another directory rename: failstar -> fail

"failstar" sounds like a name for a cruise liner from the 80s.  As "*" isn't a
desirable part of directory names, just name the whole thing "fail/", the core
parts being stored in "fail/core/".

Additionally fixing two build system dependency issues:
 - missing jobserver -> protomessages dependency
 - broken bochs -> fail dependency (add_custom_target DEPENDS only allows plain
   file dependencies ... cmake for the win)


git-svn-id: https://www4.informatik.uni-erlangen.de/i4svn/danceos/trunk/devel/fail@956 8c4709b5-6ec9-48aa-a5cd-a96041d1645a
This commit is contained in:
hsc
2012-03-08 19:43:02 +00:00
commit b70b6fb43a
921 changed files with 473161 additions and 0 deletions

View File

@ -0,0 +1,6 @@
# Note that we're allowing *multiple* experiments to be enabled at once.
set(EXPERIMENTS_ACTIVATED coolchecksum CACHE STRING "Activated experiments (a semicolon-separated list of fail/experiments/ subdirectories)")
foreach(experiment_name ${EXPERIMENTS_ACTIVATED})
add_subdirectory(${experiment_name})
endforeach(experiment_name)

View File

@ -0,0 +1,18 @@
#FaultCoverage experiment
set(EXPERIMENT_NAME FaultCoverageExperiment)
set(EXPERIMENT_TYPE FaultCoverageExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
#experiment sources
set(MY_EXPERIMENT_SRCS
experiment.cc
experiment.hpp
)
#### include directories ####
include_directories(${CMAKE_CURRENT_BINARY_DIR})
## build library
add_library(${EXPERIMENT_NAME} ${MY_EXPERIMENT_SRCS})

View File

@ -0,0 +1,140 @@
#include <iostream>
#include <stdint.h>
#include <sstream>
#include <cassert>
#include <time.h>
#include "experiment.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/bochs/BochsRegister.hpp"
#include "../../util/Logger.hpp"
using namespace std;
using namespace sal;
using namespace fi;
using namespace sal;
bool FaultCoverageExperiment::run()
{
/*
Experimentskizze:
- starte Gastsystem
- setze Breakpoint auf Beginn der betrachteten Funktion; warte darauf
- sichere Zustand
- iteriere über alle Register
-- iteriere über alle 32 Bit in diesem Register
--- iteriere über alle Instruktionsadressen innerhalb der betrachteten Funktion
---- setze Breakpoint auf diese Adresse; warte darauf
---- flippe Bit x in Register y
---- setze Breakpoint auf Verlassen der Funktion; warte darauf
---- bei Erreichen des Breakpoint: sichere Funktionsergebnis (irgendein bestimmtes Register)
---- lege Ergebnisdaten ab:
a) Ergebnis korrekt (im Vergleich zum bekannt korrekten Ergebnis für die Eingabe)
b) Ergebnis falsch
c) Breakpoint wird nicht erreicht, Timeout (z.B. gefangen in Endlosschleife)
d) Trap wurde ausgelöst
---- stelle zuvor gesicherten Zustand wieder her
*/
// set breakpoint at start address of the function to be analyzed ("observed");
// wait until instruction pointer reaches that address
cout << "[FaultCoverageExperiment] Setting up experiment. Allowing to start now." << endl;
BPEvent ev_func_start(INST_ADDR_FUNC_START);
simulator.addEvent(&ev_func_start);
cout << "[FaultCoverageExperiment] Waiting for function start address..." << endl;
while(simulator.waitAny() != &ev_func_start)
;
// store current state
cout << "[FaultCoverageExperiment] Saving state in ./bochs_save_point ..."; cout.flush();
simulator.save("./bochs_save_point");
cout << "done!" << endl;
// log the results on std::cout
Logger res;
cout << "[FaultCoverageExperiment] Logging results on std::cout." << endl;
RegisterManager& regMan = simulator.getRegisterManager();
// iterate over all registers
for(RegisterManager::iterator it = regMan.begin(); it != regMan.end(); it++)
{
Register* pReg = *it; // get a ptr to the current register-object
// loop over the 32 bits within this register
for(regwidth_t bitnr = 0; bitnr < pReg->getWidth(); ++bitnr)
{
// loop over all instruction addresses of observed function
for(int instr = 0; ; ++instr)
{
// clear event queues
simulator.clearEvents();
// restore previously saved simulator state
cout << "[FaultCoverageExperiment] Restoring previous simulator state..."; cout.flush();
simulator.restore("./bochs_save_point");
cout << "done!" << endl;
// breakpoint at function exit
BPEvent ev_func_end(INST_ADDR_FUNC_END);
simulator.addEvent(&ev_func_end);
// no need to continue simulation if we want to
// inject *now*
if (instr > 0) {
// breakpoint $instr instructions in the future
BPEvent ev_instr_reached(ANY_ADDR);
ev_instr_reached.setCounter(instr);
simulator.addEvent(&ev_instr_reached);
// if we reach the exit first, this round is done
if (simulator.waitAny() == &ev_func_end)
break;
}
// inject bit-flip at bit $bitnr in register $reg
regdata_t data = pReg->getData();
data ^= 1 << bitnr;
pReg->setData(data); // write back data to register
// catch traps and timeout
TrapEvent ev_trap; // any traps
simulator.addEvent(&ev_trap);
BPEvent ev_timeout(ANY_ADDR);
ev_timeout.setCounter(1000);
simulator.addEvent(&ev_timeout);
// wait for function exit, trap or timeout
BaseEvent* ev = simulator.waitAny();
if(ev == &ev_func_end)
{
// log result
#if BX_SUPPORT_X86_64
const GPRegisterId targetreg = sal::RID_RAX;
const size_t expected_size = sizeof(uint32_t)*8;
#else
const GPRegisterId targetreg = sal::RID_EAX;
const size_t expected_size = sizeof(uint64_t)*8;
#endif
Register* pEAX = simulator.getRegisterManager().getSetOfType(RT_GP)->getRegister(targetreg);
assert(expected_size == pEAX->getWidth()); // we assume to get 32(64) bits...
regdata_t result = pEAX->getData();
res << "[FaultCoverageExperiment] Reg: " << pReg->getName()
<< ", #Bit: " << bitnr << ", Instr-Idx: " << instr
<< ", Data: " << result;
}
else if(ev == &ev_trap)
res << "[FaultCoverageExperiment] Reg: " << pReg->getName()
<< ", #Bit: " << bitnr << ", Instr-Idx: " << instr
<< ", Trap#: " << ev_trap.getTriggerNumber() << " (Trap)";
else if(ev == &ev_timeout)
res << "[FaultCoverageExperiment] Reg: " << pReg->getName()
<< ", #Bit: " << bitnr << ", Instr-Idx: " << instr
<< " (Timeout)";
else
cout << "We've received an unkown event! "
<< "What the hell is going on?" << endl;
}
}
}
return (true);
}

View File

@ -0,0 +1,32 @@
#ifndef __FAULTCOVERAGE_EXPERIMENT_HPP__
#define __FAULTCOVERAGE_EXPERIMENT_HPP__
#include <iostream>
#include <fstream>
#include "AspectConfig.hpp"
#include "controller/ExperimentFlow.hpp"
#define INST_ADDR_FUNC_START 0x4ae6
#define INST_ADDR_FUNC_END 0x4be6
/*
// Check if aspect dependencies are satisfied:
#if CONFIG_EVENT_CPULOOP != 1 || CONFIG_EVENT_TRAP != 1 || \
CONFIG_SR_RESTORE != 1 || CONFIG_SR_SAVE != 1
#error At least one of the following aspect-dependencies are not satisfied: \
cpu loop, traps, save/restore. Enable aspects first (see AspectConfig.hpp)!
#endif
// This is disabled because the AspectConfig.hpp-header disables
// all aspects on default.
*/
using namespace fi;
class FaultCoverageExperiment : public ExperimentFlow
{
public:
bool run();
};
#endif // __FAULTCOVERAGE_EXPERIMENT_HPP__

View File

@ -0,0 +1,31 @@
set(EXPERIMENT_NAME MHTestCampaign)
set(EXPERIMENT_TYPE MHTestExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
MHTest.proto
)
set(MY_CAMPAIGN_SRCS
MHTestCampaign.hpp
MHTestCampaign.cc
experiment.hpp
experiment.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})
## This is the example's campaign server distributing experiment parameters
add_executable(${EXPERIMENT_NAME}-server mhcampaign.cc)
target_link_libraries(${EXPERIMENT_NAME}-server fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})

View File

@ -0,0 +1,5 @@
message MHTestData {
optional string foo = 1;
optional int32 input = 2;
optional int32 output = 3;
}

View File

@ -0,0 +1,42 @@
#include "MHTestCampaign.hpp"
#include <controller/CampaignManager.hpp>
#include <iostream>
using namespace fi;
bool MHTestCampaign::run()
{
MHExperimentData* datas[m_parameter_count];
cout << "[MHTestCampaign] Adding " << m_parameter_count << " values." << endl;
for(int i = 1; i <= m_parameter_count; i++){
datas[i] = new MHExperimentData;
datas[i]->msg.set_input(i);
campaignmanager.addParam(datas[i]);
usleep(100 * 1000); // 100 ms
}
campaignmanager.noMoreParameters();
// test results.
int f;
int res = 0;
int res2 = 0;
MHExperimentData * exp;
for(int i = 1; i <= m_parameter_count; i++){
exp = static_cast<MHExperimentData*>( campaignmanager.getDone() );
f = exp->msg.output();
// cout << ">>>>>>>>>>>>>>> Output: " << i << "^2 = " << f << endl;
res += f;
res2 += (i*i);
delete exp;
}
if (res == res2) {
cout << "TEST SUCCESSFUL FINISHED! " << "[" << res << "==" << res2 << "]" << endl;
}else{
cout << "TEST FAILED!" << " [" << res << "!=" << res2 << "]" << endl;
}
cout << "thats all... " << endl;
return true;
}

View File

@ -0,0 +1,27 @@
#ifndef __TESTCAMPAIGN_HPP__
#define __TESTCAMPAIGN_HPP__
#include <controller/Campaign.hpp>
#include "controller/ExperimentData.hpp"
#include <experiments/MHTestCampaign/MHTest.pb.h>
using namespace fi;
class MHExperimentData : public ExperimentData {
public:
MHTestData msg;
public:
MHExperimentData() : ExperimentData(&msg){ };
};
class MHTestCampaign : public Campaign {
int m_parameter_count;
public:
MHTestCampaign(int parametercount) : m_parameter_count(parametercount){};
virtual bool run();
};
#endif

View File

@ -0,0 +1,42 @@
#include "experiment.hpp"
#include "MHTestCampaign.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/Register.hpp"
#include "controller/Event.hpp"
#include <iostream>
bool MHTestExperiment::run()
{
cout << "[MHTestExperiment] Let's go" << endl;
#if 0
fi::BPEvent mainbp(0x00003c34);
sal::simulator.addEventAndWait(&mainbp);
cout << "[MHTestExperiment] breakpoint reached, saving" << endl;
sal::simulator.save("hello.main");
#else
MHExperimentData par;
if(m_jc.getParam(par)){
int num = par.msg.input();
cout << "[MHExperiment] stepping " << num << " instructions" << endl;
if (num > 0) {
fi::BPEvent nextbp(fi::ANY_ADDR);
nextbp.setCounter(num);
sal::simulator.addEventAndWait(&nextbp);
}
sal::address_t instr = sal::simulator.getRegisterManager().getInstructionPointer();
cout << "[MHTestExperiment] Reached instruction: "
<< hex << instr
<< endl;
par.msg.set_output(instr);
m_jc.sendResult(par);
} else {
cout << "No data for me? :(" << endl;
}
#endif
sal::simulator.terminate();
return true;
}

View File

@ -0,0 +1,17 @@
#ifndef __TESTEXPERIMENT_HPP__
#define __TESTEXPERIMENT_HPP__
#include "controller/ExperimentFlow.hpp"
#include "jobserver/JobClient.hpp"
class MHTestExperiment : public fi::ExperimentFlow {
fi::JobClient m_jc;
public:
MHTestExperiment(){};
~MHTestExperiment(){};
bool run();
};
#endif

View File

@ -0,0 +1,25 @@
#include "controller/CampaignManager.hpp"
#include "experiments/MHTestCampaign/MHTestCampaign.hpp"
#include <iostream>
#include <cstdlib>
using namespace std;
int main(int argc, char**argv){
int paramcount = 0;
if(argc == 2){
paramcount = atoi(argv[1]);
}else{
paramcount = 10;
}
cout << "Running MHTestCampaign [" << paramcount << " parameter sets]" << endl;
MHTestCampaign mhc(paramcount);
campaignmanager.runCampaign(&mhc);
cout << "Campaign complete." << endl;
return 0;
}

View File

@ -0,0 +1,15 @@
set(EXPERIMENT_NAME TracingTest)
set(EXPERIMENT_TYPE TracingTest)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
set(MY_CAMPAIGN_SRCS
experiment.hpp
experiment.cc
)
include_directories(${CMAKE_CURRENT_BINARY_DIR})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})

View File

@ -0,0 +1,79 @@
#include <iostream>
#include "SAL/SALInst.hpp"
#include "SAL/Register.hpp"
#include "experiment.hpp"
#include "plugins/tracing/TracingPlugin.hpp"
/*
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/io/gzip_stream.h>
*/
using std::cout;
using std::endl;
using namespace fi;
using namespace sal;
bool TracingTest::run()
{
cout << "[TracingTest] Setting up experiment" << endl;
#if 1
// STEP 1: run until interesting function starts, and save state
BPEvent breakpoint(0x00101658);
simulator.addEventAndWait(&breakpoint);
cout << "[TracingTest] main() reached, saving" << endl;
simulator.save("state");
#else
// STEP 2: test tracing plugin
simulator.restore("state");
cout << "[TracingTest] enabling tracing" << endl;
TracingPlugin tp;
tp.setOstream(&cout);
Trace trace;
tp.setTraceMessage(&trace);
// this must be done *after* configuring the plugin:
simulator.addFlow(&tp);
cout << "[TracingTest] tracing 1000000 instructions" << endl;
BPEvent timeout(fi::ANY_ADDR);
timeout.setCounter(1000000);
simulator.addEvent(&timeout);
InterruptEvent ie(fi::ANY_INTERRUPT);
while (simulator.addEventAndWait(&ie) != &timeout) {
cout << "INTERRUPT #" << ie.getTriggerNumber() << "\n";
}
cout << "[TracingTest] disabling tracing (trace size: "
<< std::dec << trace.ByteSize() << " bytes)\n";
simulator.removeFlow(&tp);
/*
// serialize trace to file
std::ofstream of("trace.pb");
if (of.fail()) { return false; }
trace.SerializeToOstream(&of);
of.close();
// serialize trace to gzip-compressed file
int fd = open("trace.pb.gz", O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (!fd) { return false; }
google::protobuf::io::FileOutputStream fo(fd);
google::protobuf::io::GzipOutputStream::Options options;
options.compression_level = 9;
google::protobuf::io::GzipOutputStream go(&fo, options);
trace.SerializeToZeroCopyStream(&go);
go.Close();
fo.Close();
*/
#endif
cout << "[TracingTest] Finished." << endl;
simulator.terminate();
return true;
}

View File

@ -0,0 +1,12 @@
#ifndef __TRACING_TEST_HPP__
#define __TRACING_TEST_HPP__
#include "controller/ExperimentFlow.hpp"
class TracingTest : public fi::ExperimentFlow
{
public:
bool run();
};
#endif /* __TRACING_TEST_HPP__ */

View File

@ -0,0 +1,36 @@
#include <iostream>
#include "DataRetrievalExperiment.hpp"
#include "../SAL/SALInst.hpp"
#include "../controller/Event.hpp"
#include "ExperimentDataExample/FaultCoverageExperiment.pb.h"
using std::cout;
using std::endl;
using std::hex;
#define MEMTEST86_BREAKPOINT 0x4EDC
bool DataRetrievalExperiment::run()
{
cout << "[getExperimentDataExperiment] Experiment start." << endl;
// Breakpoint address for Memtest86:
fi::BPEvent mainbp(MEMTEST86_BREAKPOINT);
sal::simulator.addEventAndWait(&mainbp);
cout << "[getExperimentDataExperiment] Breakpoint reached." << endl;
FaultCoverageExperimentData* test = NULL;
cout << "[getExperimentDataExperiment] Getting ExperimentData (FaultCoverageExperiment)..." << endl;
test = sal::simulator.getExperimentData<FaultCoverageExperimentData>();
cout << "[getExperimentDataExperiment] Content of ExperimentData (FaultCoverageExperiment):" << endl;
if(test->has_data_name())
cout << "Name: "<< test->data_name() << endl;
// m_instrptr1 augeben
cout << "m_instrptr1: " << hex << test->m_instrptr1() << endl;
// m_instrptr2 augeben
cout << "m_instrptr2: " << hex << test->m_instrptr2() << endl;
return (true); // experiment successful
}

View File

@ -0,0 +1,14 @@
#ifndef __DATA_RETRIEVAL_EXPERIMENT_HPP__
#define __DATA_RETRIEVAL_EXPERIMENT_HPP__
#include "../controller/ExperimentFlow.hpp"
class DataRetrievalExperiment : public fi::ExperimentFlow
{
public:
DataRetrievalExperiment() { }
bool run();
};
#endif /* __DATA_RETRIEVAL_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,19 @@
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
FaultCoverageExperiment.proto
)
set(SRCS
example.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRNET_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS} )
## Build library
add_library(fcexperimentmessage ${PROTO_SRCS} ${SRCS} )

View File

@ -0,0 +1,7 @@
message FaultCoverageExperimentData{
optional string data_name = 1;
required int64 m_InstrPtr1 = 2;
required int64 m_InstrPtr2 = 3;
}

View File

@ -0,0 +1,3 @@
#!/bin/bash
cd $(dirname $0)
g++ ../../controller/JobServer.cc ../../controller/ExperimentDataQueue.cc example.cc FaultCoverageExperiment.pb.cc -o ./ExperimentData_example -l protobuf -pthread

View File

@ -0,0 +1,89 @@
#include <iostream>
#include <fstream>
#include "controller/ExperimentData.hpp"
#include "controller/ExperimentDataQueue.hpp"
#include "jobserver/JobServer.hpp"
#include "FaultCoverageExperiment.pb.h"
using namespace std;
int main(int argc, char* argv[]){
fi::ExperimentDataQueue exDaQu;
fi::ExperimentData* readFromQueue;
//Daten in Struktur schreiben und in Datei speichern
ofstream fileWrite;
fileWrite.open("test.txt");
FaultCoverageExperimentData faultCovExWrite;
//Namen setzen
faultCovExWrite.set_data_name("Testfall 42");
//Instruktionpointer 1
faultCovExWrite.set_m_instrptr1(0x4711);
//Instruktionpointer 2
faultCovExWrite.set_m_instrptr2(0x1122);
//In ExperimentData verpacken
fi::ExperimentData exDaWrite(&faultCovExWrite);
//In Queue einbinden
exDaQu.addData(&exDaWrite);
//Aus Queue holen
if(exDaQu.size() != 0)
readFromQueue = exDaQu.getData();
//Serialisierung ueber Wrapper-Methode in ExperimentData
readFromQueue->serialize(&fileWrite);
//cout << "Ausgabe: " << out << endl;
fileWrite.close();
//-------------------------------------------------------------------------------------------------
//Daten aus Datei lesen und in Struktur schreiben
ifstream fileRead;
fileRead.open("test.txt");
FaultCoverageExperimentData faultCovExRead;
fi::ExperimentData exDaRead(&faultCovExRead);
exDaRead.unserialize( &fileRead);
//Wenn Name, dann ausgeben
if(faultCovExRead.has_data_name()){
cout << "Name: "<< faultCovExRead.data_name() << endl;
}
//m_instrptr1 augeben
cout << "m_instrptr1: " << faultCovExRead.m_instrptr1() << endl;
//m_instrptr2 augeben
cout << "m_instrptr2: " << faultCovExRead.m_instrptr2() << endl;
fileRead.close();
return 0;
}

View File

@ -0,0 +1,80 @@
#ifndef __JUMP_AND_RUN_EXPERIMENT_HPP__
#define __JUMP_AND_RUN_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 07.11.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "../SAL/bochs/BochsRegister.hpp"
#include "../AspectConfig.hpp"
// Check if aspect dependencies are satisfied:
#if CONFIG_EVENT_CPULOOP != 1 || CONFIG_EVENT_JUMP != 1
#error Breakpoint- and jump-events needed! Enable aspects first (see AspectConfig.hpp)!
#endif
using namespace fi;
using namespace std;
using namespace sal;
class JumpAndRunExperiment : public fi::ExperimentFlow
{
public:
bool run()
{
/************************************
* Description of experiment flow. *
************************************/
// Wait for function entry adresss:
cout << "[JumpAndRunExperiment] Setting up experiment. Allowing to "
<< "start now." << endl;
BPEvent mainFuncEntry(0x3c1f);
simulator.addEvent(&mainFuncEntry);
if(&mainFuncEntry != simulator.waitAny())
{
cerr << "[JumpAndRunExperiment] Now, we are completely lost! "
<< "It's time to cry! :-(" << endl;
return (false);
}
else
cout << "[JumpAndRunExperiment] Entry of main function reached! "
<< " Let's see who's jumping around here..." << endl;
const unsigned COUNTER = 20000;
unsigned i = 0;
BxFlagsReg* pFlags = dynamic_cast<BxFlagsReg*>(simulator.
getRegisterManager().getSetOfType(RT_ST).snatch());
assert(pFlags != NULL && "FATAL ERROR: NULL ptr not expected!");
JumpEvent ev;
// Catch the next "counter" jumps:
while(++i <= COUNTER)
{
ev.setWatchInstructionPointer(ANY_INSTR);
simulator.addEvent(&ev);
if(simulator.waitAny() != &ev)
{
cerr << "[JumpAndRunExperiment] Damn! Something went "
<< "terribly wrong! Who added that event?! :-(" << endl;
return (false);
}
else
cout << "[JumpAndRunExperiment] Jump detected. Instruction: "
<< "0x" hex << ev.getTriggerInstructionPointer()
<< " -- FLAGS [CF, ZF, OF, PF, SF] = ["
<< pFlags->getCarryFlag() << ", "
<< pFlags->getZeroFlag() << ", "
<< pFlags->getOverflowFlag() << ", "
<< pFlags->getParityFlag() << ", "
<< pFlags->getSignFlag() << "]." << endl;
}
cout << "[JumpAndRunExperiment] " << dec << counter
<< " jump(s) detected -- enough for today...exiting! :-)"
<< endl;
return (true);
}
};
#endif /* __JUMP_AND_RUN_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,76 @@
#ifndef __MEM_WRITE_EXPERIMENT_HPP__
#define __MEM_WRITE_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 16.06.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "../AspectConfig.hpp"
// Check aspect dependencies:
#if CONFIG_EVENT_CPULOOP != 1 || CONFIG_EVENT_MEMACCESS != 1 || CONFIG_SR_SAVE != 1 || CONFIG_FI_MEM_ACCESS_BITFLIP != 1
#error Event dependecies not satisfied! Enabled needed aspects in AspectConfig.hpp!
#endif
using namespace fi;
using namespace std;
using sal::simulator;
class MemWriteExperiment : public ExperimentFlow
{
public:
bool run() // Example experiment (defines "what we wanna do")
{
/************************************
* Description of experiment flow. *
************************************/
// 1. Add some events (set up the experiment):
cout << "[MemWriteExperiment] Setting up experiment. Allowing to"
<< " start now." << endl;
MemWriteEvent mem1(0x000904F0), mem2(0x02ff0916), mem3(0x0050C8E8);
BPEvent breakpt(0x4ae6);
simulator.addEvent(&mem1);
simulator.addEvent(&mem2);
simulator.addEvent(&mem3);
simulator.addEvent(&breakpt);
// 2. Wait for event condition "(id1 && id2) || id3" to become true:
cout << "[MemWriteExperiment] Waiting for condition (1) (\"(id1 &&"
<< " id2) || id3\") to become true..." << endl;
bool f1 = false, f2 = false, f3 = false, f4 = false;
while(!(f1 || f2 || f3 || f4))
{
BPEvent* pev = simulator.waitAny();
cout << "[MemWriteExperiment] Received event id=" << id
<< "." << endl;
if(pev == &mem4)
f4 = true;
if(pev == &mem3)
f3 = true;
if(pev == &mem2)
f2 = true;
if(pev == &mem1)
f1 = true;
}
cout << "[MemWriteExperiment] Condition (1) satisfied! Ready to "
<< "add next event..." << endl;
// 3. Add a new event now:
cout << "[MemWriteExperiment] Adding new Event..."; cout.flush();
simulator.clearEvents(); // remove residual events in the buffer
// (we're just interested in the new event)
simulator.save("./bochs_save_point");
cout << "done!" << endl;
// 4. Continue simulation (waitAny) and inject bitflip:
// ...
return (true);
}
};
#endif /* __MEM_WRITE_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,64 @@
#ifndef __MY_EXPERIMENT_HPP__
#define __MY_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 16.06.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
using namespace fi;
using namespace std;
using sal::simulator;
class MyExperiment : public fi::ExperimentFlow
{
public:
bool run() // Example experiment (defines "what we wanna do")
{
/************************************
* Description of experiment flow. *
************************************/
// 1. Add some events (set up the experiment):
cout << "[MyExperiment] Setting up experiment. Allowing to start"
<< " now." << endl;
BPEvent ev1(0x8048A00), ev2(0x8048F01), ev3(0x3c1f);
simulator.addEvent(&ev1);
simulator.addEvent(&ev2);
simulator.addEvent(&ev3);
// 2. Wait for event condition "(id1 && id2) || id3" to become true:
BPEvent* pev;
cout << "[MyExperiment] Waiting for condition (1) (\"(id1 && id2)"
<< " || id3\") to become true..." << endl;
bool f1 = false, f2 = false, f3 = false;
while(!((f1 && f2) || f3))
{
pev = simulator.waitAny();
cout << "[MyExperiment] Received event id=" << pev->getId()
<< "." << endl;
if(pev == &ev3)
f3 = true;
if(pev == &ev2)
f2 = true;
if(pev == &ev1)
f1 = true;
}
cout << "[MyExperiment] Condition (1) satisfied! Ready..." << endl;
// Remove residual (for all active experiments!)
// events in the buffer:
simulator.clearEvents();
BPEvent foobar(ANY_ADDR);
foobar.setCounter(400);
cout << "[MyExperiment] Adding breakpoint-event, firing after the"
<< " next 400 instructions..."; cout.flush();
simulator.addEventAndWait(&foobar);
cout << "cought! Exiting now." << endl;
return (true);
}
};
#endif /* __MY_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,64 @@
#ifndef __SINGLE_STEPPING_EXPERIMENT_HPP__
#define __SINGLE_STEPPING_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 09.11.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "../AspectConfig.hpp"
#include "../SAL/bochs/BochsRegister.hpp"
// Check if aspect dependency is satisfied:
#if CONFIG_EVENT_CPULOOP != 1
#error Breakpoint-events needed! Enable aspect first (see AspectConfig.hpp)!
#endif
using namespace fi;
using namespace std;
using namespace sal;
#define FUNCTION_ENTRY_ADDRESS 0x3c1f
class SingleSteppingExperiment : public fi::ExperimentFlow
{
public:
bool run()
{
/************************************
* Description of experiment flow. *
************************************/
// Wait for function entry adresss:
cout << "[SingleSteppingExperiment] Setting up experiment. Allowing"
<< " to start now." << endl;
BPEvent mainFuncEntry(FUNCTION_ENTRY_ADDRESS);
simulator.addEvent(&mainFuncEntry);
if(&mainFuncEntry != simulator.waitAny())
{
cerr << "[SingleSteppingExperiment] Now, we are completely lost!"
<< " It's time to cry! :-(" << endl;
return (false);
}
cout << "[SingleSteppingExperiment] Entry of main function reached!"
<< " Beginning single-stepping..." << endl;
char action;
while(true)
{
BPEvent bp(ANY_ADDR);
simulator.addEvent(&bp);
simulator.waitAny();
cout << "0x" << hex
<< simulator.getRegisterManager().getInstructionPointer()
<< endl;
cout << "Continue (y/n)? ";
cin >> action; cin.sync(); cin.clear();
if(action != 'y')
break;
}
return (true);
}
};
#endif /* __SINGLE_STEPPING_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,16 @@
#ifndef __INSTANTIATE_EXPERIMENT_AH__
#define __INSTANTIATE_EXPERIMENT_AH__
// copy this file to a .ah file and instantiate the experiment(s) you need
#include "hscsimple.hpp"
#include "../SAL/SALInst.hpp"
aspect hscsimple {
hscsimpleExperiment experiment;
advice execution ("void sal::SimulatorController::initExperiments()") : after () {
sal::simulator.addFlow(&experiment);
}
};
#endif // __INSTANTIATE_EXPERIMENT_AH__

View File

@ -0,0 +1,31 @@
set(EXPERIMENT_NAME checksum-oostubs)
set(EXPERIMENT_TYPE CoolChecksumExperiment) # FIXME naming conflict
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
checksum-oostubs.proto
)
set(MY_CAMPAIGN_SRCS
experiment.hpp
experiment.cc
campaign.hpp
campaign.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})
## This is the example's campaign server distributing experiment parameters
add_executable(${EXPERIMENT_NAME}-server main.cc)
target_link_libraries(${EXPERIMENT_NAME}-server ${EXPERIMENT_NAME} fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})

View File

@ -0,0 +1 @@
../../util/MemoryMap.hpp

View File

@ -0,0 +1,140 @@
#include <iostream>
#include "campaign.hpp"
#include "experimentInfo.hpp"
#include "controller/CampaignManager.hpp"
#include "util/Logger.hpp"
using namespace fi;
using std::endl;
char const * const results_csv = "chksumoostubs.csv";
//TODO: generate new values for the updated experiment
const unsigned memoryMap[49][2] = {
{0x109134, 4},
{0x10913c, 4},
{0x109184, 4},
{0x1091cc, 1},
{0x109238, 256},
{0x109344, 4},
{0x109350, 4},
{0x109354, 4},
{0x109368, 1},
{0x109374, 4},
{0x109388, 1},
{0x109398, 4},
{0x1093a0, 4},
{0x1093b4, 4},
{0x1093b8, 4},
{0x1093c0, 4},
{0x1093d0, 4},
{0x1093dc, 4},
{0x1093e0, 4},
{0x1093e8, 1},
{0x1093f0, 4},
{0x1093f4, 4},
{0x10a460, 4},
{0x10a468, 4},
{0x10a470, 4},
{0x10a478, 4},
{0x10a480, 4},
{0x10a488, 4},
{0x10a494, 4},
{0x10a498, 4},
{0x10a4a8, 4},
{0x10a4ad, 1},
{0x10a4b4, 4},
{0x10a4b8, 4},
{0x10a4c8, 4},
{0x10a4cd, 1},
{0x10a4d4, 4},
{0x10a4d8, 4},
{0x10a4e8, 4},
{0x10a4ed, 1},
{0x10a4f4, 4},
{0x10a4f8, 4},
{0x10a500, 4},
{0x10d350, 4},
{0x10d358, 4},
{0x10d37c, 4},
{0x10d384, 4},
{0x10d3a8, 4},
{0x10d3b0, 4},
};
bool CoolChecksumCampaign::run()
{
Logger log("CoolChecksumCampaign");
ifstream test(results_csv);
if (test.is_open()) {
log << results_csv << " already exists" << endl;
return false;
}
ofstream results(results_csv);
if (!results.is_open()) {
log << "failed to open " << results_csv << endl;
return false;
}
log << "startup" << endl;
unsigned count = 0;
for(int member = 0; member < 49; ++member){ //TODO: 49 -> constant
for (int bit_offset = 0; bit_offset < (memoryMap[member][1])*8; ++bit_offset) {
for (int instr_offset = 0; instr_offset < OOSTUBS_NUMINSTR; ++instr_offset) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
d->msg.set_instr_offset(instr_offset);
d->msg.set_mem_addr(memoryMap[member][0]);
d->msg.set_bit_offset(bit_offset);
fi::campaignmanager.addParam(d);
++count;
}
}
}
#if 0
for (int bit_offset = 0; bit_offset < COOL_ECC_OBJUNDERTEST_SIZE*8; ++bit_offset) {
for (int instr_offset = 0; instr_offset < OOSTUBS_NUMINSTR; ++instr_offset) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
d->msg.set_instr_offset(instr_offset);
d->msg.set_mem_addr(0x0);
d->msg.set_bit_offset(bit_offset);
fi::campaignmanager.addParam(d);
++count;
}
}
#endif
fi::campaignmanager.noMoreParameters();
log << "done enqueueing parameter sets (" << count << ")." << endl;
// collect results
CoolChecksumExperimentData *res;
int rescount = 0;
results << "injection_ip\tinstr_offset\tinjection_bit\tresulttype\tresultdata\terror_corrected\tdetails" << endl;
while ((res = static_cast<CoolChecksumExperimentData *>(fi::campaignmanager.getDone()))) {
rescount++;
results
<< res->msg.injection_ip() << "\t"
<< res->msg.instr_offset() << "\t"
<< res->msg.mem_addr() << "\t"
<< res->msg.bit_offset() << "\t"
<< res->msg.resulttype() << "\t"
<< res->msg.resultdata() << "\t"
<< res->msg.error_corrected() << "\t"
<< res->msg.details() << "\n";
delete res;
}
log << "done. sent " << count << " received " << rescount << endl;
results.close();
return true;
}

View File

@ -0,0 +1,20 @@
#ifndef __COOLCAMPAIGN_HPP__
#define __COOLCAMPAIGN_HPP__
#include "controller/Campaign.hpp"
#include "controller/ExperimentData.hpp"
#include "checksum-oostubs.pb.h"
class CoolChecksumExperimentData : public fi::ExperimentData {
public:
OOStuBSProtoMsg msg;
CoolChecksumExperimentData() : fi::ExperimentData(&msg) {}
};
class CoolChecksumCampaign : public fi::Campaign {
public:
virtual bool run();
};
#endif

View File

@ -0,0 +1,29 @@
message OOStuBSProtoMsg {
// parameters
required int32 instr_offset = 1;
required int32 mem_addr = 2;
required int32 bit_offset = 3;
// results
// make these optional to reduce overhead for server->client communication
enum ResultType {
CALCDONE = 1;
TIMEOUT = 2;
TRAP = 3;
UNKNOWN = 4;
}
// instruction pointer where injection was done
optional uint32 injection_ip = 4;
// result type, see above
optional ResultType resulttype = 5;
// result data, depending on resulttype:
// CALCDONE: resultdata = calculated value
// TIMEOUT: resultdata = latest EIP
// TRAP: resultdata = latest EIP
// UNKNOWN: resultdata = latest EIP
optional uint32 resultdata = 6;
// did ECC correct the fault?
optional int32 error_corrected = 7;
// optional textual description of what happened
optional string details = 8;
}

View File

@ -0,0 +1,180 @@
#include <iostream>
#include "util/Logger.hpp"
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "campaign.hpp"
#include "SAL/SALConfig.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/Memory.hpp"
#include "SAL/bochs/BochsRegister.hpp"
#include "controller/Event.hpp"
#include "checksum-oostubs.pb.h"
using std::endl;
bool CoolChecksumExperiment::run()
{
#if BX_SUPPORT_X86_64
int targetreg = sal::RID_RDX;
#else
int targetreg = sal::RID_EDX;
#endif
Logger log("Checksum-OOStuBS", false);
fi::BPEvent bp;
log << "startup" << endl;
#if 1
fi::GuestEvent g;
while (true) {
sal::simulator.addEventAndWait(&g);
std::cout << g.getData() << std::flush;
}
#elif 0
// STEP 1: run until interesting function starts, and save state
bp.setWatchInstructionPointer(OOSTUBS_FUNC_ENTRY);
sal::simulator.addEventAndWait(&bp);
log << "test function entry reached, saving state" << endl;
log << "EIP = " << std::hex << bp.getTriggerInstructionPointer() << " or " << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
log << "error_corrected = " << std::dec << ((int)sal::simulator.getMemoryManager().getByte(OOSTUBS_ERROR_CORRECTED)) << endl;
sal::simulator.save("checksum-oostubs.state");
#elif 1
// STEP 2: determine # instructions from start to end
log << "restoring state" << endl;
sal::simulator.restore("checksum-oostubs.state");
log << "EIP = " << std::hex << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
// make sure the timer interrupt doesn't disturb us
//sal::simulator.deactivateTimer(0); // leave it on, explicitly
unsigned count;
bp.setWatchInstructionPointer(fi::ANY_ADDR);
for (count = 0; bp.getTriggerInstructionPointer() != OOSTUBS_FUNC_DONE; ++count) {
//for (count = 0; count < OOSTUBS_NUMINSTR; ++count) { //TODO?
sal::simulator.addEventAndWait(&bp);
//log << "EIP = " << std::hex << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
}
log << "experiment finished after " << count << " instructions" << endl;
unsigned char results[OOSTUBS_RESULTS_BYTES];
for(int i=0; i<OOSTUBS_RESULTS_BYTES; ++i){
results[i] = (unsigned)sal::simulator.getMemoryManager().getByte(OOSTUBS_RESULTS_ADDR + i);
}
for(int i=0; i<OOSTUBS_RESULTS_BYTES/4; ++i){
log << "results[" << i << "]: " << std::hex << *(((unsigned*)results)+i) << endl;
}
#elif 1
// FIXME consider moving experiment repetition into Fail* or even the
// SAL -- whether and how this is possible with the chosen backend is
// backend specific
for (int i = 0; i < 20; ++i) {
// STEP 3: The actual experiment.
log << "restoring state" << endl;
sal::simulator.restore("coolecc.state");
log << "asking job server for experiment parameters" << endl;
CoolChecksumExperimentData param;
if (!m_jc.getParam(param)) {
log << "Dying." << endl;
// communicate that we were told to die
sal::simulator.terminate(1);
}
int id = param.getWorkloadID();
int instr_offset = param.msg.instr_offset();
int bit_offset = param.msg.bit_offset();
log << "job " << id << " instr " << instr_offset << " bit " << bit_offset << endl;
// FIXME could be improved (especially for backends supporting
// breakpoints natively) by utilizing a previously recorded instruction
// trace
bp.setWatchInstructionPointer(fi::ANY_ADDR);
for (int count = 0; count < instr_offset; ++count) {
sal::simulator.addEventAndWait(&bp);
}
// inject
sal::guest_address_t inject_addr = COOL_ECC_OBJUNDERTEST + bit_offset / 8;
sal::MemoryManager& mm = sal::simulator.getMemoryManager();
sal::byte_t data = mm.getByte(inject_addr);
sal::byte_t newdata = data ^ (1 << (bit_offset % 8));
mm.setByte(inject_addr, newdata);
// note at what IP we did it
int32_t injection_ip = sal::simulator.getRegisterManager().getInstructionPointer();
param.msg.set_injection_ip(injection_ip);
log << "inject @ ip " << injection_ip
<< " offset " << std::dec << (bit_offset / 8)
<< " (bit " << (bit_offset % 8) << ") 0x"
<< std::hex << ((int)data) << " -> 0x" << ((int)newdata) << endl;
// aftermath
fi::BPEvent ev_done(COOL_ECC_CALCDONE);
sal::simulator.addEvent(&ev_done);
fi::BPEvent ev_timeout(fi::ANY_ADDR);
ev_timeout.setCounter(COOL_ECC_NUMINSTR + 3000);
sal::simulator.addEvent(&ev_timeout);
fi::TrapEvent ev_trap(fi::ANY_TRAP);
sal::simulator.addEvent(&ev_trap);
fi::BaseEvent* ev = sal::simulator.waitAny();
if (ev == &ev_done) {
int32_t data = sal::simulator.getRegisterManager().getSetOfType(sal::RT_GP).getRegister(targetreg)->getData();
log << std::dec << "Result EDX = " << data << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_CALCDONE);
param.msg.set_resultdata(data);
} else if (ev == &ev_timeout) {
log << std::dec << "Result TIMEOUT" << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_TIMEOUT);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
} else if (ev == &ev_trap) {
log << std::dec << "Result TRAP #" << ev_trap.getTriggerNumber() << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_TRAP);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
} else {
log << std::dec << "Result WTF?" << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_UNKNOWN);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
std::stringstream ss;
ss << "eventid " << ev << " EIP " << sal::simulator.getRegisterManager().getInstructionPointer();
param.msg.set_details(ss.str());
}
int32_t error_corrected = sal::simulator.getMemoryManager().getByte(COOL_ECC_ERROR_CORRECTED);
param.msg.set_error_corrected(error_corrected);
m_jc.sendResult(param);
}
#endif
// FIXME We currently need to explicitly terminate. See below.
sal::simulator.terminate();
// FIXME Simply returning currently fails, because afterwards
// a) the ExperimentFlow base class cleans up this experiment's
// remaining events,
// b) the CoroutineManager deletes this coroutine and frees the
// associated stack (and in particular the memory the event that
// most recently activated us lies in),
// c) BochsController tries to dynamic_cast<fi::BPRangeEvent*>(pBase)
// this very event (bochs/Controller.cc:112).
// This could be partially fixed by adding a "continue;" to the first
// if() in this loop in BochsController, but it would still fail if
// there were more events waiting to be fired. The general problem is
// that we're removing events while we're in BochsController's (or
// whose ever) event handling loop.
//
// Outline for a proper fix: Split all event handling loops into two
// parts,
// 1. collect all events to be fired in some kind of list data
// structure,
// 2. fire all collected events in a centralized SimulatorController
// function.
// The data structure and the centralized function should be chosen in
// a way that this construct *can* deal with events being removed while
// iterating over them.
return true;
}

View File

@ -0,0 +1,14 @@
#ifndef __COOLEXPERIMENT_HPP__
#define __COOLEXPERIMENT_HPP__
#include "controller/ExperimentFlow.hpp"
#include "jobserver/JobClient.hpp"
class CoolChecksumExperiment : public fi::ExperimentFlow {
fi::JobClient m_jc;
public:
CoolChecksumExperiment() : m_jc("ios.cs.tu-dortmund.de") {}
bool run();
};
#endif

View File

@ -0,0 +1,48 @@
#ifndef __EXPERIMENT_INFO_HPP__
#define __EXPERIMENT_INFO_HPP__
// FIXME autogenerate this
#if 1 // with ECC
// the task function's entry address:
// nm -C ecc.elf|fgrep main
#define OOSTUBS_FUNC_ENTRY 0x00103f2c
// empty function that is called explicitly when the experiment finished
// nm -C ecc.elf|fgrep "finished()"
#define OOSTUBS_FUNC_DONE 0x001093f0
// number of instructions the target executes under non-error conditions from ENTRY to DONE:
// (result of experiment's step #2)
#define OOSTUBS_NUMINSTR 0x4a3401
// number of instructions that are executed additionally for error corrections
// (this is a rough guess ... TODO)
#define OOSTUBS_RECOVERYINSTR 0x2000
// the ECC protected object's address:
// nm -C ecc.elf|fgrep objectUnderTest
#define COOL_ECC_OBJUNDERTEST 0x002127a4 //FIXME
// the ECC protected object's payload size:
// (we know that from the object's definition and usual memory layout)
#define COOL_ECC_OBJUNDERTEST_SIZE 10 //FIXME
// the variable that's increased if ECC corrects an error:
// nm -C ecc.elf|fgrep errors_corrected
#define OOSTUBS_ERROR_CORRECTED 0x0010e3a4
//
// nm -C ecc.elf|fgrep results
#define OOSTUBS_RESULTS_ADDR 0x0010d794
#define OOSTUBS_RESULTS_BYTES 12
#define OOSTUBS_RESULT0 0xab3566a9
#define OOSTUBS_RESULT1 0x44889112
#define OOSTUBS_RESULT2 0x10420844
#else // without ECC
#define COOL_ECC_FUNC_ENTRY 0x00200a90
#define COOL_ECC_CALCDONE 0x00200ab7
#define COOL_ECC_NUMINSTR 97
#define COOL_ECC_OBJUNDERTEST 0x0021263c
#define COOL_ECC_OBJUNDERTEST_SIZE 10
#define COOL_ECC_ERROR_CORRECTED 0x002127b0 // dummy
#endif
#endif

View File

@ -0,0 +1,15 @@
#include <iostream>
#include <cstdlib>
#include "controller/CampaignManager.hpp"
#include "experiments/checksum-oostubs/campaign.hpp"
int main(int argc, char **argv)
{
CoolChecksumCampaign c;
if (fi::campaignmanager.runCampaign(&c)) {
return 0;
} else {
return 1;
}
}

View File

@ -0,0 +1,31 @@
set(EXPERIMENT_NAME coolchecksum)
set(EXPERIMENT_TYPE CoolChecksumExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
coolchecksum.proto
)
set(MY_CAMPAIGN_SRCS
experiment.hpp
experiment.cc
campaign.hpp
campaign.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})
## This is the example's campaign server distributing experiment parameters
add_executable(${EXPERIMENT_NAME}-server main.cc)
target_link_libraries(${EXPERIMENT_NAME}-server ${EXPERIMENT_NAME} fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})

View File

@ -0,0 +1,273 @@
#include <iostream>
#include "campaign.hpp"
#include "experimentInfo.hpp"
#include "controller/CampaignManager.hpp"
#include "util/Logger.hpp"
#include "SAL/SALConfig.hpp"
#if COOL_FAULTSPACE_PRUNING
#include "plugins/tracing/TracingPlugin.hpp"
char const * const trace_filename = "trace.pb";
#endif
using namespace fi;
using std::endl;
char const * const results_csv = "coolcampaign.csv";
// equivalence class type: addr, [i1, i2]
// addr: byte to inject a bit-flip into
// [i1, i2]: interval of instruction numbers, counted from experiment
// begin
struct equivalence_class {
unsigned byte_offset;
int instr1, instr2;
sal::address_t instr2_absolute; // FIXME we could record them all here
};
bool CoolChecksumCampaign::run()
{
Logger log("CoolChecksumCampaign");
ifstream test(results_csv);
if (test.is_open()) {
log << results_csv << " already exists" << endl;
return false;
}
ofstream results(results_csv);
if (!results.is_open()) {
log << "failed to open " << results_csv << endl;
return false;
}
log << "startup" << endl;
#if !COOL_FAULTSPACE_PRUNING
int count = 0;
for (int bit_offset = 0; bit_offset < COOL_ECC_OBJUNDERTEST_SIZE*8; ++bit_offset) {
for (int instr_offset = 0; instr_offset < COOL_ECC_NUMINSTR; ++instr_offset) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
d->msg.set_instr_offset(instr_offset);
d->msg.set_bit_offset(bit_offset);
fi::campaignmanager.addParam(d);
++count;
}
}
fi::campaignmanager.noMoreParameters();
log << "done enqueueing parameter sets (" << count << ")." << endl;
// collect results
CoolChecksumExperimentData *res;
int rescount = 0;
results << "injection_ip\tinstr_offset\tinjection_bit\tresulttype\tresultdata\terror_corrected\tdetails" << endl;
while ((res = static_cast<CoolChecksumExperimentData *>(fi::campaignmanager.getDone()))) {
rescount++;
results
<< res->msg.injection_ip() << "\t"
<< res->msg.instr_offset() << "\t"
<< res->msg.bit_offset() << "\t"
<< res->msg.resulttype() << "\t"
<< res->msg.resultdata() << "\t"
<< res->msg.error_corrected() << "\t"
<< res->msg.details() << "\n";
delete res;
}
#else
// load trace
ifstream tracef(trace_filename);
if (tracef.fail()) {
log << "couldn't open " << trace_filename << endl;
return false;
}
Trace trace;
trace.ParseFromIstream(&tracef);
tracef.close();
// set of equivalence classes that need one (rather: eight, one for
// each bit in that byte) experiment to determine them all
std::vector<equivalence_class> ecs_need_experiment;
// set of equivalence classes that need no experiment, because we know
// they'd be identical to the golden run
std::vector<equivalence_class> ecs_no_effect;
Trace_Event end_event; // pseudo event
equivalence_class current_ec;
// for every injection address ...
// XXX in more complex cases we'll need to iterate over a MemoryMap here
for (unsigned byte_offset = 0; byte_offset < COOL_ECC_OBJUNDERTEST_SIZE; ++byte_offset) {
current_ec.instr1 = 0;
// for every section in the trace between subsequent memory
// accesses to that address ...
// XXX reorganizing the trace for efficient seeks could speed this up
int instr = 0;
sal::address_t instr_absolute = 0; // FIXME this one probably should also be recorded ...
Trace_Event const *ev;
for (int eventnr = 0; eventnr < trace.event_size(); ++eventnr) {
ev = &trace.event(eventnr);
// only count instruction events
if (!ev->has_memaddr()) {
// new instruction
instr++;
instr_absolute = ev->ip();
continue;
// skip accesses to other data
} else if (ev->memaddr() != byte_offset + COOL_ECC_OBJUNDERTEST) {
continue;
// skip zero-sized intervals: these can
// occur when an instruction accesses a
// memory location more than once
// (e.g., INC, CMPXCHG)
} else if (current_ec.instr1 > instr) {
continue;
}
// we now have an interval-terminating R/W
// event to the memaddr we're currently looking
// at:
// complete the equivalence interval
current_ec.instr2 = instr;
current_ec.instr2_absolute = instr_absolute;
current_ec.byte_offset = byte_offset;
if (ev->accesstype() == ev->READ) {
// a sequence ending with READ: we need
// to do one experiment to cover it
// completely
ecs_need_experiment.push_back(current_ec);
} else if (ev->accesstype() == ev->WRITE) {
// a sequence ending with WRITE: an
// injection anywhere here would have
// no effect.
ecs_no_effect.push_back(current_ec);
} else {
log << "WAT" << endl;
}
// next interval must start at next
// instruction; the aforementioned
// skipping mechanism wouldn't work
// otherwise
current_ec.instr1 = instr + 1;
}
// close the last interval:
// Why -1? In most cases it does not make sense to inject before the
// very last instruction, as we won't execute it anymore. This *only*
// makes sense if we also inject into parts of the result vector. This
// is not the case in this experiment, and with -1 we'll get a
// result comparable to the non-pruned campaign.
current_ec.instr2 = instr - 1;
current_ec.instr2_absolute = 0; // won't be used
current_ec.byte_offset = byte_offset;
// zero-sized? skip.
if (current_ec.instr1 > current_ec.instr2) {
continue;
}
// as the experiment ends, this byte is a "don't care":
ecs_no_effect.push_back(current_ec);
}
log << "equivalence classes generated:"
<< " need_experiment = " << ecs_need_experiment.size()
<< " no_effect = " << ecs_no_effect.size() << endl;
// statistics
int num_dumb_experiments = 0;
for (std::vector<equivalence_class>::const_iterator it = ecs_need_experiment.begin();
it != ecs_need_experiment.end(); ++it) {
num_dumb_experiments += (*it).instr2 - (*it).instr1 + 1;
}
for (std::vector<equivalence_class>::const_iterator it = ecs_no_effect.begin();
it != ecs_no_effect.end(); ++it) {
num_dumb_experiments += (*it).instr2 - (*it).instr1 + 1;
}
log << "pruning: reduced " << num_dumb_experiments * 8 <<
" experiments to " << ecs_need_experiment.size() * 8 << endl;
// map for efficient access when results come in
std::map<CoolChecksumExperimentData *, equivalence_class *> experiment_ecs;
int count = 0;
for (std::vector<equivalence_class>::iterator it = ecs_need_experiment.begin();
it != ecs_need_experiment.end(); ++it) {
for (int bitnr = 0; bitnr < 8; ++bitnr) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
// we pick the rightmost instruction in that interval
d->msg.set_instr_offset((*it).instr2);
d->msg.set_instr_address((*it).instr2_absolute);
d->msg.set_bit_offset((*it).byte_offset * 8 + bitnr);
experiment_ecs[d] = &(*it);
fi::campaignmanager.addParam(d);
++count;
}
}
fi::campaignmanager.noMoreParameters();
log << "done enqueueing parameter sets (" << count << ")." << endl;
// CSV header
results << "injection_ip\tinstr_offset\tinjection_bit\tresulttype\tresultdata\terror_corrected\tdetails" << endl;
// store no-effect "experiment" results
// (for comparison reasons; we'll store that more compactly later)
for (std::vector<equivalence_class>::const_iterator it = ecs_no_effect.begin();
it != ecs_no_effect.end(); ++it) {
for (int bitnr = 0; bitnr < 8; ++bitnr) {
for (int instr = (*it).instr1; instr <= (*it).instr2; ++instr) {
results
<< (*it).instr2_absolute << "\t" // incorrect in all but one case!
<< instr << "\t"
<< ((*it).byte_offset * 8 + bitnr) << "\t"
<< "1" << "\t"
<< "45" << "\t"
<< "0" << "\t"
<< "" << "\n";
}
}
}
// collect results
CoolChecksumExperimentData *res;
int rescount = 0;
while ((res = static_cast<CoolChecksumExperimentData *>(fi::campaignmanager.getDone()))) {
rescount++;
equivalence_class *ec = experiment_ecs[res];
// sanity check
if (ec->instr2 != res->msg.instr_offset()) {
results << "WTF" << endl;
log << "WTF" << endl;
delete res;
continue;
}
// explode equivalence class to single "experiments"
// (for comparison reasons; we'll store that more compactly later)
for (int instr = ec->instr1; instr <= ec->instr2; ++instr) {
results
<< res->msg.injection_ip() << "\t" // incorrect in all but one case!
<< instr << "\t"
<< res->msg.bit_offset() << "\t"
<< res->msg.resulttype() << "\t"
<< res->msg.resultdata() << "\t"
<< res->msg.error_corrected() << "\t"
<< res->msg.details() << "\n";
}
delete res;
}
#endif
log << "done. sent " << count << " received " << rescount << endl;
results.close();
return true;
}

View File

@ -0,0 +1,20 @@
#ifndef __COOLCAMPAIGN_HPP__
#define __COOLCAMPAIGN_HPP__
#include "controller/Campaign.hpp"
#include "controller/ExperimentData.hpp"
#include "coolchecksum.pb.h"
class CoolChecksumExperimentData : public fi::ExperimentData {
public:
CoolChecksumProtoMsg msg;
CoolChecksumExperimentData() : fi::ExperimentData(&msg) {}
};
class CoolChecksumCampaign : public fi::Campaign {
public:
virtual bool run();
};
#endif

View File

@ -0,0 +1,29 @@
message CoolChecksumProtoMsg {
// parameters
required int32 instr_offset = 1;
optional int32 instr_address = 8; // for sanity checks
required int32 bit_offset = 2;
// results
// make these optional to reduce overhead for server->client communication
enum ResultType {
CALCDONE = 1;
TIMEOUT = 2;
TRAP = 3;
UNKNOWN = 4;
}
// instruction pointer where injection was done
optional uint32 injection_ip = 3;
// result type, see above
optional ResultType resulttype = 4;
// result data, depending on resulttype:
// CALCDONE: resultdata = calculated value
// TIMEOUT: resultdata = latest EIP
// TRAP: resultdata = latest EIP
// UNKNOWN: resultdata = latest EIP
optional uint32 resultdata = 5;
// did ECC correct the fault?
optional int32 error_corrected = 6;
// optional textual description of what happened
optional string details = 7;
}

View File

@ -0,0 +1,197 @@
#include <iostream>
#include "util/Logger.hpp"
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "campaign.hpp"
#include "SAL/SALConfig.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/Memory.hpp"
#include "SAL/bochs/BochsRegister.hpp"
#include "controller/Event.hpp"
#if COOL_FAULTSPACE_PRUNING
#include "plugins/tracing/TracingPlugin.hpp"
#endif
#include "coolchecksum.pb.h"
using std::endl;
bool CoolChecksumExperiment::run()
{
#if BX_SUPPORT_X86_64
int targetreg = sal::RID_RDX;
#else
int targetreg = sal::RID_EDX;
#endif
Logger log("CoolChecksum", false);
fi::BPEvent bp;
log << "startup" << endl;
#if 0
// STEP 1: run until interesting function starts, and save state
bp.setWatchInstructionPointer(COOL_ECC_FUNC_ENTRY);
sal::simulator.addEventAndWait(&bp);
log << "test function entry reached, saving state" << endl;
log << "EIP = " << std::hex << bp.getTriggerInstructionPointer() << " or " << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
log << "error_corrected = " << std::dec << ((int)sal::simulator.getMemoryManager().getByte(COOL_ECC_ERROR_CORRECTED)) << endl;
sal::simulator.save("coolecc.state");
#elif 0
// STEP 2: determine # instructions from start to end
log << "restoring state" << endl;
sal::simulator.restore("coolecc.state");
log << "EIP = " << std::hex << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
#if COOL_FAULTSPACE_PRUNING
// STEP 2.5: Additionally do a golden run with memory access tracing
// for fault-space pruning. (optional!)
log << "enabling tracing" << endl;
TracingPlugin tp;
// restrict memory access logging to injection target
MemoryMap mm;
mm.add(COOL_ECC_OBJUNDERTEST, COOL_ECC_OBJUNDERTEST_SIZE);
tp.restrictMemoryAddresses(&mm);
// record trace
Trace trace;
tp.setTraceMessage(&trace);
// this must be done *after* configuring the plugin:
sal::simulator.addFlow(&tp);
#endif
// make sure the timer interrupt doesn't disturb us
sal::simulator.addSuppressedInterrupt(32);
int count;
bp.setWatchInstructionPointer(fi::ANY_ADDR);
for (count = 0; bp.getTriggerInstructionPointer() != COOL_ECC_CALCDONE; ++count) {
sal::simulator.addEventAndWait(&bp);
// log << "EIP = " << std::hex << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
}
log << "test function calculation position reached after " << std::dec << count << " instructions" << endl;
log << std::dec << "EDX = " << sal::simulator.getRegisterManager().getRegister(targetreg)->getData() << endl;
#if COOL_FAULTSPACE_PRUNING
sal::simulator.removeFlow(&tp);
// serialize trace to file
std::ofstream of("trace.pb");
if (of.fail()) {
log << "failed to write trace.pb" << endl;
return false;
}
trace.SerializeToOstream(&of);
of.close();
#endif
#elif 1
// FIXME consider moving experiment repetition into Fail* or even the
// SAL -- whether and how this is possible with the chosen backend is
// backend specific
for (int i = 0; i < 2000; ++i) {
// STEP 3: The actual experiment.
log << "restoring state" << endl;
sal::simulator.restore("coolecc.state");
log << "asking job server for experiment parameters" << endl;
CoolChecksumExperimentData param;
if (!m_jc.getParam(param)) {
log << "Dying." << endl;
// communicate that we were told to die
sal::simulator.terminate(1); // "return (false);" ?
}
int id = param.getWorkloadID();
int instr_offset = param.msg.instr_offset();
int bit_offset = param.msg.bit_offset();
log << "job " << id << " instr " << instr_offset << " bit " << bit_offset << endl;
// FIXME could be improved (especially for backends supporting
// breakpoints natively) by utilizing a previously recorded instruction
// trace
bp.setWatchInstructionPointer(fi::ANY_ADDR);
for (int count = 0; count < instr_offset; ++count) {
sal::simulator.addEventAndWait(&bp);
}
// inject
sal::guest_address_t inject_addr = COOL_ECC_OBJUNDERTEST + bit_offset / 8;
sal::MemoryManager& mm = sal::simulator.getMemoryManager();
sal::byte_t data = mm.getByte(inject_addr);
sal::byte_t newdata = data ^ (1 << (bit_offset % 8));
mm.setByte(inject_addr, newdata);
// note at what IP we did it
int32_t injection_ip = sal::simulator.getRegisterManager().getInstructionPointer();
param.msg.set_injection_ip(injection_ip);
log << "inject @ ip " << injection_ip
<< " (offset " << std::dec << instr_offset << ")"
<< " bit " << bit_offset << ": 0x"
<< std::hex << ((int)data) << " -> 0x" << ((int)newdata) << endl;
// sanity check (only works if we're working with an instruction trace)
if (param.msg.has_instr_address() &&
injection_ip != param.msg.instr_address()) {
std::stringstream ss;
ss << "SANITY CHECK FAILED: " << injection_ip
<< " != " << param.msg.instr_address() << endl;
log << ss.str();
param.msg.set_resulttype(param.msg.UNKNOWN);
param.msg.set_resultdata(injection_ip);
param.msg.set_details(ss.str());
sal::simulator.clearEvents();
m_jc.sendResult(param);
continue;
}
// aftermath
fi::BPEvent ev_done(COOL_ECC_CALCDONE);
sal::simulator.addEvent(&ev_done);
fi::BPEvent ev_timeout(fi::ANY_ADDR);
ev_timeout.setCounter(COOL_ECC_NUMINSTR + 3000);
sal::simulator.addEvent(&ev_timeout);
fi::TrapEvent ev_trap(fi::ANY_TRAP);
sal::simulator.addEvent(&ev_trap);
fi::BaseEvent* ev = sal::simulator.waitAny();
if (ev == &ev_done) {
int32_t data = sal::simulator.getRegisterManager().getRegister(targetreg)->getData();
log << std::dec << "Result EDX = " << data << endl;
param.msg.set_resulttype(param.msg.CALCDONE);
param.msg.set_resultdata(data);
} else if (ev == &ev_timeout) {
log << std::dec << "Result TIMEOUT" << endl;
param.msg.set_resulttype(param.msg.TIMEOUT);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
} else if (ev == &ev_trap) {
log << std::dec << "Result TRAP #" << ev_trap.getTriggerNumber() << endl;
param.msg.set_resulttype(param.msg.TRAP);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
} else {
log << std::dec << "Result WTF?" << endl;
param.msg.set_resulttype(param.msg.UNKNOWN);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
std::stringstream ss;
ss << "eventid " << ev << " EIP " << sal::simulator.getRegisterManager().getInstructionPointer();
param.msg.set_details(ss.str());
}
sal::simulator.clearEvents();
int32_t error_corrected = sal::simulator.getMemoryManager().getByte(COOL_ECC_ERROR_CORRECTED);
param.msg.set_error_corrected(error_corrected);
m_jc.sendResult(param);
}
// we do not want the simulator to continue running, especially for
// headless and distributed experiments
sal::simulator.terminate();
#endif
// simulator continues to run
return true;
}

View File

@ -0,0 +1,14 @@
#ifndef __COOLEXPERIMENT_HPP__
#define __COOLEXPERIMENT_HPP__
#include "controller/ExperimentFlow.hpp"
#include "jobserver/JobClient.hpp"
class CoolChecksumExperiment : public fi::ExperimentFlow {
fi::JobClient m_jc;
public:
CoolChecksumExperiment() : m_jc("ios.cs.tu-dortmund.de") {}
bool run();
};
#endif

View File

@ -0,0 +1,40 @@
#ifndef __EXPERIMENT_INFO_HPP__
#define __EXPERIMENT_INFO_HPP__
#define COOL_FAULTSPACE_PRUNING 0
// FIXME autogenerate this
#if 1 // with ECC
// the task function's entry address:
// nm -C ecc.elf|fgrep Alpha::functionTaskTask0
#define COOL_ECC_FUNC_ENTRY 0x00200b32
// one of the last instructions before the task calls printf:
// (objdump -Cd ecc.elf|less)
#define COOL_ECC_CALCDONE 0x00200bdf
// number of instructions the target executes under non-error conditions from ENTRY to CALCDONE:
// (result of experiment's step #2)
#define COOL_ECC_NUMINSTR 1995
// the ECC protected object's address:
// nm -C ecc.elf|fgrep objectUnderTest
#define COOL_ECC_OBJUNDERTEST 0x002127a4
// the ECC protected object's payload size:
// (we know that from the object's definition and usual memory layout)
#define COOL_ECC_OBJUNDERTEST_SIZE 10
// the variable that's increased if ECC corrects an error:
// nm -C ecc.elf|fgrep error_corrected
#define COOL_ECC_ERROR_CORRECTED 0x002127b0
#else // without ECC
#define COOL_ECC_FUNC_ENTRY 0x00200a90
#define COOL_ECC_CALCDONE 0x00200ab7
#define COOL_ECC_NUMINSTR 97
#define COOL_ECC_OBJUNDERTEST 0x0021263c
#define COOL_ECC_OBJUNDERTEST_SIZE 10
#define COOL_ECC_ERROR_CORRECTED 0x002127b0 // dummy
#endif
#endif

View File

@ -0,0 +1,15 @@
#include <iostream>
#include <cstdlib>
#include "controller/CampaignManager.hpp"
#include "experiments/coolchecksum/campaign.hpp"
int main(int argc, char **argv)
{
CoolChecksumCampaign c;
if (fi::campaignmanager.runCampaign(&c)) {
return 0;
} else {
return 1;
}
}

View File

@ -0,0 +1,17 @@
set(EXPERIMENT_NAME hscsimple)
set(EXPERIMENT_TYPE hscsimpleExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
#experiment sources
set(MY_EXPERIMENT_SRCS
experiment.hpp
experiment.cc
)
#### include directories ####
include_directories(${CMAKE_CURRENT_BINARY_DIR})
## build library
add_library(${EXPERIMENT_NAME} ${MY_EXPERIMENT_SRCS})

View File

@ -0,0 +1,49 @@
#include <iostream>
#include <unistd.h>
#include "experiment.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/bochs/BochsRegister.hpp"
#include "controller/Event.hpp"
using std::cout;
using std::endl;
bool hscsimpleExperiment::run()
{
cout << "[HSC] experiment start" << endl;
// do funny things here...
#if 0
fi::BPEvent mainbp(0x00003c34);
sal::simulator.addEventAndWait(&mainbp);
cout << "[HSC] breakpoint reached, saving" << endl;
sal::simulator.save("hello.main");
#elif 1
cout << "[HSC] restoring ..." << endl;
sal::simulator.restore("hello.main");
cout << "[HSC] restored!" << endl;
cout << "[HSC] waiting for last square() instruction" << endl;
fi::BPEvent breakpoint(0x3c9e); // square(x) ret instruction
sal::simulator.addEventAndWait(&breakpoint);
cout << "[HSC] injecting hellish fault" << endl;
#if BX_SUPPORT_X86_64
int reg = sal::RID_RAX;
#else
int reg = sal::RID_EAX;
#endif
sal::simulator.getRegisterManager().getSetOfType(sal::RT_GP).getRegister(reg)->setData(666);
cout << "[HSC] waiting for last main() instruction" << endl;
breakpoint.setWatchInstructionPointer(0x3c92);
sal::simulator.addEventAndWait(&breakpoint);
cout << "[HSC] reached" << endl;
// FIXME this shouldn't fail:
sal::simulator.addEventAndWait(&breakpoint);
#endif
return true;
}

View File

@ -0,0 +1,14 @@
#ifndef __HSCSIMPLE_EXPERIMENT_HPP__
#define __HSCSIMPLE_EXPERIMENT_HPP__
#include "controller/ExperimentFlow.hpp"
class hscsimpleExperiment : public fi::ExperimentFlow
{
public:
hscsimpleExperiment() { }
bool run();
};
#endif // __HSCSIMPLE_EXPERIMENT_HPP__

View File

@ -0,0 +1,19 @@
#ifndef __INSTANTIATE_@EXPERIMENT_TYPE@_AH__
#define __INSTANTIATE_@EXPERIMENT_TYPE@_AH__
// FIXME: cmake does not remove these .ah files when the user configures
// another experiment (or even makes "clean"). Currently, this needs to be
// worked around by manually removing $BUILDDIR/core/experiments/*/*.ah .
// Make sure your experiment declaration is in experiment.hpp:
#include "experiments/@EXPERIMENT_NAME@/experiment.hpp"
#include "SAL/SALInst.hpp"
aspect @EXPERIMENT_TYPE@ExperimentHook {
@EXPERIMENT_TYPE@ experiment;
advice execution ("void sal::SimulatorController::initExperiments()") : after () {
sal::simulator.addFlow(&experiment);
}
};
#endif // __INSTANTIATE_@EXPERIMENT_TYPE@_AH__