experiments/dciao-kernelstructs: new database driven experiment for DCiAO

The dciao-kernelstructs experiment does a trace imported by the
DCiAOKernelImporter:

   bin/import-trace -t trace.pb  -i DCiAOKernelImporter --elf-file app.elf

Pruned by the basic method:

   bin/prune-trace

and does CiAO fault injection experiments, where the results are
stored in the database.

Change-Id: I485dc2e5097b3ebaf354241f474ee3d317213707
This commit is contained in:
Christian Dietrich
2013-03-26 17:12:14 +01:00
parent bd8636b0e8
commit c24ed774b0
14 changed files with 622 additions and 42 deletions

View File

@ -0,0 +1,378 @@
#include <iostream>
#include <fstream>
// getpid
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include "experiment.hpp"
#include "sal/SALConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/Memory.hpp"
#include "sal/Listener.hpp"
#include "sal/bochs/BochsListener.hpp"
#include <string>
#include <vector>
#include <set>
#include "campaign.hpp"
#include "dciao_kernel.pb.h"
using namespace std;
using namespace fail;
#define SAFESTATE (1)
// Check if configuration dependencies are satisfied:
#if !defined(CONFIG_EVENT_BREAKPOINTS) || !defined(CONFIG_SR_RESTORE) || \
!defined(CONFIG_SR_SAVE)
#error This experiment needs: breakpoints, traps, save, and restore. Enable these in the configuration.
#endif
unsigned DCIAOKernelStructs::injectBitFlip(address_t data_address, unsigned bitpos){
MemoryManager& mm = simulator.getMemoryManager();
unsigned int value, injectedval;
value = mm.getByte(data_address);
injectedval = value ^ (1 << bitpos);
mm.setByte(data_address, injectedval);
m_log << "INJECTION at: 0x" << hex << setw(2) << setfill('0') << data_address
<< " value: 0x" << setw(2) << setfill('0') << value << " -> 0x" << setw(2) << setfill('0') << injectedval << endl;
return value;
}
void handleEvent(DCIAOKernelProtoMsg_Result& result, DCIAOKernelProtoMsg_Result_ResultType restype, const std::string &msg) {
cout << msg << endl;
result.set_resulttype(restype);
result.set_details(msg);
}
// void handleMemoryAccessEvent(DCIAOKernelExperimentData& param, const fail::MemAccessListener& l_mem) {
// stringstream sstr;
// sstr << "mem access (";
// switch (l_mem.getTriggerAccessType()) {
// case MemAccessEvent::MEM_READ:
// sstr << "r";
// break;
// case MemAccessEvent::MEM_WRITE:
// sstr << "w";
// break;
// default: break;
// }
// sstr << ") @ 0x" << hex << l_mem.getTriggerAddress();
// sstr << " ip @ 0x" << hex << l_mem.getTriggerInstructionPointer();
// handleEvent(param, param.msg.ERR_MEMACCESS, sstr.str());
// }
DCIAOKernelStructs::time_markers_t *DCIAOKernelStructs::getTimeMarkerList() {
const ElfSymbol & sym_time_marker_index = m_elf.getSymbol("time_marker_index");
const ElfSymbol & sym_time_markers = m_elf.getSymbol("time_markers");
assert(sym_time_marker_index.isValid());
assert(sym_time_markers.isValid());
unsigned int time_marker_index;
simulator.getMemoryManager().getBytes(sym_time_marker_index.getAddress(),
sym_time_marker_index.getSize(),
&time_marker_index);
if (time_marker_index > 500) {
time_marker_index = 500;
}
time_markers_t *time_markers = new time_markers_t(time_marker_index);
simulator.getMemoryManager().getBytes(sym_time_markers.getAddress(),
time_marker_index * sizeof(time_marker),
time_markers->data());
return time_markers;
}
int DCIAOKernelStructs::time_markers_compare(const time_markers_t &a, const time_markers_t &b) {
int pos = -1;
unsigned max_index = std::min(a.size(), b.size());
for (unsigned i = 0; i < max_index; i++) {
if (a[i].time != b[i].time
|| a[i].at != b[i].at) {
pos = i;
break;
}
}
if (pos == -1 && (a.size() != b.size())) {
pos = max_index;
}
return pos;
}
bool DCIAOKernelStructs::run() {
//******* Boot, and store state *******//
m_log << "STARTING EXPERIMENT" << endl;
char * statedir = getenv("FAIL_STATEDIR");
if(statedir == NULL){
m_log << "FAIL_STATEDIR not set :(" << std::endl;
simulator.terminate(1);
}
address_t minimal_ip = 0x100000; // 1 Mbyte
address_t minimal_data = 0x100000; // 1 Mbyte
address_t maximal_ip = 0;
address_t maximal_data = 0;
for (ElfReader::symbol_iterator it = m_elf.sym_begin();
it != m_elf.sym_end(); ++it) {
const ElfSymbol &symbol = *it;
if (symbol.getSymbolType() == STT_FUNC
|| symbol.getSymbolType() == STT_GNU_IFUNC /*indirect codeasm object */) {
maximal_ip = std::max(maximal_ip, symbol.getEnd());
}
maximal_data = std::max(maximal_data, symbol.getEnd());
}
std::cout << "Code section from " << hex << minimal_ip << " to " << maximal_ip << std::endl;
std::cout << "Data section from " << hex << minimal_ip << " to " << maximal_data << std::endl;
m_log << "Booting, and saving state at main";
BPSingleListener bp;
// STEP 1: run until interesting function starts, and save state
bp.setWatchInstructionPointer(m_elf.getSymbol("main").getAddress());
if(simulator.addListenerAndResume(&bp) == &bp){
m_log << "main function entry reached, saving state" << endl;
} else {
m_log << "Couldn't reach entry function. Dying" << std::endl;
simulator.terminate(1);
}
simulator.save(statedir);
guest_address_t enter_kernel_address = m_elf.getSymbol("os::dep::KernelStructs::correct").getAddress();
BPSingleListener l_enter_kernel(enter_kernel_address);
BPSingleListener l_time_marker_print(m_elf.getSymbol("time_marker_print").getAddress());
simulator.clearListeners();
simulator.addListener(&l_enter_kernel);
simulator.addListener(&l_time_marker_print);
bool in_kernelspace = false;
unsigned kernel_activations = 0;
while (1) {
fail::BaseListener *l = simulator.resume();
simulator.addListener(l);
if (l == &l_time_marker_print) {
break;
} else if (l == &l_enter_kernel) {
kernel_activations ++;
} else {
m_log << "THIS SHOULD'T HAPPEN" << std::endl;
simulator.terminate(1);
}
}
correct.time_markers = getTimeMarkerList();
correct.kernel_activation_count = kernel_activations;
assert(kernel_activations > 0);
assert(correct.time_markers->size() > 0);
m_log << "correct run is done:" << dec << std::endl;
m_log << " kernel_transitions " << correct.kernel_activation_count << std::endl;
m_log << " time_markers " << correct.time_markers->size() << std::endl;
// //******* Fault injection *******//
// // #warning "Building restore state variant"
unsigned executed_jobs = 0;
while (executed_jobs < 25 || m_jc.getNumberOfUndoneJobs() > 0) {
m_log << "asking jobserver for parameters" << endl;
DCIAOKernelExperimentData param;
if(!m_jc.getParam(param)){
m_log << "Dying." << endl; // We were told to die.
simulator.terminate(1);
}
// Get input data from Jobserver
unsigned injection_instr = param.msg.fsppilot().injection_instr();
address_t data_address = param.msg.fsppilot().data_address();
for (int bit_offset = 0; bit_offset < 8; ++bit_offset) {
// 8 results in one job
DCIAOKernelProtoMsg_Result *result = param.msg.add_result();
result->set_bitoffset(bit_offset);
m_log << "restoring state" << endl;
// Restore to the image, which starts at address(main)
simulator.restore(statedir);
executed_jobs ++;
kernel_activations = 0;
m_log << "Trying to inject @ instr #" << dec << injection_instr << endl;
if (injection_instr > 0) {
simulator.clearListeners();
// XXX could be improved with intermediate states (reducing runtime until injection)
simulator.addListener(&l_time_marker_print);
simulator.addListener(&l_enter_kernel);
bp.setWatchInstructionPointer(ANY_ADDR);
bp.setCounter(injection_instr);
simulator.addListener(&bp);
bool inject = true;
while (1) {
fail::BaseListener * listener = simulator.resume();
// finish() before FI?
if (listener == &l_time_marker_print) {
m_log << "experiment reached finish() before FI" << endl;
handleEvent(*result, result->NOINJECTION, "time_marker reached before instr2");
inject = false;
break;
} else if (listener == &l_enter_kernel) {
// Count all kernel activations
simulator.addListener(&l_enter_kernel);
kernel_activations++;
} else if (listener == &bp) {
break;
} else {
inject = false;
handleEvent(*result, result->NOINJECTION, "WTF");
break;
}
}
// Next experiment
if (!inject)
continue;
}
// Not a working sanitiy check. Because of instruction
// offsets!
//
// if (simulator.getCPU(0).getInstructionPointer() != param.msg.fsppilot().instr2_absolute()) {
// m_log << "Invalid Injection address EIP=0x"
// << std::hex << simulator.getCPU(0).getInstructionPointer()
// << " != enter_kernel=0x" << param.msg.fsppilot().instr2_absolute() << std::endl;
// simulator.terminate(1);
// }
/// INJECT BITFLIP:
result->set_original_value(injectBitFlip(data_address, bit_offset));
// // Setup exit points
BPSingleListener l_error_hook(m_elf.getSymbol("copter_mock_panic").getAddress());
TrapListener l_trap(ANY_TRAP);
TimerListener l_timeout(1000 * 1000); // 1 second in microseconds
simulator.clearListeners();
simulator.addListener(&l_enter_kernel);
simulator.addListener(&l_timeout);
simulator.addListener(&l_trap);
simulator.addListener(&l_time_marker_print);
simulator.addListener(&l_error_hook);
// jump outside text segment
BPRangeListener ev_below_text(ANY_ADDR, minimal_ip - 1);
BPRangeListener ev_beyond_text(maximal_ip + 1, ANY_ADDR);
simulator.addListener(&ev_below_text);
simulator.addListener(&ev_beyond_text);
// memory access outside of bound determined in the golden run [lowest_addr, highest_addr]
MemAccessListener ev_mem_low(0x0, MemAccessEvent::MEM_READWRITE);
ev_mem_low.setWatchWidth(minimal_data);
MemAccessListener ev_mem_high(maximal_data + 1, MemAccessEvent::MEM_READWRITE);
ev_mem_high.setWatchWidth(0xFFFFFFFFU - (maximal_data + 1));
simulator.addListener(&ev_mem_low);
simulator.addListener(&ev_mem_high);
// resume and wait for results while counting kernel
// activations
fail::BaseListener* l;
while (1) {
l = simulator.resume();
// Evaluate result
if (l == &l_enter_kernel) {
kernel_activations++;
simulator.addListener(&l_enter_kernel);
// continue experiment
} else if (l == &l_time_marker_print) {
m_log << "experiment ran to the end" << std::endl;
DCIAOKernelStructs::time_markers_t * time_markers = getTimeMarkerList();
int pos = time_markers_compare(*time_markers, *correct.time_markers);
if (pos != -1) {
m_log << "Different activation scheme" << std::endl;
m_log << " size " << std::dec << time_markers->size() << std::endl;
m_log << " at " << std::dec << pos << std::endl;
stringstream sstr;
sstr << "diff after #" << pos;
handleEvent(*result, result->ERR_DIFFERENT_ACTIVATION, sstr.str());
/* In case of an error append the activation scheme */
for (unsigned i = pos; i < time_markers->size(); ++i) {
result->add_activation_scheme( (*time_markers)[i].time );
result->add_activation_scheme( (*time_markers)[i].at );
}
} else if (kernel_activations != correct.kernel_activation_count) {
stringstream sstr;
sstr << "kernel activations " << kernel_activations << " (expt: " << correct.kernel_activation_count << ")";
handleEvent(*result, result->ERR_DIFFERENT_KERNEL_TRANSITIONS, sstr.str());
} else {
stringstream sstr;
sstr << "calc done (kernel #" << kernel_activations << ")";
handleEvent(*result, result->OK, sstr.str());
}
delete time_markers;
// End of experiment
break;
} else if (l == &l_trap) {
stringstream sstr;
sstr << "trap #" << l_trap.getTriggerNumber();
handleEvent(*result, result->TRAP, sstr.str());
break; // EOExperiment
} else if (l == &l_timeout){
handleEvent(*result, result->TIMEOUT, "timeout: 1 second");
break; // EOExperiment
} else if (l == &l_error_hook){
handleEvent(*result, result->ERR_ERROR_HOOK, "called error hook");
break; // EOExperiment
} else if (l == &ev_below_text || l == &ev_beyond_text) {
handleEvent(*result, result->ERR_OUTSIDE_TEXT, (l == &ev_below_text) ? "< .text" : ">.text");
break; // EOExperiment
} else if (l == &ev_mem_low || l == &ev_mem_high) {
handleEvent(*result, result->ERR_MEMACCESS, (l == &ev_mem_low) ? "< .data" : ">.data");
break; // EOFExperiment
} else {
handleEvent(*result, result->UNKNOWN, "UNKNOWN event");
break; // EOExperiment
}
}
simulator.clearListeners();
} // injection done, continue with next bit
m_jc.sendResult(param);
} // end while (1)
// Explicitly terminate, or the simulator will continue to run.
simulator.terminate();
}