another directory rename: failstar -> fail

"failstar" sounds like a name for a cruise liner from the 80s.  As "*" isn't a
desirable part of directory names, just name the whole thing "fail/", the core
parts being stored in "fail/core/".

Additionally fixing two build system dependency issues:
 - missing jobserver -> protomessages dependency
 - broken bochs -> fail dependency (add_custom_target DEPENDS only allows plain
   file dependencies ... cmake for the win)


git-svn-id: https://www4.informatik.uni-erlangen.de/i4svn/danceos/trunk/devel/fail@956 8c4709b5-6ec9-48aa-a5cd-a96041d1645a
This commit is contained in:
hsc
2012-03-08 19:43:02 +00:00
commit b70b6fb43a
921 changed files with 473161 additions and 0 deletions

View File

@ -0,0 +1,11 @@
set(SRCS
CampaignManager.cc
CoroutineManager.cc
Event.cc
EventList.cc
ExperimentDataQueue.cc
Signal.cc
SynchronizedExperimentDataQueue.cc
)
add_library(controller ${SRCS})

View File

@ -0,0 +1,31 @@
#ifndef __CAMPAIGN_HPP__
#define __CAMPAIGN_HPP__
// Author: Martin Hoffmann
// Date: 09.12.2011
namespace fi
{
/**
* \class Campaign
* Basic interface for user-defined campaigns. To create a new
* campaign, derive your own class from Campaign,
* define the run method, and add it to the CampaignManager.
*/
class Campaign
{
public:
Campaign() { };
/**
* Defines the campaign.
* @return \c true if the campaign was successful, \c false otherwise
*/
virtual bool run() = 0;
};
}
#endif /* __CAMPAIGN_HPP__ */

View File

@ -0,0 +1,9 @@
#include "CampaignManager.hpp"
namespace fi
{
CampaignManager campaignmanager;
}//end-of-namespace

View File

@ -0,0 +1,90 @@
/**
* \brief The manager for an entire campaign
*
* The CampaignManager allows a user-campaign access to all constant
* simulator information and forwards single experiments to the JobServer.
*
* \author Martin Hoffmann
*
*/
#ifndef __CAMPAIGN_MANAGER_H__
#define __CAMPAIGN_MANAGER_H__
#include "SAL/SALInst.hpp"
#include "ExperimentData.hpp"
#include "jobserver/JobServer.hpp"
#include "controller/Campaign.hpp"
namespace fi
{
/**
* \class CampaignManager
* Class manageing an FI campaign.
*/
class CampaignManager
{
JobServer m_jobserver;
Campaign* m_currentCampaign;
public:
CampaignManager(){};
/**
* Executes a user campaign
*/
bool runCampaign(Campaign* c){
m_currentCampaign = c;
bool ret = c->run();
m_jobserver.done();
return ret;
}
/**
* Returns a const reference for acquiring constant simlator specific information.
* e.g., Registernames, to ease experiment data construction.
* The campaign description is not allowed to change the simulator
* state, as the actual simulation runs within another process (Minion)
* @return c constant reference to the current simulator backend.
*/
sal::SimulatorController const& getSimulator() const { return sal::simulator; };
/**
* Add a experiment parameter set.
* The user campaign has to allocate the Parameter object,
* and deallocate it after result reception.
* A Parameter set includes space for results.
* @param exp A pointer to a ExperimentData set.
*/
void addParam(ExperimentData* exp){ m_jobserver.addParam(exp); };
/**
* A user campaign can request a single result (blocking) from the queue.
*
* @return Pointer to a parameter object with filled result data @see addParam.
*/
ExperimentData* getDone() { return m_jobserver.getDone(); };
/**
* Signal, that there will not come any further parameter sets.
*/
void noMoreParameters() { m_jobserver.setNoMoreExperiments(); };
/**
* Wait actively, until all experiments expired.
*/
// void waitForCompletion();
/**
* User campaign has finished..
*/
void done() { m_jobserver.done(); };
};
extern CampaignManager campaignmanager;
} //end-of-namespace
#endif

View File

@ -0,0 +1,96 @@
// Author: Adrian Böckenkamp
// Date: 05.10.2011
#include <iostream>
#include "CoroutineManager.hpp"
#include "../controller/ExperimentFlow.hpp"
namespace fi
{
void CoroutineManager::m_invoke(void* pData)
{
//std::cerr << "CORO m_invoke " << co_current() << std::endl;
reinterpret_cast<ExperimentFlow*>(pData)->coroutine_entry();
co_exit(); // deletes the associated coroutine memory as well
// we really shouldn't get here
std::cerr << "CoroutineManager::m_invoke() shitstorm unloading" << std::endl;
while (1) ;
}
CoroutineManager::~CoroutineManager()
{
}
void CoroutineManager::toggle(ExperimentFlow* flow)
{
m_togglerstack.push(co_current());
//std::cerr << "CORO toggle from " << m_togglerstack.top() << " to ";
if (flow == SIM_FLOW) {
co_call(m_simCoro);
return;
}
flowmap_t::iterator it = m_Flows.find(flow);
assert(it != m_Flows.end() && "FATAL ERROR: Flow does not exist!");
//std::cerr << it->second << std::endl;
co_call(it->second);
}
void CoroutineManager::create(ExperimentFlow* flow)
{
corohandle_t res = co_create(CoroutineManager::m_invoke, flow, NULL,
STACK_SIZE_DEFAULT);
//std::cerr << "CORO create " << res << std::endl;
m_Flows.insert(std::pair<ExperimentFlow*,corohandle_t>(flow, res));
}
void CoroutineManager::remove(ExperimentFlow* flow)
{
// find coroutine handle for this flow
flowmap_t::iterator it = m_Flows.find(flow);
if (it == m_Flows.end()) {
assert(false && "FATAL ERROR: Cannot remove flow");
return;
}
corohandle_t coro = it->second;
//std::cerr << "CORO remove " << coro << std::endl;
// remove flow from active list
m_Flows.erase(it);
// FIXME make sure resume() keeps working
// delete coroutine (and handle the special case we're removing
// ourselves)
if (coro == co_current()) {
co_exit();
} else {
co_delete(coro);
}
}
void CoroutineManager::resume()
{
corohandle_t next = m_togglerstack.top();
m_togglerstack.pop();
//std::cerr << "CORO resume from " << co_current() << " to " << next << std::endl;
co_call(next);
}
ExperimentFlow* CoroutineManager::getCurrent()
{
coroutine_t cr = co_current();
for(std::map<ExperimentFlow*,corohandle_t>::iterator it = m_Flows.begin();
it != m_Flows.end(); it++)
if(it->second == cr)
return (it->first);
assert(false && "FATAL ERROR: The current flow could not be retrieved!");
return 0;
}
const ExperimentFlow* CoroutineManager::SIM_FLOW = NULL;
}

View File

@ -0,0 +1,78 @@
#ifndef __COROUTINE_MANAGER_HPP__
#define __COROUTINE_MANAGER_HPP__
// Author: Adrian Böckenkamp
// Date: 05.10.2011
#include <map>
#include <stack>
#include <pcl.h> // the underlying "portable coroutine library"
namespace fi
{
class ExperimentFlow;
/**
* \class CoroutineManager
* Manages the experiments flow encapsulated in coroutines. Each
* experiment (flow) has it's associated data structure which is
* represented by the ExperimentData-class.
*/
class CoroutineManager
{
private:
//! the default stack size for coroutines (= experiment flows)
static const unsigned STACK_SIZE_DEFAULT = 4096*4096;
//! the abstraction for coroutine identification
typedef coroutine_t corohandle_t;
typedef std::map<ExperimentFlow*,corohandle_t> flowmap_t;
//! the mapping "flows <-> coro-handle"
flowmap_t m_Flows;
//! the simulator/backend coroutine handle
corohandle_t m_simCoro;
//! stack of coroutines that explicitly activated another one with toggle()
std::stack<corohandle_t> m_togglerstack;
//! manages the run-calls for each ExperimentFlow-object
static void m_invoke(void* pData);
public:
static const ExperimentFlow* SIM_FLOW; //!< the simulator coroutine flow
CoroutineManager() : m_simCoro(co_current()) { }
~CoroutineManager();
/**
* Creates a new coroutine for the specified experiment flow.
* @param flow the flow to be executed in the newly created coroutine
*/
void create(ExperimentFlow* flow);
/**
* Destroys coroutine for the specified experiment flow.
* @param flow the flow to be removed
*/
void remove(ExperimentFlow* flow);
/**
* Switches the control flow to the experiment \a flow. If \a flow is
* equal to \c SIM_FLOW, the control will be handed back to the
* simulator. The current control flow is pushed onto an
* internal stack.
* @param flow the destination control flow or \c SIM_FLOW (= \c NULL )
*/
void toggle(ExperimentFlow* flow);
/**
* Gives the control back to the coroutine that toggle()d the
* current one, by drawing from the internal stack built from
* calls to toggle().
*/
void resume();
/**
* Retrieves the current (active) coroutine (= flow).
* @return the current experiment flow.
*/
ExperimentFlow* getCurrent();
};
} // end-of-namespace: fi
#endif /* __COROUTINE_MANAGER_HPP__ */

79
core/controller/Event.cc Normal file
View File

@ -0,0 +1,79 @@
// Author: Adrian Böckenkamp
// Date: 08.06.2011
#include "Event.hpp"
namespace fi
{
EventId BaseEvent::m_Counter = 0;
bool TroubleEvent::isMatching(unsigned troubleNum) const
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNum ||
m_WatchNumbers[i] == ANY_TRAP)
return true;
}
return false;
}
bool TroubleEvent::removeWatchNumber(unsigned troubleNum)
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNum)
{
m_WatchNumbers.erase(m_WatchNumbers.begin()+i);
return true;
}
}
return false;
}
bool TroubleEvent::addWatchNumber(unsigned troubleNumber)
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNumber)
return false;
}
m_WatchNumbers.push_back(troubleNumber);
return true;
}
bool MemAccessEvent::isMatching(sal::address_t addr, accessType_t accesstype) const
{
if(!(m_WatchType & accesstype))
return (false);
else if(m_WatchAddr != addr &&
m_WatchAddr != ANY_ADDR)
return (false);
return (true);
}
void BPRangeEvent::setWatchInstructionPointerRange(sal::address_t start, sal::address_t end)
{
m_WatchStartAddr = start;
m_WatchEndAddr = end;
}
bool BPRangeEvent::isMatching(sal::address_t addr) const
{
if ((m_WatchStartAddr != ANY_ADDR && addr < m_WatchStartAddr) ||
(m_WatchEndAddr != ANY_ADDR && addr > m_WatchEndAddr))
return false;
return true;
}
bool BPEvent::isMatching(sal::address_t addr) const
{
if(m_WatchInstrPtr == ANY_ADDR || m_WatchInstrPtr == addr)
return (true);
return (false);
}
} // end-of-namespace: fi

486
core/controller/Event.hpp Normal file
View File

@ -0,0 +1,486 @@
#ifndef __EVENT_HPP__
#define __EVENT_HPP__
#include <ctime>
#include <string>
#include <cassert>
#include <vector>
#include "../SAL/SALConfig.hpp"
namespace fi
{
class ExperimentFlow;
typedef unsigned long EventId; //!< type of event ids
//! invalid event id (used as a return indicator)
const EventId INVALID_EVENT = (EventId)-1;
//! address wildcard (e.g. for BPEvent)
const sal::address_t ANY_ADDR = static_cast<sal::address_t>(-1);
//! instruction wildcard
const unsigned ANY_INSTR = static_cast<unsigned>(-1);
//! trap wildcard
const unsigned ANY_TRAP = static_cast<unsigned>(-1);
//! interrupt wildcard
const unsigned ANY_INTERRUPT = static_cast<unsigned>(-1);
/**
* \class BaseEvent
* This is the base class for all event types.
*/
class BaseEvent
{
private:
//! current class-scoped id counter to provide \a unique id's
static EventId m_Counter;
protected:
EventId m_Id; //!< unique id of this event
time_t m_tStamp; //!< time stamp of event
unsigned int m_OccCounter; //!< event fires when 0 is reached
unsigned int m_OccCounterInit; //!< initial value for m_OccCounter
ExperimentFlow* m_Parent; //!< this event belongs to experiment m_Parent
public:
BaseEvent() : m_Id(++m_Counter), m_OccCounter(1), m_OccCounterInit(1), m_Parent(NULL)
{ updateTime(); }
virtual ~BaseEvent() { }
/**
* Retrieves the unique event id for this event.
* @return the unique id
*/
EventId getId() const { return (m_Id); }
/**
* Retrieves the time stamp of this event. The time stamp is set when
* the event gets created, id est the constructor is called. The meaning
* of this value depends on the actual event type.
* @return the time stamp
*/
std::time_t getTime() const { return (m_tStamp); }
/**
* Decreases the event counter by one. When this counter reaches zero, the
* event will be triggered.
*/
void decreaseCounter() { --m_OccCounter; }
/**
* Sets the event counter to the specified value (default is one).
* @param val the new counter value
*/
void setCounter(unsigned int val = 1) { m_OccCounter = m_OccCounterInit = val; }
/**
* Returns the current counter value.
* @return the counter value
*/
unsigned int getCounter() const { return (m_OccCounter); }
/**
* Resets the event counter to its default value, or the last
* value that was set through setCounter().
*/
void resetCounter() { m_OccCounter = m_OccCounterInit; }
/**
* Sets the time stamp for this event to the current system time.
*/
void updateTime() { time(&m_tStamp); }
/**
* Returns the parent experiment of this event (context).
* If the event was created temporarily or wasn't linked to a context,
* the return value is \c NULL (unknown identity).
*/
ExperimentFlow* getParent() const { return (m_Parent); }
/**
* Sets the parent (context) of this event. The default context
* is \c NULL (unknown identity).
*/
void setParent(ExperimentFlow* pFlow) { m_Parent = pFlow; }
};
// FIXME: Dynamische Casts zur Laufzeit evtl. zu uneffizient?
// (vgl. auf NULL evtl. akzeptabel?) Bessere Lösungen?
// ----------------------------------------------------------------------------
// Specialized events:
//
/**
* \class BPEvent
* A Breakpoint event to observe specific instruction pointers.
* FIXME consider renaming to BPSingleEvent, introducing common BPEvent base class
*/
class BPEvent : virtual public BaseEvent
{
private:
sal::address_t m_WatchInstrPtr;
sal::address_t m_TriggerInstrPtr;
public:
/**
* Creates a new breakpoint event.
* @param ip the instruction pointer of the breakpoint. If the control
* flow reaches this address and its counter value is zero, the
* event will be triggered. \a eip can be set to the ANY_ADDR
* wildcard to allow arbitrary addresses.
*/
BPEvent(sal::address_t ip = 0)
: m_WatchInstrPtr(ip), m_TriggerInstrPtr(ANY_ADDR) { }
/**
* Returns the instruction pointer this event waits for.
*/
sal::address_t getWatchInstructionPointer() const
{ return m_WatchInstrPtr; }
/**
* Sets the instruction pointer this event waits for.
*/
void setWatchInstructionPointer(sal::address_t iptr)
{ m_WatchInstrPtr = iptr; }
/**
* Checks whether a given address is matching.
*/
bool isMatching(sal::address_t addr) const;
/**
* Returns the instruction pointer that triggered this event.
*/
sal::address_t getTriggerInstructionPointer() const
{ return m_TriggerInstrPtr; }
/**
* Sets the instruction pointer that triggered this event. Should not
* be used by experiment code.
*/
void setTriggerInstructionPointer(sal::address_t iptr)
{ m_TriggerInstrPtr = iptr; }
};
/**
* \class BPRangeEvent
* A event type to observe ranges of instruction pointers.
*/
class BPRangeEvent : virtual public BaseEvent
{
private:
sal::address_t m_WatchStartAddr;
sal::address_t m_WatchEndAddr;
sal::address_t m_TriggerInstrPtr;
public:
/**
* Creates a new breakpoint-range event. The range's ends are both
* inclusive, i.e. an address matches if start <= addr <= end.
* ANY_ADDR denotes the lower respectively the upper end of the address
* space.
*/
BPRangeEvent(sal::address_t start = 0, sal::address_t end = 0)
: m_WatchStartAddr(start), m_WatchEndAddr(end),
m_TriggerInstrPtr(ANY_ADDR) { }
/**
* Sets the instruction pointer watch range. Both ends of the range
* may be ANY_ADDR (cf. constructor).
*/
void setWatchInstructionPointerRange(sal::address_t start,
sal::address_t end);
/**
* Checks whether a given address is within the range.
*/
bool isMatching(sal::address_t addr) const;
/**
* Returns the instruction pointer that triggered this event.
*/
sal::address_t getTriggerInstructionPointer() const
{ return m_TriggerInstrPtr; }
/**
* Sets the instruction pointer that triggered this event. Should not
* be used by experiment code.
*/
void setTriggerInstructionPointer(sal::address_t iptr)
{ m_TriggerInstrPtr = iptr; }
};
/**
* \class MemAccessEvent
* Observes memory read/write accesses.
* FIXME? currently >8-bit accesses only match if their lowest address is being watched
* (e.g., a 32-bit write to 0x4 also accesses 0x7, but this cannot be matched)
*/
class MemAccessEvent : virtual public BaseEvent
{
public:
enum accessType_t
{
MEM_UNKNOWN = 0x0,
MEM_READ = 0x1,
MEM_WRITE = 0x2,
MEM_READWRITE = 0x3
};
private:
//! Specific guest system address to watch, or ANY_ADDR.
sal::address_t m_WatchAddr;
/**
* Memory access type we want to watch
* (MEM_READ || MEM_WRITE || MEM_READWRITE).
*/
accessType_t m_WatchType;
//! Specific guest system address that actually triggered the event.
sal::address_t m_TriggerAddr;
//! Width of the memory access (# bytes).
size_t m_TriggerWidth;
//! Address of the instruction that caused the memory access.
sal::address_t m_TriggerIP;
//! Memory access type at m_TriggerAddr.
accessType_t m_AccessType;
public:
MemAccessEvent(accessType_t watchtype = MEM_READWRITE)
: m_WatchAddr(ANY_ADDR), m_WatchType(watchtype),
m_TriggerAddr(ANY_ADDR), m_TriggerIP(ANY_ADDR),
m_AccessType(MEM_UNKNOWN) { }
MemAccessEvent(sal::address_t addr,
accessType_t watchtype = MEM_READWRITE)
: m_WatchAddr(addr), m_WatchType(watchtype),
m_TriggerAddr(ANY_ADDR), m_TriggerIP(ANY_ADDR),
m_AccessType(MEM_UNKNOWN) { }
/**
* Returns the memory address to be observed.
*/
sal::address_t getWatchAddress() const { return m_WatchAddr; }
/**
* Sets the memory address to be observed. (Wildcard: ANY_ADDR)
*/
void setWatchAddress(sal::address_t addr) { m_WatchAddr = addr; }
/**
* Checks whether a given address is matching.
*/
bool isMatching(sal::address_t addr, accessType_t accesstype) const;
/**
* Returns the specific memory address that actually triggered the
* event.
*/
sal::address_t getTriggerAddress() const { return (m_TriggerAddr); }
/**
* Sets the specific memory address that actually triggered the event.
* Should not be used by experiment code.
*/
void setTriggerAddress(sal::address_t addr) { m_TriggerAddr = addr; }
/**
* Returns the specific memory address that actually triggered the
* event.
*/
size_t getTriggerWidth() const { return (m_TriggerWidth); }
/**
* Sets the specific memory address that actually triggered the event.
* Should not be used by experiment code.
*/
void setTriggerWidth(size_t width) { m_TriggerWidth = width; }
/**
* Returns the address of the instruction causing this memory
* access.
*/
sal::address_t getTriggerInstructionPointer() const
{ return (m_TriggerIP); }
/**
* Sets the address of the instruction causing this memory
* access. Should not be used by experiment code.
*/
void setTriggerInstructionPointer(sal::address_t addr)
{ m_TriggerIP = addr; }
/**
* Returns type (MEM_READ || MEM_WRITE) of the memory access that
* triggered this event.
*/
accessType_t getTriggerAccessType() const { return (m_AccessType); }
/**
* Sets type of the memory access that triggered this event. Should
* not be used by experiment code.
*/
void setTriggerAccessType(accessType_t type) { m_AccessType = type; }
/**
* Returns memory access types (MEM_READ || MEM_WRITE || MEM_READWRITE)
* this event watches. Should not be used by experiment code.
*/
accessType_t getWatchAccessType() const { return (m_WatchType); }
};
/**
* \class MemReadEvent
* Observes memory read accesses.
*/
class MemReadEvent : virtual public MemAccessEvent
{
public:
MemReadEvent()
: MemAccessEvent(MEM_READ) { }
MemReadEvent(sal::address_t addr)
: MemAccessEvent(addr, MEM_READ) { }
};
/**
* \class MemWriteEvent
* Observes memory write accesses.
*/
class MemWriteEvent : virtual public MemAccessEvent
{
public:
MemWriteEvent()
: MemAccessEvent(MEM_READ) { }
MemWriteEvent(sal::address_t addr)
: MemAccessEvent(addr, MEM_WRITE) { }
};
/**
* \class TroubleEvent
* Observes interrupt/trap activties.
*/
class TroubleEvent : virtual public BaseEvent
{
private:
/**
* Specific guest system interrupt/trap number that actually
* trigger the event.
*/
int m_TriggerNumber;
/**
* Specific guest system interrupt/trap numbers to watch,
* or ANY_INTERRUPT/ANY_TRAP.
*/
std::vector<unsigned> m_WatchNumbers;
public:
TroubleEvent() : m_TriggerNumber (-1) { }
TroubleEvent(unsigned troubleNumber)
: m_TriggerNumber(-1)
{ addWatchNumber(troubleNumber); }
/**
* Add an interrupt/trap-number which should be observed
* @param troubleNumber number of an interrupt or trap
* @return \c true if number is added to the list \c false if the number
* was already in the list
*/
bool addWatchNumber(unsigned troubleNumber);
/**
* Remove an interrupt/trap-number which is in the list of observed
* numbers
* @param troubleNumber number of an interrupt or trap
* @return \c true if the number was found and removed \c false if the
* number was not in the list
*/
bool removeWatchNumber(unsigned troubleNum);
/**
* Returns the list of observed numbers
* @return a copy of the list which contains all observed numbers
*/
std::vector<unsigned> getWatchNumbers() { return (m_WatchNumbers); }
/**
* Checks whether a given interrupt-/trap-number is matching.
*/
bool isMatching(unsigned troubleNum) const;
/**
* Sets the specific interrupt-/trap-number that actually triggered
* the event. Should not be used by experiment code.
*/
void setTriggerNumber(unsigned troubleNum)
{ m_TriggerNumber = troubleNum; }
/**
* Returns the specific interrupt-/trap-number that actually triggered
* the event.
*/
unsigned getTriggerNumber() { return (m_TriggerNumber); }
};
/**
* \class InterruptEvent
* Observes interrupts of the guest system.
*/
class InterruptEvent : virtual public TroubleEvent
{
private:
bool m_IsNMI; //!< non maskable interrupt flag
public:
InterruptEvent() : m_IsNMI(false) { }
InterruptEvent(unsigned interrupt) : m_IsNMI(false)
{ addWatchNumber(interrupt); }
/**
* Returns \c true if the interrupt is non maskable, \c false otherwise.
*/
bool isNMI() { return (m_IsNMI); }
/**
* Sets the interrupt type (non maskable or not).
*/
void setNMI(bool enabled) { m_IsNMI = enabled; }
};
/**
* \class TrapEvent
* Observes traps of the guest system.
*/
class TrapEvent : virtual public TroubleEvent
{
public:
TrapEvent() { }
TrapEvent(unsigned trap) { addWatchNumber(trap); }
};
/**
* \class GuestEvent
* Used to receive data from the guest system.
*/
class GuestEvent : virtual public BaseEvent
{
private:
char m_Data;
unsigned m_Port;
public:
GuestEvent() : m_Data(0), m_Port(0) { }
/**
* Returns the data, transmitted by the guest system.
*/
char getData() const { return (m_Data); }
/**
* Sets the data which had been transmitted by the guest system.
*/
void setData(char data) { m_Data = data; }
/**
* Returns the data length, transmitted by the guest system.
*/
unsigned getPort() const { return (m_Data); }
/**
* Sets the data length which had been transmitted by the guest system.
*/
void setPort(unsigned port) { m_Port = port; }
};
/**
* \class JumpEvent
* JumpEvents are used to observe condition jumps (if...else if...else).
*/
class JumpEvent : virtual public BaseEvent
{
private:
unsigned m_Opcode;
bool m_FlagTriggered;
public:
/**
* Constructs a new event object.
* @param parent the parent object
* @param opcode the opcode of the jump-instruction to be observed
* or ANY_INSTR to match all jump-instructions
*/
JumpEvent(unsigned opcode = ANY_INSTR)
: m_Opcode(opcode), m_FlagTriggered(false) { }
/**
* Retrieves the opcode of the jump-instruction.
*/
unsigned getOpcode() const { return (m_Opcode); }
/**
* Returns \c true, of the event was triggered due to specific register
* content, \c false otherwise.
*/
bool isRegisterTriggered() { return (!m_FlagTriggered); }
/**
* Returns \c true, of the event was triggered due to specific FLAG
* state, \c false otherwise. This is the common case.
*/
bool isFlagTriggered() { return (m_FlagTriggered); }
/**
* Sets the requestet jump-instruction opcode.
*/
void setOpcode(unsigned oc) { oc = m_Opcode; }
/**
* Sets the trigger flag.
*/
void setFlagTriggered(bool flagTriggered)
{ m_FlagTriggered = flagTriggered; }
};
} // end-of-namespace: fi
#endif /* __EVENT_HPP__ */

View File

@ -0,0 +1,136 @@
#include <set>
#include "EventList.hpp"
#include "../SAL/SALInst.hpp"
namespace fi
{
EventId EventList::add(BaseEvent* ev, ExperimentFlow* pExp)
{
assert(ev != NULL && "FATAL ERROR: Event (of base type BaseEvent*) cannot be NULL!");
// a zero counter does not make sense
assert(ev->getCounter() != 0);
ev->setParent(pExp); // event is linked to experiment flow
m_BufferList.push_back(ev);
return (ev->getId());
}
bool EventList::remove(BaseEvent* ev)
{
if(ev != NULL)
{
iterator it = std::find(m_BufferList.begin(), m_BufferList.end(), ev);
if(it != end())
{
m_BufferList.erase(it);
m_DeleteList.push_back(ev);
return (true);
}
}
else
{
for(iterator it = m_BufferList.begin(); it != m_BufferList.end();
it++)
m_DeleteList.push_back(*it);
m_BufferList.clear();
return (true);
}
return (false);
}
EventList::iterator EventList::remove(iterator it)
{
return (m_remove(it, false));
}
EventList::iterator EventList::m_remove(iterator it, bool skip_deletelist)
{
if(!skip_deletelist)
m_DeleteList.push_back(*it);
return (m_BufferList.erase(it));
}
void EventList::getEventsOf(ExperimentFlow* pWhat,
std::vector<BaseEvent*>& dest) const
{
assert(pWhat && "FATAL ERROR: The context cannot be NULL!");
for(bufferlist_t::const_iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
if((*it)->getParent() == pWhat)
dest.push_back(*it);
}
EventList::~EventList()
{
// nothing to do here yet
}
BaseEvent* EventList::getEventFromId(EventId id)
{
// Loop through all events:
for(bufferlist_t::iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
if((*it)->getId() == id)
return (*it);
return (NULL); // Nothing found.
}
void EventList::makeActive(BaseEvent* ev)
{
assert(ev && "FATAL ERROR: Event object pointer cannot be NULL!");
ev->decreaseCounter();
if (ev->getCounter() > 0) {
return;
}
ev->resetCounter();
if(remove(ev)) // remove event from buffer-list
m_FireList.push_back(ev);
}
EventList::iterator EventList::makeActive(iterator it)
{
assert(it != m_BufferList.end() &&
"FATAL ERROR: Iterator has already reached the end!");
BaseEvent* ev = *it;
assert(ev && "FATAL ERROR: Event object pointer cannot be NULL!");
ev->decreaseCounter();
if (ev->getCounter() > 0) {
return ++it;
}
ev->resetCounter();
// Note: This is the one and only situation in which remove() should NOT
// store the removed item in the delete-list.
iterator it_next = m_remove(it, true); // remove event from buffer-list
m_FireList.push_back(ev);
return (it_next);
}
void EventList::fireActiveEvents()
{
for(firelist_t::iterator it = m_FireList.begin();
it != m_FireList.end(); it++)
{
if(std::find(m_DeleteList.begin(), m_DeleteList.end(), *it)
== m_DeleteList.end()) // not found in delete-list?
{
m_pFired = *it;
ExperimentFlow* pFlow = m_pFired->getParent();
assert(pFlow && "FATAL ERROR: The event has no parent experiment (owner)!");
sal::simulator.m_Flows.toggle(pFlow);
}
}
m_FireList.clear();
m_DeleteList.clear();
}
size_t EventList::getContextCount() const
{
set<ExperimentFlow*> uniqueFlows; // count unique ExperimentFlow-ptr
for(bufferlist_t::const_iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
uniqueFlows.insert((*it)->getParent());
return (uniqueFlows.size());
}
} // end-of-namespace: fi

View File

@ -0,0 +1,201 @@
#ifndef __EVENT_LIST_HPP__
#define __EVENT_LIST_HPP__
// Author: Adrian Böckenkamp
// Date: 04.02.2012
#include <cassert>
#include <list>
#include <vector>
#include <algorithm>
#include "Event.hpp"
namespace fi
{
class ExperimentFlow;
/**
* Buffer-list for a specific experiment; acts as a simple storage container
* for events to watch for:
*/
typedef std::list<BaseEvent*> bufferlist_t;
/**
* List of events that match the current simulator event; these events will
* be triggered next (the list is used temporarily).
*/
typedef std::vector<BaseEvent*> firelist_t;
/**
* List of events that have been deleted during a toggled experiment flow while
* triggering the events in the fire-list. This list is used to skip already
* deleted events (therefore it is used temporarily either).
*/
typedef std::vector<BaseEvent*> deletelist_t;
/**
* \class EventList
*
* \brief This class manages the events of the Fail* implementation.
*
* If a event is triggered, the internal data structure will be updated (id est,
* the event will be removed from the so called buffer-list and added to the
* fire-list). Additionaly, if an experiment-flow deletes an "active" event
* which is currently stored in the fire-list, the event (to be removed) will
* be added to a -so called- delete-list. This ensures to prevent triggering
* "active" events which have already been deleted by a previous experiment
* flow. (See makeActive() and fireActiveEvent() for implementation specific
* details.) EventList is part of the SimulatorController and "outsources"
* it's event management.
*/
class EventList
{
private:
bufferlist_t m_BufferList; //!< the storage for events added by exp.
firelist_t m_FireList; //!< the active events (used temporarily)
deletelist_t m_DeleteList; //!< the deleted events (used temporarily)
// TODO: Hashing?
BaseEvent* m_pFired; //!< the recently fired Event-object
public:
/**
* The iterator of this class used to loop through the list of
* added events. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef bufferlist_t::iterator iterator;
EventList() : m_pFired(NULL) { }
~EventList();
/**
* Adds the specified event object for the given ExperimentFlow to the
* list of events to be watched for.
* @param ev pointer to the event object to be added (cannot be \c NULL)
* @param pExp the event context (a pointer to the experiment object
* which is interested in such events, cannot be \c NULL)
* @return the id of the added event object, that is ev->getId()
*/
EventId add(BaseEvent* ev, ExperimentFlow* pExp);
/**
* Removes the event based upon the specified \a ev pointer (requires
* to loop through the whole buffer-list).
* @param ev the pointer of the event to be removed; if ev is set to
* \c NULL, all events (for \a all experiments) will be
* removed
* @return \c true if the object has been removed or \c false if the
* pointer could not be found
*/
bool remove(BaseEvent* ev);
/**
* Behaves like remove(BaseEvent) and additionally updates the provided
* iteration.
* @return the updated iterator which will point to the next element
*/
iterator remove(iterator it);
private:
/**
* Internal implementation of remove(iterator it) that allows
* to skip the delete-list.
* @return the updated iterator which will point to the next element
*/
iterator m_remove(iterator it, bool skip_deletelist);
public:
/**
* Returns an iterator to the beginning of the internal data structure.
* Don't forget to update the returned iterator when calling one of the
* modifying methods like makeActive() or remove(). Therefore you need
* to call the iterator-based variants of makeActive() and remove().
* \code
* [X|1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_BufferList.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* Don't forget to update the returned iterator when calling one of the
* modifying methods like makeActive() or remove(). Therefore you need
* to call the iterator-based variants of makeActive() and remove().
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_BufferList.end()); }
/**
* Retrieves the event object for the given \a id. The internal data
* remains unchanged.
* @param id of event to be retrieved.
* @return pointer to event or \c NULL of \a id could not be found
*/
BaseEvent* getEventFromId(EventId id);
/**
* Retrieves all events for the specified experiment.
* @param pWhat pointer to experiment context (this pointer is expected
* to be valid!)
* @param dest a reference to a vector-object to be used as the
* destination buffer for the machting event objects. This
* objects may remains unchanged if no matching event objects
* were found.
*/
void getEventsOf(ExperimentFlow* pWhat, std::vector<BaseEvent*>& dest) const;
/**
* Retrieves the number of experiments which currently have active
* events. This number is trivially equal to the (current) total
* number of ExperimentFlow-objects.
* @return number of experiments having active events
*/
size_t getContextCount() const;
/**
* Retrieves the total number of events.
* @return the total event count (for all flows)
*/
size_t getEventCount() const { return (m_BufferList.size()); }
/**
* Retrieves the recently triggered event object. To map this object to
* it's context (id est, the related ExerimentFlow), use
* \c getLastFiredDest().
* @return a pointer to the recent event or \c NULL if nothing has been
* triggered so far
*/
BaseEvent* getLastFired() { return (m_pFired); }
/**
* Retrieves the ExperimentFlow-object for the given BaseEvent (it's
* \a context).
* @param pEv the event object to be looked up
* @return a pointer to the context of \a pEv or \c NULL if the
* corresponding context could not be found
*/
ExperimentFlow* getExperimentOf(BaseEvent* pEv);
/**
* Moves the events from the (internal) buffer-list to the fire-list. To
* actually fire the events activated by calling makeActive(), call
* fireActiveEvents().
* @param ev the event to trigger
* TODO: besserer Name statt "makeActive"?
*/
void makeActive(BaseEvent* ev);
/**
* Behaves like makeActive(BaseEvent) and additionally returns an
* updated iterator which points to the next BaseEvent-element.
* @param ev the event to trigger
* @return returns the updated iteration, pointing to the next element
* after makeActive returns, "it" is invalid, so the returned
* iterator should be used to continue the iteration
* TODO: besserer Name statt "makeActive"?
*/
iterator makeActive(iterator it);
/**
* Triggers the active events. Each event is triggered if it has not
* recently been removed (id est: is not found in the delete-list). See
* makeActive() for more details. The recently triggered event can be
* retrieved by calling \a getLastFired(). After all events have been
* triggered, the (internal) fire- and delete-list will be cleared.
* TODO: besserer Name statt "fireActiveEvents"?
*/
void fireActiveEvents();
};
}; // end-of-namespace: fi
#endif /* __EVENT_LIST_HPP__ */

View File

@ -0,0 +1,56 @@
/**
* \brief ExperimentData interface
*
* This is the base class for all user-defined data types for
* expirement parameter and results.
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
#ifndef __EXPERIMENT_DATA_H__
#define __EXPERIMENT_DATA_H__
#include <string>
#include <google/protobuf/message.h>
using namespace std;
namespace fi{
/**
* \class ExperimentData
* Container for experiment data with wrapper methods for serialization and deserialization.
*/
class ExperimentData
{
protected:
google::protobuf::Message* msg;
uint32_t m_workloadID;
public:
ExperimentData() : msg(0), m_workloadID(0) {};
ExperimentData(google::protobuf::Message* m) : msg(m) , m_workloadID(0) {};
google::protobuf::Message& getMessage() { return *msg; };
uint32_t getWorkloadID() const { return m_workloadID;};
void setWorkloadID(uint32_t id) { m_workloadID = id; };
/**
* Serializes the ExperimentData.
* @param ped output the target-stream.
* @return \c true if the serialization was successful, \c false otherwise
*/
bool serialize(ostream * output) const { return msg->SerializeToOstream(output); }
/**
* Unserializes the ExperimentData.
* @param ped input the stream which is read from
* @return \c true if the unserialization was successful, \c false otherwise
*/
bool unserialize(istream * input) { return msg->ParseFromIstream(input); }
string DebugString() const { return msg->DebugString(); };
};
};
#endif //__EXPERIMENT_DATA_H__

View File

@ -0,0 +1,22 @@
#include "ExperimentDataQueue.hpp"
#include <assert.h>
namespace fi
{
void ExperimentDataQueue::addData(ExperimentData* exp)
{
assert(exp != 0);
m_queue.push_front(exp);
}
ExperimentData* ExperimentDataQueue::getData()
{
ExperimentData* ret = m_queue.back();
m_queue.pop_back();
return ret;
}
}

View File

@ -0,0 +1,53 @@
/**
* \brief A queue for experiment data.
*
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
#ifndef __EXPERIMENT_DATA_QUEUE_H__
#define __EXPERIMENT_DATA_QUEUE_H__
#include <deque>
#include "ExperimentData.hpp"
namespace fi{
/**
* \class ExperimentDataQueue
* Class which manage ExperimentData in a queue.
*/
class ExperimentDataQueue
{
protected:
std::deque<ExperimentData*> m_queue;
public:
ExperimentDataQueue() {}
~ExperimentDataQueue() {}
/**
* Adds ExperimentData to the queue.
* @param exp ExperimentData that is to be added to the queue.
*/
void addData(ExperimentData* exp);
/**
* Returns an item from the queue
* @return the next element of the queue
*/
ExperimentData* getData();
/**
* Returns the number of elements in the queue
* @return the size of teh queue
*/
size_t size() const { return m_queue.size(); };
};
};
#endif //__EXPERIMENT_DATA_QUEUE_H__

View File

@ -0,0 +1,41 @@
#ifndef __EXPERIMENT_FLOW_HPP__
#define __EXPERIMENT_FLOW_HPP__
// Author: Adrian Böckenkamp
// Date: 09.09.2011
#include "../SAL/SALInst.hpp"
namespace fi
{
/**
* \class ExperimentFlow
* Basic interface for user-defined experiments. To create a new
* experiment, derive your own class from ExperimentFlow and
* define the run method.
*/
class ExperimentFlow
{
public:
ExperimentFlow() { }
/**
* Defines the experiment flow.
* @return \c true if the experiment was successful, \c false otherwise
*/
virtual bool run() = 0;
/**
* The entry point for this experiment's coroutine.
* Should do some cleanup afterwards.
*/
void coroutine_entry()
{
run();
sal::simulator.cleanup(this); // remove residual events
}
};
}
#endif /* __EXPERIMENT_FLOW_HPP__ */

View File

@ -0,0 +1,67 @@
/**
* \brief The representation of a minion.
*
* \author Richard Hellwig
*
*/
#ifndef __MINION_HPP__
#define __MINION_HPP__
#include "controller/ExperimentData.hpp"
namespace fi
{
/**
* \class Minion
*
* Contains all informations about a minion.
*/
class Minion
{
private:
string hostname;
bool isWorking;
ExperimentData* currentExperimentData;
int sockfd;
public:
Minion() : isWorking(false), currentExperimentData(0), sockfd(-1) { }
void setSocketDescriptor(int sock) { sockfd = sock; }
int getSocketDescriptor() const { return (sockfd); }
/**
* Returns the hostname of the minion.
* @return the hostname
*/
string getHostname() { return (hostname); }
/**
* Sets the hostname of the minion.
* @param host the hostname
*/
void setHostname(string host) { hostname = host; }
/**
* Returns the current ExperimentData which the minion is working with.
* @return a pointer of the current ExperimentData
*/
ExperimentData* getCurrentExperimentData() { return currentExperimentData; }
/**
* Sets the current ExperimentData which the minion is working with.
* @param exp the current ExperimentData
*/
void setCurrentExperimentData(ExperimentData* exp) { currentExperimentData = exp; }
/**
* Returns the current state of the minion.
* @return the current state
*/
bool isBusy() { return (isWorking); }
/**
* Sets the current state of the minion
* @param state the current state
*/
void setBusy(bool state) { isWorking = state; }
};
};
#endif /* __MINION_HPP__ */

14
core/controller/Signal.cc Normal file
View File

@ -0,0 +1,14 @@
// Author: Adrian Böckenkamp
// Date: 15.06.2011
#include "Signal.hpp"
namespace fi
{
std::auto_ptr<Signal> Signal::m_This;
Mutex Signal::m_InstanceMutex;
} // end-of-namespace: fi

136
core/controller/Signal.hpp Normal file
View File

@ -0,0 +1,136 @@
#ifndef __SIGNAL_HPP__
#define __SIGNAL_HPP__
// Author: Adrian Böckenkamp
// Date: 15.06.2011
#include <cassert>
#include <memory>
#include <iostream>
#ifndef __puma
#include <boost/thread.hpp>
#include <boost/interprocess/sync/named_semaphore.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/mutex.hpp>
#endif
namespace fi
{
#ifndef __puma
typedef boost::mutex Mutex; // lock/unlock
typedef boost::mutex::scoped_lock ScopeLock; // use RAII with lock/unlock mechanism
typedef boost::condition_variable ConditionVariable; // wait/notify_one
#else
typedef int Mutex;
typedef int ScopeLock;
typedef int ConditionVariable;
#endif
// Simulate a "private" semaphore using boost-mechanisms:
class Semaphore
{
private:
Mutex m_Mutex;
ConditionVariable m_CondVar;
unsigned long m_Value;
public:
// Create a semaphore object based on a mutex and a condition variable
// and initialize it to value "init".
Semaphore(unsigned long init = 0) : m_Value(init) { }
void post()
{
ScopeLock lock(m_Mutex);
++m_Value; // increase semaphore value:
#ifndef __puma
m_CondVar.notify_one(); // wake up other thread, currently waiting on condition var.
#endif
}
void wait()
{
ScopeLock lock(m_Mutex);
#ifndef __puma
while(!m_Value) // "wait-if-zero"
m_CondVar.wait(lock);
#endif
--m_Value; // decrease semaphore value
}
};
class Signal
{
private:
static Mutex m_InstanceMutex; // used to sync calls to getInst()
static std::auto_ptr<Signal> m_This; // the one and only instance
Semaphore m_semBochs;
Semaphore m_semContr;
Semaphore m_semSimCtrl;
bool m_Locked; // prevent misuse of thread-sync
// Singleton class (forbid creation, copying and assignment):
Signal()
: m_semBochs(0), m_semContr(0),
m_semSimCtrl(0), m_Locked(false) { }
Signal(Signal const& s)
: m_semBochs(), m_semContr(),
m_semSimCtrl(), m_Locked(false) { } // never called.
Signal& operator=(Signal const&) { return *this; } // dito.
~Signal() { }
friend class std::auto_ptr<Signal>;
public:
static Signal& getInst()
{
ScopeLock lock(m_InstanceMutex); // lock/unlock handled by RAII principle
if(!m_This.get())
m_This.reset(new Signal());
return (*m_This);
}
// Called from Experiment-Controller class ("beyond Bochs"):
void lockExperiment()
{
assert(!m_Locked &&
"[Signal::lockExperiment]: lockExperiment called twice without calling unlockExperiment() in between.");
m_Locked = true;
m_semContr.wait(); // suspend experiment process
}
// Called from Experiment-Controller class ("beyond Bochs"):
void unlockExperiment()
{
assert(m_Locked &&
"[Signal::unlockExperiment]: unlockExperiment called twice without calling lockExperiment() in between.");
m_Locked = false;
m_semBochs.post(); // resume experiment (continue bochs simulation)
}
// Called from Advice-Code ("within Bochs") to trigger event occurrence:
void signalEvent()
{
m_semContr.post(); // Signal event (to Experiment-Controller)
m_semBochs.wait(); // Wait upon handling to finish
}
// Called from Experiment-Controller to allow simulation start:
void startSimulation()
{
m_semSimCtrl.post();
}
// Called from Bochs, directly after thread creation for Experiment-Controller:
// (This ensures that Bochs waits until the experiment has been set up in the
// Experiment-Controller.)
void waitForStartup()
{
m_semSimCtrl.wait();
}
};
} // end-of-namespace: fi
#endif /* __SIGNAL_HPP__ */

View File

@ -0,0 +1,23 @@
#include "SynchronizedExperimentDataQueue.hpp"
namespace fi {
void SynchronizedExperimentDataQueue::addData(ExperimentData* exp){
//
m_sema_full.wait();
ExperimentDataQueue::addData(exp);
m_sema_empty.post();
//
}
ExperimentData* SynchronizedExperimentDataQueue::getData(){
//
m_sema_empty.wait();
return ExperimentDataQueue::getData();
m_sema_full.post();
//
}
};

View File

@ -0,0 +1,55 @@
/**
* \brief A queue for experiment data.
*
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
#ifndef __SYNC_EXPERIMENT_DATA_QUEUE_H__
#define __SYNC_EXPERIMENT_DATA_QUEUE_H__
#include "ExperimentDataQueue.hpp"
#include "Signal.hpp"
namespace fi{
/**
* \class SynchronizedExperimentDataQueue
* Class which manage ExperimentData in a queue.
* Thread safe using semphores.
*/
class SynchronizedExperimentDataQueue : public ExperimentDataQueue
{
private:
/// There are maxSize elements in at a time
/// Or do we allow a really possibly huge queue?
Semaphore m_sema_full;
Semaphore m_sema_empty;
public:
SynchronizedExperimentDataQueue(int maxSize = 1024) : m_sema_full(maxSize), m_sema_empty(0) {}
~SynchronizedExperimentDataQueue() {}
/**
* Adds ExperimentData to the queue.
* @param exp ExperimentData that is to be added to the queue.
*/
void addData(ExperimentData* exp);
/**
* Returns an item from the queue
* @return the next element of the queue
*/
ExperimentData* getData();
/**
* Returns the number of elements in the queue
* @return the size of the queue
*/
size_t size() const { return m_queue.size(); };
};
};
#endif //__EXPERIMENT_DATA_QUEUE_H__