This change removes support for earlier LLVM versions; making them
work as well is simply too tedious.
Change-Id: I372a151279ceb2bfd6de101c9e0c15f0a4b18c03
- search for libdwarf.h in new locations (e.g., /usr/include/libdwarf/)
- build Bochs with -std=gnu++98 (gnu++14 is default since GCC 6.1)
- specify "proto2" syntax for protobuf messages
- minor build-system and C++ namespace fixes
Change-Id: I16dbc622c797ef8e936fe3c0fb9b03029d27529d
This change touches several subsystems, tools and experiments
(sal, util, cmake, import-trace, generic-tracing, nanojpeg), and
changes details not worth separate commits.
Change-Id: Icd1d664d1be5cfc2212dbf77801c271183214d08
This tool can now import extended trace information with the
--extended-trace command-line parameter. The existing importers cease
using artificial access_info_t objects in favor of passing through the
original Trace_Event wherever possible. This allows us to import
extended trace information for all importers.
Change-Id: I3613e9d05d5e69ad49e96f4dc5ba0b1c4ef95a11
Contemporary AspectC++ versions can deal with the LLVM headers very
well, and #ifdef __puma stuff in Fail* headers results in
unmaintainable #ifdef __puma blocks in other parts of Fail* (e.g., the
trace importer).
Make sure you're using a 64-bit ac++ when living in a 64-bit userland
(the 32-bit version doesn't know about __int128), and be aware that
AspectC++ r325 introduced a regression that has not been fixed yet.
Change-Id: I5bb759b08995a74b020d44a2b40e9d7a6e18111c
This was necessary because LLVM 3.1's
ELFObjectFile<ELFT>::sectionContainsSymbolsectionContainsSymbol() (needed
for proper functioning of our LLVM disassembler, unless you're using
-ffunction-sections) is "unimplemented".
Change-Id: I81112627ebd1c92b718ac6f4ed58d7f188aedf0c
The random jump importer defines trace events, that indicate all
possible jumps into a specific instruction range. The region where
jumps should start can be defined by a memory map given with
--jump-from. For each instruction declared in that memory range, all
possible jumps to a memory region specified by with --jump-to are
inserted. The target of the jump is saved in the data_address
field. So all database tools work as expected.
for each event E \in region(--jump-from):
foreach Instruction in region(--jump-to):
insert_trace(injection_instr = E.IP(), data_address = Instruction.addr)
Change-Id: Ie163968acae47fc6c946fc77774c47ee07950bab