.exp_type();
|
|
address_t injection_ip = param->msg.injection_ip();
|
|
|
|
log << "job " << id << " exp_type " << exp_type << endl;
|
|
log << "inject @ ip " << hex << injection_ip << " (offset " << dec << instr_offset
|
|
<< ")" << " bit " << bit_offset << endl;
|
|
#endif
|
|
}
|
|
|
|
BaseListener *L4SysExperiment::singleStep(bool preserveAddressSpace) {
|
|
// XXX: fixme
|
|
return 0;
|
|
#if 0
|
|
address_t aspace = (preserveAddressSpace ? L4SYS_ADDRESS_SPACE : ANY_ADDR);
|
|
BPSingleListener singlestepping_event(ANY_ADDR, aspace);
|
|
simulator.addListener(&singlestepping_event);
|
|
/* prepare for the case that the kernel panics and never
|
|
switches back to this thread by introducing a scheduling timeout
|
|
of 10 seconds */
|
|
TimerListener schedTimeout(10000000);
|
|
simulator.addListener(&schedTimeout);
|
|
BaseListener *ev = waitIOOrOther(false);
|
|
simulator.removeListener(&singlestepping_event);
|
|
simulator.removeListener(&schedTimeout);
|
|
|
|
if (ev == &schedTimeout) {
|
|
// otherwise we just assume this thread is never scheduled again
|
|
log << "Result TIMEOUT" << endl;
|
|
param->msg.set_resulttype(param->msg.TIMEOUT);
|
|
param->msg.set_resultdata(
|
|
simulator.getCPU(0).getInstructionPointer());
|
|
param->msg.set_output(sanitised(currentOutput.c_str()));
|
|
param->msg.set_details("Timed out immediately after injecting");
|
|
|
|
m_jc.sendResult(*param);
|
|
terminate(0);
|
|
}
|
|
return ev;
|
|
#endif
|
|
}
|
|
|
|
void L4SysExperiment::injectInstruction(
|
|
bxInstruction_c *oldInstr, bxInstruction_c *newInstr) {
|
|
// backup the current and insert the faulty instruction
|
|
bxInstruction_c backupInstr;
|
|
memcpy(&backupInstr, oldInstr, sizeof(bxInstruction_c));
|
|
memcpy(oldInstr, newInstr, sizeof(bxInstruction_c));
|
|
|
|
// execute the faulty instruction, then return
|
|
singleStep(false);
|
|
|
|
//restore the old instruction
|
|
memcpy(oldInstr, &backupInstr, sizeof(bxInstruction_c));
|
|
}
|
|
|
|
unsigned L4SysExperiment::calculateTimeout(unsigned instr_left) {
|
|
// the timeout in seconds, plus one backup second (avoids rounding overhead)
|
|
// [instr] / [instr / s] = [s]
|
|
unsigned seconds = instr_left / L4SYS_BOCHS_IPS + 1;
|
|
// 1.1 (+10 percent) * 1000000 mus/s * [s]
|
|
return 1100000 * seconds;
|
|
}
|
|
|
|
L4SysExperiment::L4SysExperiment()
|
|
: m_jc("localhost"), log("L4Sys", false)
|
|
{
|
|
param = new L4SysExperimentData;
|
|
}
|
|
|
|
L4SysExperiment::~L4SysExperiment() {
|
|
destroy();
|
|
}
|
|
|
|
void L4SysExperiment::destroy() {
|
|
delete param;
|
|
param = NULL;
|
|
}
|
|
|
|
void L4SysExperiment::terminate(int reason) {
|
|
destroy();
|
|
simulator.terminate(reason);
|
|
}
|
|
|
|
void L4SysExperiment::terminateWithError(string details, int reason) {
|
|
L4SysProtoMsg_Result *result = param->msg.add_result();
|
|
result->set_resulttype(param->msg.UNKNOWN);
|
|
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
|
|
result->set_output(sanitised(currentOutput.c_str()));
|
|
result->set_details(details);
|
|
|
|
m_jc.sendResult(*param);
|
|
terminate(reason);
|
|
}
|
|
|
|
|
|
void L4SysExperiment::startAndSaveInitState(fail::BPSingleListener* bp)
|
|
{
|
|
bp->setWatchInstructionPointer(L4SYS_FUNC_ENTRY);
|
|
simulator.addListenerAndResume(bp);
|
|
|
|
log << "test function entry reached, saving state" << endl;
|
|
log << "EIP: expected " << hex << bp->getTriggerInstructionPointer()
|
|
<< " and actually got "
|
|
<< simulator.getCPU(0).getInstructionPointer()
|
|
<< endl;
|
|
log << "check the source code if the two instruction pointers are not equal" << endl;
|
|
simulator.save(L4SYS_STATE_FOLDER);
|
|
delete bp;
|
|
}
|
|
|
|
void L4SysExperiment::collectInstructionTrace(fail::BPSingleListener* bp)
|
|
{
|
|
log << "restoring state" << endl;
|
|
simulator.restore(L4SYS_STATE_FOLDER);
|
|
log << "EIP = " << hex
|
|
<< simulator.getCPU(0).getInstructionPointer()
|
|
<< endl;
|
|
|
|
#ifdef L4SYS_FILTER_INSTRUCTIONS
|
|
ofstream instr_list_file(L4SYS_INSTRUCTION_LIST, ios::binary);
|
|
RangeSetInstructionFilter filtering(L4SYS_FILTER);
|
|
bp->setWatchInstructionPointer(ANY_ADDR);
|
|
|
|
fail::MemAccessListener ML(ANY_ADDR, MemAccessEvent::MEM_READWRITE);
|
|
if (!simulator.addListener(&ML)) {
|
|
log << "did not add memory listener..." << std::endl;
|
|
exit(1);
|
|
}
|
|
if (!simulator.addListener(bp)) {
|
|
log << "did not add breakpoint listener..." << std::endl;
|
|
exit(1);
|
|
}
|
|
|
|
size_t count = 0, inst_accepted = 0, mem = 0, mem_valid = 0;
|
|
map<address_t, unsigned> times_called_map;
|
|
bool injecting = false;
|
|
|
|
ogzstream out("trace.pb");
|
|
ProtoOStream *os = new ProtoOStream(&out);
|
|
|
|
simtime_t prevtime = 0, currtime;
|
|
simtime_diff_t deltatime;
|
|
|
|
while (bp->getTriggerInstructionPointer() != L4SYS_FUNC_EXIT) {
|
|
fail::BaseListener *res = simulator.resume();
|
|
address_t curr_addr = 0;
|
|
|
|
// XXX: See the API problem below!
|
|
if (res == &ML) {
|
|
curr_addr = ML.getTriggerInstructionPointer();
|
|
simulator.addListener(&ML);
|
|
++mem;
|
|
if (BX_CPU(0)->cr3 != L4SYS_ADDRESS_SPACE) {
|
|
continue;
|
|
}
|
|
} else if (res == bp) {
|
|
curr_addr = bp->getTriggerInstructionPointer();
|
|
assert(curr_addr == simulator.getCPU(0).getInstructionPointer());
|
|
simulator.addListener(bp);
|
|
++count;
|
|
}
|
|
|
|
currtime = simulator.getTimerTicks();
|
|
deltatime = currtime - prevtime;
|
|
|
|
if (curr_addr == L4SYS_FILTER_ENTRY) {
|
|
injecting = true;
|
|
}
|
|
|
|
if (curr_addr == L4SYS_FILTER_EXIT) {
|
|
injecting = false;
|
|
}
|
|
|
|
if (!injecting or
|
|
!filtering.isValidInstr(curr_addr, reinterpret_cast<char const*>(calculateInstructionAddress()))) {
|
|
//log << "connt..." << std::endl;
|
|
continue;
|
|
}
|
|
|
|
if (res == &ML) {
|
|
#if 0
|
|
log << "Memory event IP " << std::hex << ML.getTriggerInstructionPointer()
|
|
<< " @ " << ML.getTriggerAddress() << "("
|
|
<< ML.getTriggerAccessType() << "," << ML.getTriggerWidth()
|
|
<< ")" << std::endl;
|
|
#endif
|
|
++mem_valid;
|
|
|
|
Trace_Event te;
|
|
if (deltatime != 0) { te.set_time_delta(1); };
|
|
te.set_ip(curr_addr);
|
|
te.set_memaddr(ML.getTriggerAddress());
|
|
te.set_accesstype( (ML.getTriggerAccessType() & MemAccessEvent::MEM_READ) ? te.READ : te.WRITE );
|
|
te.set_width(ML.getTriggerWidth());
|
|
os->writeMessage(&te);
|
|
} else if (res == bp) {
|
|
unsigned times_called = times_called_map[curr_addr];
|
|
++times_called;
|
|
times_called_map[curr_addr] = times_called;
|
|
|
|
//log << "breakpoint event" << std::endl;
|
|
// now check if we want to add the instruction for fault injection
|
|
++inst_accepted;
|
|
|
|
// 1) The 'old' way of logging instructions -> DEPRECATE soon
|
|
// BUT: we are currently using the bp_counter stored in this
|
|
// file!
|
|
TraceInstr new_instr;
|
|
//log << "writing IP " << hex << curr_addr << " counter "
|
|
// << dec << times_called << "(" << hex << BX_CPU(0)->cr3 << ")"
|
|
// << endl;
|
|
new_instr.trigger_addr = curr_addr;
|
|
new_instr.bp_counter = times_called;
|
|
|
|
instr_list_file.write(reinterpret_cast<char*>(&new_instr), sizeof(TraceInstr));
|
|
|
|
// 2) The 'new' way -> generate Events that can be processed by
|
|
// the generic *-trace tools
|
|
// XXX: need to log CR3 if we want multiple binaries here
|
|
Trace_Event e;
|
|
if (deltatime != 0) { e.set_time_delta(1); };
|
|
e.set_ip(curr_addr);
|
|
os->writeMessage(&e);
|
|
} else {
|
|
printf("Unknown res? %p\n", res);
|
|
}
|
|
prevtime = currtime;
|
|
|
|
//short sanity check
|
|
//log << "continue..." << std::endl;
|
|
}
|
|
log << "saving instructions triggered during normal execution" << endl;
|
|
instr_list_file.close();
|
|
log << "test function calculation position reached after "
|
|
<< dec << count << " instructions; " << inst_accepted << " accepted" << endl;
|
|
log << "mem accesses: " << mem << ", valid: " << mem_valid << std::endl;
|
|
#else
|
|
int count = 0;
|
|
int ul = 0, kernel = 0;
|
|
bp.setWatchInstructionPointer(ANY_ADDR);
|
|
for (; bp.getTriggerInstructionPointer() != L4SYS_FUNC_EXIT; ++count) {
|
|
simulator.addListenerAndResume(&bp);
|
|
if (bp.getTriggerInstructionPointer() < 0xC0000000) {
|
|
ul++;
|
|
} else {
|
|
kernel++;
|
|
}
|
|
}
|
|
log << "EIP = " << hex
|
|
<< simulator.getCPU(0).getInstructionPointer() << endl;
|
|
log << "test function calculation position reached after "
|
|
<< dec << count << " instructions; "
|
|
<< "ul: " << ul << ", kernel: " << kernel << endl;
|
|
#endif
|
|
delete bp;
|
|
}
|
|
|
|
void L4SysExperiment::goldenRun(fail::BPSingleListener* bp)
|
|
{
|
|
log << "restoring state" << endl;
|
|
simulator.restore(L4SYS_STATE_FOLDER);
|
|
log << "EIP = " << hex
|
|
<< simulator.getCPU(0).getInstructionPointer()
|
|
<< endl;
|
|
|
|
std::string golden_run;
|
|
ofstream golden_run_file(L4SYS_CORRECT_OUTPUT);
|
|
bp->setWatchInstructionPointer(L4SYS_FUNC_EXIT);
|
|
simulator.addListener(bp);
|
|
BaseListener* ev = waitIOOrOther(true);
|
|
if (ev == bp) {
|
|
golden_run.assign(currentOutput.c_str());
|
|
golden_run_file << currentOutput.c_str();
|
|
log << "Output successfully logged!" << endl;
|
|
} else {
|
|
log
|
|
<< "Obviously, there is some trouble with"
|
|
<< " the events registered - aborting simulation!"
|
|
<< endl;
|
|
golden_run_file.close();
|
|
terminate(10);
|
|
}
|
|
|
|
log << "saving output generated during normal execution" << endl;
|
|
golden_run_file.close();
|
|
delete bp;
|
|
}
|
|
|
|
|
|
void L4SysExperiment::getJobParameters()
|
|
{
|
|
// get the experiment parameters
|
|
log << "asking job server for experiment parameters" << endl;
|
|
if (!m_jc.getParam(*param)) {
|
|
log << "Dying." << endl;
|
|
// communicate that we were told to die
|
|
terminate(1);
|
|
}
|
|
}
|
|
|
|
|
|
void L4SysExperiment::validatePrerequisites()
|
|
{
|
|
struct stat teststruct;
|
|
if (stat(L4SYS_STATE_FOLDER, &teststruct) == -1 ||
|
|
stat(L4SYS_CORRECT_OUTPUT, &teststruct) == -1) {
|
|
log << "Important data missing - call \"prepare\" first." << endl;
|
|
terminate(10);
|
|
}
|
|
}
|
|
|
|
|
|
void L4SysExperiment::readGoldenRun(std::string& target)
|
|
{
|
|
ifstream golden_run_file(L4SYS_CORRECT_OUTPUT);
|
|
|
|
if (!golden_run_file.good()) {
|
|
log << "Could not open file " << L4SYS_CORRECT_OUTPUT << endl;
|
|
terminate(20);
|
|
}
|
|
|
|
target.assign((istreambuf_iterator<char>(golden_run_file)),
|
|
istreambuf_iterator<char>());
|
|
|
|
golden_run_file.close();
|
|
}
|
|
|
|
|
|
void L4SysExperiment::setupFilteredBreakpoint(fail::BPSingleListener* bp, int instOffset)
|
|
{
|
|
/*
|
|
* The L4Sys experiment uses instruction filtering to restrict the range
|
|
* of fault injection to only e.g., kernel instructions.
|
|
*
|
|
* To speed up injection, L4Sys furthermore does not use per-instruction
|
|
* breakpoints but only places a breakpoint on the actually interesting
|
|
* instruction (e.g., the injection EIP). Hence, we also do not count
|
|
* instructions from the beginning of the experiment, but we count how
|
|
* often a certain EIP was hit before the injection.
|
|
*
|
|
* To achieve these properties, we use an additional trace file that
|
|
* provides us with a 'hit counter' of each injection candidate. We use
|
|
* the global instruction ID (DataBaseCampaign: instruction_offset) to
|
|
* index into this trace file and determine the value for the breakpoint
|
|
* counter.
|
|
*/
|
|
ifstream instr_list_file(L4SYS_INSTRUCTION_LIST, ios::binary);
|
|
|
|
if (!instr_list_file.good()) {
|
|
log << "Missing instruction trace" << endl;
|
|
terminate(21);
|
|
}
|
|
|
|
TraceInstr curr_instr;
|
|
instr_list_file.seekg(instOffset * sizeof(TraceInstr));
|
|
log << instr_list_file.eof() << " " << instr_list_file.bad() << " "
|
|
<< instr_list_file.fail() << endl;
|
|
if (instr_list_file.eof()) {
|
|
log << "Job parameters indicate position outside the traced instruction list." << endl;
|
|
terminate(1);
|
|
}
|
|
instr_list_file.read(reinterpret_cast<char*>(&curr_instr), sizeof(TraceInstr));
|
|
instr_list_file.close();
|
|
|
|
log << "setting watchpoint at " << hex << curr_instr.trigger_addr << endl;
|
|
bp->setWatchInstructionPointer(curr_instr.trigger_addr);
|
|
log << "setting bp counter " << hex << curr_instr.bp_counter << endl;
|
|
bp->setCounter(curr_instr.bp_counter);
|
|
}
|
|
|
|
|
|
fail::BPSingleListener*
|
|
L4SysExperiment::prepareMemoryExperiment(int ip, int offset, int dataAddress)
|
|
{
|
|
fail::BPSingleListener *bp = new BPSingleListener(0, L4SYS_ADDRESS_SPACE);
|
|
log << "\033[34;1mMemory fault injection\033[0m at instruction " << std::hex << offset
|
|
<< ", ip " << ip << ", address " << dataAddress << std::endl;
|
|
|
|
#ifdef L4SYS_FILTER_INSTRUCTIONS
|
|
setupFilteredBreakpoint(bp, offset);
|
|
assert(bp->getWatchInstructionPointer() == (address_t)(ip & 0xFFFFFFFF));
|
|
#else
|
|
bp->setWatchInstructionPointer(ANY_ADDR);
|
|
bp->setCounter(instr_offset);
|
|
#endif
|
|
return bp;
|
|
}
|
|
|
|
|
|
fail::BPSingleListener*
|
|
L4SysExperiment::prepareRegisterExperiment(int ip, int offset, int dataAddress)
|
|
{
|
|
fail::BPSingleListener *bp = new BPSingleListener(0, L4SYS_ADDRESS_SPACE);
|
|
|
|
int reg, regOffset;
|
|
reg = ((dataAddress >> 4) & 0xF) + 1; // regs start at 1
|
|
regOffset = dataAddress & 0xF;
|
|
|
|
log << "\033[32;1mGPR bitflip\033[0m at instr. offset " << offset
|
|
<< " reg data (" << reg << ", "
|
|
<< regOffset << ")" << std::endl;
|
|
|
|
#ifdef L4SYS_FILTER_INSTRUCTIONS
|
|
setupFilteredBreakpoint(bp, offset);
|
|
assert(bp->getWatchInstructionPointer() == (address_t)(ip & 0xFFFFFFFF));
|
|
log << bp->getCounter() << std::endl;
|
|
#else
|
|
bp->setWatchInstructionPointer(ANY_ADDR);
|
|
bp->setCounter(instr_offset);
|
|
#endif
|
|
return bp;
|
|
}
|
|
|
|
|
|
void L4SysExperiment::doMemoryInjection(int address, int bit)
|
|
{
|
|
MemoryManager& mm = simulator.getMemoryManager();
|
|
byte_t data = mm.getByte(address);
|
|
byte_t newdata = data ^ (1 << bit);
|
|
mm.setByte(address, newdata);
|
|
log << "[" << std::hex << address << "] " << (int)data
|
|
<< " -> " << (int)newdata << std::endl;
|
|
}
|
|
|
|
|
|
void L4SysExperiment::doRegisterInjection(int regDesc, int bit)
|
|
{
|
|
int reg, offset;
|
|
reg = (regDesc >> 4) + 1; // regs start at 1
|
|
offset = regDesc & 0xF;
|
|
|
|
ConcreteCPU& cpu = simulator.getCPU(0);
|
|
Register *reg_target = cpu.getRegister(reg - 1);
|
|
regdata_t data = cpu.getRegisterContent(reg_target);
|
|
regdata_t newdata = data ^ (1 << (bit + 8 * offset));
|
|
cpu.setRegisterContent(reg_target, newdata);
|
|
log << "Reg[" << reg << "]: " << std::hex << data << " -> "
|
|
<< newdata << std::endl;
|
|
}
|
|
|
|
|
|
bool L4SysExperiment::run()
|
|
{
|
|
BPSingleListener *bp = 0;
|
|
srand(time(NULL));
|
|
|
|
log << "Starting L4Sys Experiment, phase " << PREPARATION_STEP << endl;
|
|
|
|
#if PREPARATION_STEP == 1
|
|
// STEP 1: run until interesting function starts, and save state
|
|
startAndSaveInitState(new BPSingleListener(0, L4SYS_ADDRESS_SPACE));
|
|
#elif PREPARATION_STEP == 2
|
|
// STEP 2: determine instructions executed
|
|
collectInstructionTrace(new BPSingleListener(0, L4SYS_ADDRESS_SPACE));
|
|
|
|
#elif PREPARATION_STEP == 3
|
|
// STEP 3: determine the output of a "golden run"
|
|
goldenRun(new BPSingleListener(0, L4SYS_ADDRESS_SPACE));
|
|
|
|
#elif PREPARATION_STEP == 0
|
|
// LAST STEP: The actual experiment.
|
|
validatePrerequisites();
|
|
|
|
// Read the golden run output for validation purposes
|
|
std::string golden_run;
|
|
readGoldenRun(golden_run);
|
|
|
|
getJobParameters();
|
|
|
|
int exp_type = param->msg.exp_type();
|
|
int instr_offset = param->msg.fsppilot().injection_instr();
|
|
int regData = param->msg.fsppilot().data_address();
|
|
|
|
if (exp_type == param->msg.MEM) {
|
|
bp = prepareMemoryExperiment(param->msg.fsppilot().injection_instr_absolute(),
|
|
param->msg.fsppilot().injection_instr(),
|
|
param->msg.fsppilot().data_address());
|
|
} else if (exp_type == param->msg.GPRFLIP) {
|
|
bp = prepareRegisterExperiment(param->msg.fsppilot().injection_instr_absolute(),
|
|
param->msg.fsppilot().injection_instr(),
|
|
param->msg.fsppilot().data_address());
|
|
} else {
|
|
log << "Unsupported experiment type: " << exp_type << std::endl;
|
|
terminate(1);
|
|
}
|
|
|
|
assert(bp);
|
|
|
|
for (unsigned bit = 0; bit < 8; ++bit) {
|
|
|
|
L4SysProtoMsg_Result *result = param->msg.add_result();
|
|
result->set_instr_offset(instr_offset);
|
|
|
|
simulator.clearListeners();
|
|
|
|
log << "Bit " << bit << ", restoring state." << endl;
|
|
simulator.restore(L4SYS_STATE_FOLDER);
|
|
log << " ... EIP = " << std::hex << simulator.getCPU(0).getInstructionPointer() << std::endl;
|
|
|
|
simulator.addListener(bp);
|
|
|
|
simtime_t now = simulator.getTimerTicks();
|
|
fail::BaseListener *go = waitIOOrOther(true);
|
|
assert(go == bp);
|
|
|
|
log << "Hit BP. Start time " << now << ", new time " << simulator.getTimerTicks()
|
|
<< ", diff = " << simulator.getTimerTicks() - now << std::endl;
|
|
|
|
assert(bp->getTriggerInstructionPointer() == bp->getWatchInstructionPointer());
|
|
result->set_injection_ip(bp->getTriggerInstructionPointer());
|
|
|
|
if (exp_type == param->msg.MEM) {
|
|
result->set_bit_offset(bit);
|
|
doMemoryInjection(param->msg.fsppilot().data_address(), bit);
|
|
} else if (exp_type == param->msg.GPRFLIP) {
|
|
int reg = (param->msg.fsppilot().data_address() >> 4) + 1;
|
|
result->set_register_offset(static_cast<L4SysProtoMsg_RegisterType>(reg));
|
|
result->set_bit_offset(bit + 8 * (param->msg.fsppilot().data_address() & 0xF));
|
|
doRegisterInjection(param->msg.fsppilot().data_address(), bit);
|
|
} else {
|
|
log << "doing nothing for experiment type " << exp_type << std::endl;
|
|
}
|
|
|
|
BPSingleListener ev_done(L4SYS_FUNC_EXIT, L4SYS_ADDRESS_SPACE);
|
|
simulator.addListener(&ev_done);
|
|
|
|
unsigned instr_left = L4SYS_TOTINSTR - instr_offset; // XXX offset is in NUMINSTR, TOTINSTR is higher
|
|
BPSingleListener ev_incomplete(ANY_ADDR, L4SYS_ADDRESS_SPACE);
|
|
ev_incomplete.setCounter(instr_left);
|
|
simulator.addListener(&ev_incomplete);
|
|
|
|
TimerListener ev_timeout(calculateTimeout(instr_left));
|
|
simulator.addListener(&ev_timeout);
|
|
log << "continue... (" << simulator.getListenerCount()
|
|
<< " breakpoints, timeout @ " << ev_timeout.getTimeout()
|
|
<< std::endl;
|
|
|
|
//do not discard output recorded so far
|
|
BaseListener *ev = waitIOOrOther(false);
|
|
|
|
/* copying a string object that contains control sequences
|
|
* unfortunately does not work with the library I am using,
|
|
* which is why output is passed on as C string and
|
|
* the string compare is done on C strings
|
|
*/
|
|
if (ev == &ev_done) {
|
|
if (strcmp(currentOutput.c_str(), golden_run.c_str()) == 0) {
|
|
log << "Result DONE" << endl;
|
|
result->set_resulttype(param->msg.DONE);
|
|
} else {
|
|
log << "Result WRONG" << endl;
|
|
result->set_resulttype(param->msg.WRONG);
|
|
result->set_output(sanitised(currentOutput.c_str()));
|
|
}
|
|
} else if (ev == &ev_incomplete) {
|
|
log << "Result INCOMPLETE" << endl;
|
|
result->set_resulttype(param->msg.INCOMPLETE);
|
|
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
|
|
result->set_output(sanitised(currentOutput.c_str()));
|
|
} else if (ev == &ev_timeout) {
|
|
log << "Result TIMEOUT" << endl;
|
|
result->set_resulttype(param->msg.TIMEOUT);
|
|
result->set_resultdata(simulator.getCPU(0).getInstructionPointer());
|
|
result->set_output(sanitised(currentOutput.c_str()));
|
|
} else {
|
|
log << "Result WTF?" << endl;
|
|
stringstream ss;
|
|
ss << "eventid " << ev;
|
|
terminateWithError(ss.str(), 50);
|
|
}
|
|
}
|
|
|
|
m_jc.sendResult(*param);
|
|
|
|
// XXX: Fixme to work with database campaign!
|
|
#if 0
|
|
else if (exp_type == param->msg.IDCFLIP) {
|
|
// this is a twisted one
|
|
|
|
// initial definitions
|
|
bxInstruction_c *currInstr = simulator.getCurrentInstruction();
|
|
unsigned length_in_bits = currInstr->ilen() << 3;
|
|
|
|
// get the instruction in plain text and inject the error there
|
|
// Note: we need to fetch some extra bytes into the array
|
|
// in case the faulty instruction is interpreted to be longer
|
|
// than the original one
|
|
Bit8u curr_instr_plain[MAX_INSTR_BYTES];
|
|
const Bit8u *addr = calculateInstructionAddress();
|
|
memcpy(curr_instr_plain, addr, MAX_INSTR_BYTES);
|
|
|
|
// CampaignManager has no idea of the instruction length
|
|
// (neither do we), therefore this small adaption
|
|
bit_offset %= length_in_bits;
|
|
param->msg.set_bit_offset(bit_offset);
|
|
|
|
// do some access calculation
|
|
int byte_index = bit_offset >> 3;
|
|
Bit8u bit_index = bit_offset & 7;
|
|
|
|
// apply the fault
|
|
curr_instr_plain[byte_index] ^= 0x80 >> bit_index;
|
|
|
|
// decode the instruction
|
|
bxInstruction_c bochs_instr;
|
|
memset(&bochs_instr, 0, sizeof(bxInstruction_c));
|
|
fetchInstruction(simulator.getCPUContext(), curr_instr_plain,
|
|
&bochs_instr);
|
|
|
|
// inject it
|
|
injectInstruction(currInstr, &bochs_instr);
|
|
|
|
// do the logging
|
|
logInjection();
|
|
} else if (exp_type == param->msg.RATFLIP) {
|
|
ud_type_t which = UD_NONE;
|
|
unsigned rnd = 0;
|
|
Udis86 udis(injection_ip);
|
|
do {
|
|
bxInstruction_c *currInstr = simulator.getCurrentInstruction();
|
|
udis.setInputBuffer(calculateInstructionAddress(), currInstr->ilen());
|
|
if (!udis.fetchNextInstruction()) {
|
|
terminateWithError(
|
|
"Could not decode instruction using UDIS86", 32);
|
|
}
|
|
ud_t _ud = udis.getCurrentState();
|
|
|
|
/* start Bjoern Doebel's code (slightly modified) */
|
|
/* ============================================== */
|
|
unsigned opcount = 0;
|
|
unsigned operands[4] = { ~0U, ~0U, ~0U, ~0U };
|
|
enum {
|
|
RAT_IDX_MASK = 0x0FF,
|
|
RAT_IDX_OFFSET = 0x100
|
|
};
|
|
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
/*
|
|
* Case 1: operand is a register
|
|
*/
|
|
if (_ud.operand[i].type == UD_OP_REG) {
|
|
operands[opcount++] = i;
|
|
} else if (_ud.operand[i].type == UD_OP_MEM) {
|
|
/*
|
|
* Case 2: operand is memory op.
|
|
*
|
|
* In this case, we may have 2 registers involved for the
|
|
* index-scale address calculation.
|
|
*/
|
|
if (_ud.operand[i].base != 0) // 0 if hard-wired mem operand
|
|
operands[opcount++] = i;
|
|
if (_ud.operand[i].index != 0)
|
|
operands[opcount++] = i + RAT_IDX_OFFSET;
|
|
}
|
|
}
|
|
|
|
if (opcount == 0) {
|
|
// try the next instruction
|
|
singleStep(true);
|
|
} else {
|
|
// assign the necessary variables
|
|
rnd = rand() % opcount;
|
|
|
|
if (operands[rnd] > RAT_IDX_OFFSET) {
|
|
which = _ud.operand[operands[rnd] - RAT_IDX_OFFSET].index;
|
|
} else {
|
|
which = _ud.operand[operands[rnd]].base;
|
|
}
|
|
}
|
|
/* ============================================ */
|
|
/* end Bjoern Doebel's code (slightly modified) */
|
|
|
|
} while (which == UD_NONE &&
|
|
simulator.getCPU(0).getInstructionPointer() != L4SYS_FUNC_EXIT);
|
|
|
|
if (simulator.getCPU(0).getInstructionPointer() == L4SYS_FUNC_EXIT) {
|
|
stringstream ss;
|
|
ss << "Reached the end of the experiment ";
|
|
ss << "without finding an appropriate instruction";
|
|
|
|
terminateWithError(ss.str(), 33);
|
|
}
|
|
|
|
// store the real injection point
|
|
param->msg.set_injection_ip(simulator.getCPU(0).getInstructionPointer());
|
|
|
|
// so we are able to flip the associated registers
|
|
// for details on the algorithm, see Bjoern Doebel's SWIFI/RATFlip class
|
|
|
|
// some declarations
|
|
GPRegisterId bochs_reg = Udis86::udisGPRToFailBochsGPR(which);
|
|
param->msg.set_register_offset(static_cast<L4SysProtoMsg_RegisterType>(bochs_reg + 1));
|
|
ConcreteCPU &cpu = simulator.getCPU(0);
|
|
Register *bochsRegister = cpu.getRegister(bochs_reg);
|
|
Register *exchangeRegister = NULL;
|
|
|
|
// first, decide if the fault hits a register bound to this thread
|
|
// (ten percent chance)
|
|
if (rand() % 10 == 0) {
|
|
// assure exchange of registers
|
|
unsigned int exchg_reg = rand() % 7;
|
|
if (exchg_reg == bochs_reg)
|
|
exchg_reg++;
|
|
exchangeRegister = cpu.getRegister(exchg_reg);
|
|
param->msg.set_details(l4sysRegisterConversion.output(exchg_reg + 1));
|
|
}
|
|
|
|
// prepare the fault
|
|
regdata_t data = cpu.getRegisterContent(bochsRegister);
|
|
if (rnd > 0) {
|
|
//input register - do the fault injection here
|
|
regdata_t newdata = 0;
|
|
if (exchangeRegister != NULL) {
|
|
// the data is taken from a process register chosen before
|
|
newdata = cpu.getRegisterContent(exchangeRegister);
|
|
} else {
|
|
// the data comes from an uninitialised register
|
|
newdata = rand();
|
|
stringstream ss;
|
|
ss << "0x" << hex << newdata;
|
|
param->msg.set_details(ss.str());
|
|
}
|
|
cpu.setRegisterContent(bochsRegister, newdata);
|
|
}
|
|
|
|
// execute the instruction
|
|
singleStep(true);
|
|
|
|
// restore the register if we are still in the thread
|
|
if (rnd == 0) {
|
|
// output register - do the fault injection here
|
|
if (exchangeRegister != NULL) {
|
|
// write the result into the wrong local register
|
|
regdata_t newdata = cpu.getRegisterContent(bochsRegister);
|
|
cpu.setRegisterContent(exchangeRegister, newdata);
|
|
}
|
|
// otherwise, just assume it is stored in an unused register
|
|
}
|
|
// restore the actual value of the register
|
|
// in reality, it would never have been overwritten
|
|
cpu.setRegisterContent(bochsRegister, data);
|
|
|
|
// log the injection
|
|
logInjection();
|
|
|
|
} else if (exp_type == param->msg.ALUINSTR) {
|
|
static BochsALUInstructions aluInstrObject(aluInstructions, aluInstructionsSize);
|
|
// find the closest ALU instruction after the current IP
|
|
|
|
bxInstruction_c *currInstr;
|
|
while (!aluInstrObject.isALUInstruction(
|
|
currInstr = simulator.getCurrentInstruction()) &&
|
|
simulator.getCPU(0).getInstructionPointer() != L4SYS_FUNC_EXIT) {
|
|
singleStep(true);
|
|
}
|
|
|
|
if (simulator.getCPU(0).getInstructionPointer() == L4SYS_FUNC_EXIT) {
|
|
stringstream ss;
|
|
ss << "Reached the end of the experiment ";
|
|
ss << "without finding an appropriate instruction";
|
|
|
|
terminateWithError(ss.str(), 34);
|
|
}
|
|
|
|
// store the real injection point
|
|
param->msg.set_injection_ip(simulator.getCPU(0).getInstructionPointer());
|
|
|
|
// now exchange it with a random equivalent
|
|
bxInstruction_c newInstr;
|
|
string details;
|
|
aluInstrObject.randomEquivalent(newInstr, details);
|
|
if (memcmp(&newInstr, currInstr, sizeof(bxInstruction_c)) == 0) {
|
|
// something went wrong - exit experiment
|
|
terminateWithError(
|
|
"Did not hit an ALU instruction - correct the source code please!",
|
|
40);
|
|
}
|
|
// record information on the new instruction
|
|
param->msg.set_details(details);
|
|
|
|
// inject it
|
|
injectInstruction(currInstr, &newInstr);
|
|
|
|
// do the logging
|
|
logInjection();
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
terminate(0);
|
|
// experiment successfully conducted
|
|
return true;
|
|
}
|