another directory rename: failstar -> fail

"failstar" sounds like a name for a cruise liner from the 80s.  As "*" isn't a
desirable part of directory names, just name the whole thing "fail/", the core
parts being stored in "fail/core/".

Additionally fixing two build system dependency issues:
 - missing jobserver -> protomessages dependency
 - broken bochs -> fail dependency (add_custom_target DEPENDS only allows plain
   file dependencies ... cmake for the win)


git-svn-id: https://www4.informatik.uni-erlangen.de/i4svn/danceos/trunk/devel/fail@956 8c4709b5-6ec9-48aa-a5cd-a96041d1645a
This commit is contained in:
hsc
2012-03-08 19:43:02 +00:00
commit b70b6fb43a
921 changed files with 473161 additions and 0 deletions

30
core/AspectConfig.hpp Normal file
View File

@ -0,0 +1,30 @@
#ifndef __ASPECT_CONFIG_HPP__
#define __ASPECT_CONFIG_HPP__
// The following configuration macros to disable (0) / enable (1) the various
// event sources, fault injection sinks, and miscellaneous other features.
// Event sources
#define CONFIG_EVENT_CPULOOP 0
#define CONFIG_EVENT_MEMREAD 0
#define CONFIG_EVENT_MEMWRITE 0
#define CONFIG_EVENT_GUESTSYS 0
#define CONFIG_EVENT_INTERRUPT 0
#define CONFIG_EVENT_TRAP 0
#define CONFIG_EVENT_JUMP 0
// Save/restore functionality
#define CONFIG_SR_RESTORE 0
#define CONFIG_SR_SAVE 0
#define CONFIG_SR_REBOOT 0
// Miscellaneous
#define CONFIG_STFU 0
#define CONFIG_SUPPRESS_INTERRUPTS 0
#define CONFIG_DISABLE_KEYB_INTERRUPTS 0
// Fault injection
#define CONFIG_FI_MEM_ACCESS_BITFLIP 0
#endif /* __ASPECT_CONFIG_HPP__ */

65
core/CMakeLists.txt Normal file
View File

@ -0,0 +1,65 @@
### Setup search paths for headers ##
include_directories(${CMAKE_CURRENT_BINARY_DIR})
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
### Add Boost and Threads
find_package(Boost 1.42 COMPONENTS thread REQUIRED)
find_package(Threads)
include_directories(${Boost_INCLUDE_DIRS})
link_directories(${Boost_LIBRARY_DIRS})
### Setup doxygen documentation
# TODO put into helpers.cmake
find_package(Doxygen)
if(DOXYGEN_FOUND)
# Using a .in file means we can use CMake to insert project settings
# into the doxyfile. For example, CMake will replace @PROJECT_NAME@ in
# a configured file with the CMake PROJECT_NAME variable's value.
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile.in
${CMAKE_CURRENT_BINARY_DIR}/Doxyfile @ONLY}
)
## call make doc to generate documentation
add_custom_target( doc
${DOXYGEN_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
COMMENT "[${PROJECT_NAME}] Generating fail* documentation with Doxygen" VERBATIM
)
endif(DOXYGEN_FOUND)
## Add CMakeLists from subdirectories ##
# The autogenerated header files
# FIXME disabled for now; we'll need it later on for other configuration stuff.
#add_subdirectory(config)
# fail* targets
add_subdirectory(jobserver)
add_subdirectory(controller)
add_subdirectory(SAL)
add_subdirectory(util)
# Here we add all user-defined experiments (which fills the target list)
add_subdirectory(experiments/)
message(STATUS "[${PROJECT_NAME}] chosen experiment targets:")
foreach(experiment_name ${EXPERIMENTS_ACTIVATED})
message(STATUS "[${PROJECT_NAME}] -> ${experiment_name}")
endforeach(experiment_name)
# Here we add activated plugins
add_subdirectory(plugins/)
message(STATUS "[${PROJECT_NAME}] chosen plugin targets:")
foreach(plugin_name ${PLUGINS_ACTIVATED})
message(STATUS "[${PROJECT_NAME}] -> ${plugin_name}")
endforeach(plugin_name)
## Merge all resulting fail* libs into a single libfail.a and copy it into the fail source directory
add_custom_target(fail
COMMAND ${CMAKE_SOURCE_DIR}/cmake/mergelib.sh ${LIBRARY_OUTPUT_PATH} && ${CMAKE_COMMAND} -E copy ${LIBRARY_OUTPUT_PATH}/libfail.a ${CMAKE_SOURCE_DIR}/core
)
## Setup build dependencies of the fail* lib
## -> the fail* targets and user defined experiment targets
add_dependencies(fail SAL util controller jobserver protomessages ${EXPERIMENTS_ACTIVATED} ${PLUGINS_ACTIVATED})
# Let make clean also delete libfail.a
set_directory_properties(PROPERTIES ADDITIONAL_MAKE_CLEAN_FILES ${LIBRARY_OUTPUT_PATH}/libfail.a)

1553
core/Doxyfile.in Normal file

File diff suppressed because it is too large Load Diff

10
core/SAL/CMakeLists.txt Normal file
View File

@ -0,0 +1,10 @@
set(SRCS
Memory.cc
Register.cc
SimulatorController.cc
${VARIANT}/Controller.cc
)
add_library(SAL ${SRCS})

12
core/SAL/Memory.cc Normal file
View File

@ -0,0 +1,12 @@
// Author: Adrian Böckenkamp
// Date: 09.09.2011
#include "Memory.hpp"
#include <cstdlib>
namespace sal
{
const guest_address_t ADDR_INV = NULL;
}

77
core/SAL/Memory.hpp Normal file
View File

@ -0,0 +1,77 @@
#ifndef __MEMORY_HPP__
#define __MEMORY_HPP__
// Author: Adrian Böckenkamp
// Date: 07.09.2011
#include <vector>
#include <stdint.h>
#include <cstring> // Added for size_t support
#include "SALConfig.hpp"
namespace sal
{
/**
* \class MemoryManager
* Defines an abstract interface to access the simulated memory pool
* and query meta information, e.g. the memory size.
*/
class MemoryManager
{
public:
virtual ~MemoryManager() { }
/**
* Retrieves the size of the available simulated memory.
* @return the size of the memory pool in bytes
*/
virtual size_t getPoolSize() const = 0;
/**
* Retrieves the starting address of the host memory. This is the
* first valid address in memory.
* @return the starting address
*/
virtual host_address_t getStartAddr() const = 0;
/**
* Retrieves the byte at address \a addr in the memory.
* @param addr The guest address where the byte is located.
* The address is expected to be valid.
* @return the byte at \a addr
*/
virtual byte_t getByte(guest_address_t addr) = 0;
/**
* Retrieves \a cnt bytes at address \a addr in the memory.
* @param addr The guest address where the bytes are located.
* The address is expected to be valid.
* @param cnt the number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param dest the destination buffer to write the bytes to
*/
virtual void getBytes(guest_address_t addr, size_t cnt, std::vector<byte_t>& dest) = 0;
/**
* Writes the byte \a data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new byte to write
*/
virtual void setByte(guest_address_t addr, byte_t data) = 0;
/**
* Writes the bytes \a data to memory. Consequently data.size() bytes
* will be written.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new bytes to write
*/
virtual void setBytes(guest_address_t addr, const std::vector<byte_t>& data) = 0;
/**
* Transforms the guest address \a addr to a host address.
* @param addr The guest address to be transformed
* @return the transformed (host) address or \c ADDR_INV on errors
*/
virtual host_address_t guestToHost(guest_address_t addr) = 0;
};
} // end-of-namespace: sal
#endif /* __MEMORY_HPP__ */

72
core/SAL/Register.cc Normal file
View File

@ -0,0 +1,72 @@
// Author: Adrian Böckenkamp
// Date: 07.09.2011
#include "Register.hpp"
namespace sal
{
Register* UniformRegisterSet::getRegister(size_t i)
{
assert(i < m_Regs.size() && "FATAL ERROR: Invalid index provided!");
return (m_Regs[i]);
}
Register* RegisterManager::getRegister(size_t i)
{
assert(i < m_Registers.size() && "FATAL ERROR: Invalid index provided!");
return (m_Registers[i]);
}
void RegisterManager::add(Register* reg)
{
assert(!reg->isAssigned() && "FATAL ERROR: The register is already assigned!");
m_Registers.push_back(reg);
UniformRegisterSet* urs = getSetOfType(reg->getType());
if(urs == NULL) {
urs = new UniformRegisterSet(reg->getType());
m_Subsets.push_back(urs);
}
urs->m_add(reg);
}
void UniformRegisterSet::m_add(Register* preg)
{
assert(!preg->m_Assigned &&
"FATAL ERROR: The register has already been assigned.");
m_Regs.push_back(preg);
preg->m_Assigned = true;
preg->m_Index = m_Regs.size()-1; // the index within the vector (set)
}
size_t RegisterManager::count() const
{
return (m_Registers.size());
}
UniformRegisterSet& RegisterManager::getSet(size_t i)
{
assert(i < m_Subsets.size() && "FATAL ERROR: Invalid index provided!");
return (*m_Subsets[i]);
}
UniformRegisterSet* RegisterManager::getSetOfType(RegisterType t)
{
for(std::vector< UniformRegisterSet* >::iterator it = m_Subsets.begin();
it != m_Subsets.end(); it++)
{
if((*it)->getType() == t)
return (*it);
}
return (NULL);
}
void RegisterManager::clear()
{
for(std::vector< UniformRegisterSet* >::iterator it = m_Subsets.begin();
it != m_Subsets.end(); it++)
delete (*it);
m_Subsets.clear();
}
}

279
core/SAL/Register.hpp Normal file
View File

@ -0,0 +1,279 @@
#ifndef __REGISTER_HPP__
#define __REGISTER_HPP__
// Author: Adrian Böckenkamp
// Date: 06.09.2011
#include <vector>
#include <cstdlib>
#include <cassert>
#include <string>
#include <stdint.h>
#include "SALConfig.hpp"
namespace sal
{
/**
* \enum RegisterType
* Lists the different register types. You need to expand this enumeration
* to provide more detailed types for your concrete derived register classes
* specific to a simulator.
*/
enum RegisterType
{
RT_GP, //!< general purpose
RT_PC, //!< program counter / instruction pointer
RT_ST //!< status register
};
/**
* \class Register
* Represents the basic generic register class. A set of registers is composed
* of classes which had been derived from this class.
*/
class Register
{
protected:
RegisterType m_Type; //!< the type of this register
regwidth_t m_Width; //!< the register width
unsigned int m_Id; //!< the unique id of this register
//! \c true if register has already been assigned, \c false otherwise
bool m_Assigned;
//! The index in it's register set if assigned (\c -1 otherwise)
size_t m_Index;
std::string m_Name; //!< The (optional) name, maybe empty
friend class UniformRegisterSet;
public:
/**
* Creates a new register.
* @param id the unique id of this register (simulator specific)
* @param t the type of the register to be constructed
* @param w the width of the register in bits
*/
Register(unsigned int id, RegisterType t, regwidth_t w)
: m_Type(t), m_Width(w), m_Id(id), m_Assigned(false),
m_Index(static_cast<size_t>(-1)) { }
/**
* Returns the (fixed) type of this register.
* @return the type of this register
*/
RegisterType getType() const { return (m_Type); }
/**
* Returns the (fixed) width of this register.
* @return the width in bits
*/
regwidth_t getWidth() const { return (m_Width); }
/**
* Returns the data referenced by this register. In a concrete
* derived class this method has to be defined appropriately.
* @return the current data
*/
virtual regdata_t getData() /*!const*/ = 0;
/**
* Sets new data to be stored in this register.
* @param data the data to be written to the register
*/
virtual void setData(regdata_t data) = 0;
/**
* Sets the (optional) name of this register.
* @param name the textual register name, e.g. "EAX"
*/
void setName(const std::string& name) { m_Name = name; }
/**
* Retrieves the register name.
* @return the name
*/
const std::string& getName() const { return (m_Name); }
/**
* Retrieves the unique index within it's assigned register set.
* If the register has not been assigned, \c (size_t)-1 will be
* returned.
* @return the register index or -1 if not assigned
* @see isAssigned()
*/
size_t getIndex() const { return (m_Index); }
/**
* Checks whether this register has already been assigned. On
* creation the register isn't initially assigned.
* @return \c true if assigned, \c false otherwise
*/
bool isAssigned() const { return (m_Assigned); }
/**
* Returns the unique id of this register.
* @return the unique id
*/
unsigned int getId() const { return (m_Id); }
};
/**
* \class UniformRegisterSet
* Represents a (type-uniform) set of registers, e.g. all general purpose
* registers. The granularity of the register type is determined by the
* enumeration \c RegisterType. (All registers within this set must be of the
* same register type.) The capacity of the set is managed automatically.
*/
class UniformRegisterSet
{
private:
std::vector< Register* > m_Regs; //!< the unique set of registers
RegisterType m_Type; //!< the overall type of this container (set)
void m_add(Register* preg);
friend class RegisterManager;
public:
/**
* The iterator of this class used to loop through the list of
* added registers. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef std::vector< Register* >::iterator iterator;
/**
* Returns an iterator to the beginning of the internal data structure.
* \code
* [1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_Regs.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_Regs.end()); }
/**
* Constructs a new register set with type \a containerType.
* @param containerType the type of registers which should be stored
* in this set
*/
UniformRegisterSet(RegisterType containerType)
: m_Type(containerType) { }
/**
* Returns the type of this set.
* @return the type
*/
RegisterType getType() const { return (m_Type); }
/**
* Gets the number of registers of this set.
* @return the number of registers
*/
size_t count() const { return (m_Regs.size()); }
/**
* Retrieves the \a i-th register within this set.
* @return a pointer to the \a i-th register; if \a i is invalid, an
* assertion is thrown
*/
Register* getRegister(size_t i);
/**
* Retrieves the first register within this set (syntactical sugar).
* @return a pointer to the first register (if existing -- otherwise an
* assertion is thrown)
*/
virtual Register* first() { return (getRegister(0)); }
};
/**
* \class RegisterManager
* Represents a complete set of (inhomogeneous) registers specific to a concrete
* architecture, e.g. x86 or ARM.
*/
class RegisterManager
{
protected:
std::vector< Register* > m_Registers;
//!< the managed set of homogeneous sets
std::vector< UniformRegisterSet* > m_Subsets;
public:
/**
* The iterator of this class used to loop through the list of
* added registers. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef std::vector< Register* >::iterator iterator;
/**
* Returns an iterator to the beginning of the internal data structure.
* \code
* [1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_Registers.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_Registers.end()); }
RegisterManager() { }
~RegisterManager() { clear(); }
/**
* Retrieves the total number of registers over all homogeneous sets.
* @return the total register count
*/
virtual size_t count() const;
/**
* Retrieves the number of managed homogeneous register sets.
* @return the number of sets
*/
virtual size_t subsetCount() const { return (m_Subsets.size()); }
/**
* Gets the \a i-th register set.
* @param i the index of the set to be returned
* @return a reference to the uniform register set
* @see subsetCount()
*/
virtual UniformRegisterSet& getSet(size_t i);
/**
* Returns the set with register type \a t. The set can be used to
* loop over all registers of type \a t.
* @param t the type to check for
* @return a pointer to the retrieved register set (if found), NULL
* otherwise
*/
virtual UniformRegisterSet* getSetOfType(RegisterType t);
/**
* Adds a new register to this set. The register object needs to be
* typed (see Register::getType).
* @param reg a pointer to the register object to be added
* @see getType()
*/
void add(Register* reg);
/**
* Retrieves the \a i-th register.
* @return a pointer to the \a i-th register; if \a i is invalid, an
* assertion is thrown
*/
Register* getRegister(size_t i);
/**
* Removes all registers and sets from the RegisterManager.
*/
virtual void clear();
/**
* Returns the current instruction pointer.
* @return the current eip
*/
virtual address_t getInstructionPointer() = 0;
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
virtual address_t getStackPointer() = 0;
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
virtual address_t getBasePointer() = 0;
};
} // end-of-namespace: sal
#endif /* __REGISTER_HPP__ */

45
core/SAL/SALConfig.hpp Normal file
View File

@ -0,0 +1,45 @@
#ifndef __SAL_CONFIG_HPP__
#define __SAL_CONFIG_HPP__
#include <stdint.h>
#include "../variant_config.h"
#if defined BUILD_BOCHS
#include "bochs/BochsConfig.hpp" // current simulator config
namespace sal
{
typedef guest_address_t address_t; //!< common address type to be used in experiment flows
typedef uint8_t byte_t; //!< 8 bit type for memory access (read or write)
typedef uint32_t regwidth_t; //!< type of register width [bits]
typedef register_data_t regdata_t; //!< type of register data
extern const address_t ADDR_INV; //!< invalid address flag (defined in Memory.cc)
}
#elif defined BUILD_OVP
#include "ovp/OVPConfig.hpp" // current simulator config
namespace sal
{
typedef guest_address_t address_t; //!< common address type to be used in experiment flows
typedef uint8_t byte_t; //!< 8 bit type for memory access (read or write)
typedef uint32_t regwidth_t; //!< type of register width [bits]
typedef register_data_t regdata_t; //!< type of register data
extern const address_t ADDR_INV; //!< invalid address flag (defined in Memory.cc)
}
#else
#error SAL Config Target not defined
#endif
#endif // __SAL_CONFIG_HPP__

35
core/SAL/SALInst.hpp Normal file
View File

@ -0,0 +1,35 @@
#ifndef __SAL_INSTANCE_HPP__
#define __SAL_INSTANCE_HPP__
#include "SALConfig.hpp"
#include "../variant_config.h"
#ifdef BUILD_BOCHS
#include "bochs/BochsController.hpp"
namespace sal
{
typedef BochsController ConcreteSimulatorController; //!< concrete simulator (type)
extern ConcreteSimulatorController simulator; //!< the global simulator-controller instance
}
#elif defined BUILD_OVP
#include "ovp/OVPController.hpp"
namespace sal
{
typedef OVPController ConcreteSimulatorController; //!< concrete simulator (type)
extern ConcreteSimulatorController simulator; //!< the global simulator-controller instance
}
#else
#error SAL Instance not defined
#endif
#endif /* __SAL_INSTANCE_HPP__ */

View File

@ -0,0 +1,285 @@
// Author: Adrian Böckenkamp
// Date: 23.01.2012
#include "SimulatorController.hpp"
#include "SALInst.hpp"
#include "../controller/Event.hpp"
namespace sal
{
// External reference declared in SALInst.hpp
ConcreteSimulatorController simulator;
fi::EventId SimulatorController::addEvent(fi::BaseEvent* ev)
{
return (m_EvList.add(ev, m_Flows.getCurrent()));
}
fi::BaseEvent* SimulatorController::waitAny(void)
{
m_Flows.resume();
assert(m_EvList.getLastFired() != NULL &&
"FATAL ERROR: getLastFired() expected to be non-NULL!");
return (m_EvList.getLastFired());
}
void SimulatorController::startup()
{
// Some greetings to the user:
std::cout << "[SimulatorController] Initializing..." << std::endl;
// TODO: Retrieve ExperimentData from the job-server (*before* each
// experiment-routine gets started)...!
// Activate previously added experiments to allow initialization:
initExperiments();
}
void SimulatorController::initExperiments()
{
/* empty. */
}
void SimulatorController::onBreakpointEvent(address_t instrPtr)
{
assert(false &&
"FIXME: SimulatorController::onBreakpointEvent() has not been tested before");
// FIXME: Performanz verbessern
// Loop through all events of type BP*Event:
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
fi::BaseEvent* pev = *it;
fi::BPEvent* pbp; fi::BPRangeEvent* pbpr;
if((pbp = dynamic_cast<fi::BPEvent*>(pev)) && pbp->isMatching(instrPtr))
{
pbp->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
else if((pbpr = dynamic_cast<fi::BPRangeEvent*>(pev)) &&
pbpr->isMatching(instrPtr))
{
pbpr->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
continue; // dito
}
++it;
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onMemoryAccessEvent(address_t addr, size_t len,
bool is_write, address_t instrPtr)
{
// FIXME: Performanz verbessern (falls Iteratorlogik bleibt, wäre
// ein "hasMoreOf(typeid(MemEvents))" denkbar...
fi::MemAccessEvent::accessType_t accesstype =
is_write ? fi::MemAccessEvent::MEM_WRITE
: fi::MemAccessEvent::MEM_READ;
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
fi::BaseEvent* pev = *it;
fi::MemAccessEvent* ev = dynamic_cast<fi::MemAccessEvent*>(pev);
// Is this a MemAccessEvent? Correct access type?
if(!ev || !ev->isMatching(addr, accesstype))
{
++it;
continue; // skip event activation
}
ev->setTriggerAddress(addr);
ev->setTriggerWidth(len);
ev->setTriggerInstructionPointer(instrPtr);
ev->setTriggerAccessType(accesstype);
it = m_EvList.makeActive(it);
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onInterruptEvent(unsigned interruptNum, bool nmi)
{
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
fi::BaseEvent* pev = *it;
fi::InterruptEvent* pie = dynamic_cast<fi::InterruptEvent*>(pev);
if(!pie || !pie->isMatching(interruptNum))
{
++it;
continue; // skip event activation
}
pie->setTriggerNumber(interruptNum);
pie->setNMI(nmi);
it = m_EvList.makeActive(it);
}
m_EvList.fireActiveEvents();
}
bool SimulatorController::isSuppressedInterrupt(unsigned interruptNum)
{
for(size_t i = 0; i < m_SuppressedInterrupts.size(); i++)
if(m_SuppressedInterrupts[i] == interruptNum ||
m_SuppressedInterrupts[i] == fi::ANY_INTERRUPT)
return (true);
return (false);
}
bool SimulatorController::addSuppressedInterrupt(unsigned interruptNum)
{
// Check if already existing:
if(isSuppressedInterrupt(interruptNum))
return (false); // already added: nothing to do here
m_SuppressedInterrupts.push_back(interruptNum);
return (true);
}
bool SimulatorController::removeSuppressedInterrupt(unsigned interruptNum)
{
for(size_t i = 0; i < m_SuppressedInterrupts.size(); i++)
{
if(m_SuppressedInterrupts[i] == interruptNum)
{
m_SuppressedInterrupts.erase(m_SuppressedInterrupts.begin() + i);
return (true);
}
}
return (false);
}
void SimulatorController::onTrapEvent(unsigned trapNum)
{
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
fi::BaseEvent* pev = *it;
fi::TrapEvent* pte = dynamic_cast<fi::TrapEvent*>(pev);
if(!pte || !pte->isMatching(trapNum))
{
++it;
continue; // skip event activation
}
pte->setTriggerNumber(trapNum);
it = m_EvList.makeActive(it);
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onGuestSystemEvent(char data, unsigned port)
{
// TODO: Eher ein Entwurf...
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
fi::BaseEvent* pev = *it;
fi::GuestEvent* pge = dynamic_cast<fi::GuestEvent*>(pev);
if(pge != NULL)
{
pge->setData(data);
pge->setPort(port);
it = m_EvList.makeActive(it);
continue; // dito.
}
++it;
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onJumpEvent(bool flagTriggered, unsigned opcode)
{
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
fi::JumpEvent* pje = dynamic_cast<fi::JumpEvent*>(*it);
if(pje != NULL)
{
pje->setOpcode(opcode);
pje->setFlagTriggered(flagTriggered);
it = m_EvList.makeActive(it);
continue; // dito.
}
++it;
}
m_EvList.fireActiveEvents();
}
void SimulatorController::cleanup(fi::ExperimentFlow* pExp)
{
// remove related events:
std::vector<fi::BaseEvent*> evlist;
m_EvList.getEventsOf(pExp, evlist);
for(size_t i = 0; i < evlist.size(); i++)
m_EvList.remove(evlist[i]);
}
void SimulatorController::addFlow(fi::ExperimentFlow* flow)
{
// Store the (flow,corohandle)-tuple internally and create its coroutine:
m_Flows.create(flow);
// let it run for the first time
m_Flows.toggle(flow);
}
void SimulatorController::removeFlow(fi::ExperimentFlow* flow)
{
// remove all remaining events of this flow
cleanup(flow);
// remove coroutine
m_Flows.remove(flow);
}
fi::BaseEvent* SimulatorController::addEventAndWait(fi::BaseEvent* ev)
{
addEvent(ev);
return (waitAny());
}
template <class T>
T* SimulatorController::getExperimentData()
{
//BEGIN ONLY FOR TESTING------REMOVE--------REMOVE---------REMOVE--------REMOVE-------REMOVE-------
//Daten in Struktur schreiben und in Datei speichern
ofstream fileWrite;
fileWrite.open("test.txt");
T* faultCovExWrite = new T();;
faultCovExWrite->set_data_name("Testfall 42");
//Namen setzen
faultCovExWrite->set_data_name("Testfall 42");
//Instruktionpointer 1
faultCovExWrite->set_m_instrptr1(0x4711);
//Instruktionpointer 2
faultCovExWrite->set_m_instrptr2(0x1122);
//In ExperimentData verpacken
fi::ExperimentData exDaWrite(faultCovExWrite);
//Serialisierung ueber Wrapper-Methode in ExperimentData
exDaWrite.serialize(&fileWrite);
//cout << "Ausgabe: " << out << endl;
fileWrite.close();
ifstream fileRead;
fileRead.open("test.txt");
//END ONLY FOR TESTING------REMOVE--------REMOVE---------REMOVE--------REMOVE-------REMOVE-------
//TODO: implement server-client communication----------------------------------------------
T* concreteExpDat = new T();
fi::ExperimentData exDaRead(concreteExpDat);
exDaRead.unserialize(&fileRead);
return (concreteExpDat);
}
} // end-of-namespace: sal

View File

@ -0,0 +1,250 @@
#ifndef __SIMULATOR_CONTROLLER_HPP__
#define __SIMULATOR_CONTROLLER_HPP__
// Author: Adrian Böckenkamp
// Date: 23.01.2012
#include <iostream>
#include <string>
#include <cassert>
#include <vector>
//<BEGIN ONLY FOR TEST
#include <fstream>
//>END ONLY FOR TEST
#include "../controller/Event.hpp"
#include "../controller/EventList.hpp"
#include "../controller/CoroutineManager.hpp"
#include "../controller/ExperimentData.hpp"
#include "SALConfig.hpp"
using namespace std;
namespace fi {
class ExperimentFlow;
}
/// Simulator Abstraction Layer namespace
namespace sal
{
// incomplete types suffice here
class RegisterManager;
class MemoryManager;
/**
* \class SimulatorController
*
* \brief The abstract interface for controlling simulators and
* accessing experiment data/flows.
*
* This class manages (1..N) experiments and provides access to the underlying
* simulator/debugger system. Experiments can enlist arbritrary events
* (Breakpoint, Memory access, Traps, etc.). The SimulatorController then
* activates the specific experiment There are further methods to read/write
* registers and memory, and control the SUT (save/restore/reset).
*/
class SimulatorController
{
protected:
fi::EventList m_EvList; //!< storage where events are being buffered
fi::CoroutineManager m_Flows; //!< managed experiment flows
RegisterManager *m_Regs; //!< access to cpu register
MemoryManager *m_Mem; //!< access to memory pool
//! list of suppressed interrupts
std::vector<unsigned> m_SuppressedInterrupts;
friend class fi::EventList; //!< "outsources" the event management
public:
SimulatorController()
: m_Regs(NULL), m_Mem(NULL) { }
SimulatorController(RegisterManager* regs, MemoryManager* mem)
: m_Regs(regs), m_Mem(mem) { }
virtual ~SimulatorController() { }
/**
* @brief Global startup function each implementation needs to call
* on startup
* This static function needs to be invoked once the simulator starts,
* and allows the SimulatorController's member startup() to instantiate
* all needed experiment components.
*/
virtual void startup();
/**
* Experiments need to hook here.
*/
static void initExperiments();
/* ********************************************************************
* Standard Event Handler API (SEH-API):
* ********************************************************************/
/**
* Breakpoint event handler. This routine needs to be called in the
* simulator specific backend each time a breakpoint event occurs.
* @param instrPtr the instruction pointer of the breakpoint event
*/
virtual void onBreakpointEvent(address_t instrPtr);
/**
* Memory access event handler (read/write).
* @param addr the accessed memory address
* @param len the length of the accessed memory
* @param is_write \c true if memory is written, \c false if read
* @param instrPtr the address of the instruction causing the memory
* access
*
* FIXME: should instrPtr be part of this interface?
*/
virtual void onMemoryAccessEvent(address_t addr, size_t len,
bool is_write, address_t instrPtr);
/**
* Interrupt event handler.
* @param interruptNum the interrupt-type id
* @param nmi nmi-value from guest-system
*/
virtual void onInterruptEvent(unsigned interruptNum, bool nmi);
/**
* Trap event handler.
* @param trapNum the trap-type id
*/
virtual void onTrapEvent(unsigned trapNum);
/**
* Guest system communication handler.
* @param data the "message" from the guest system
* @param port the port of the event
*/
virtual void onGuestSystemEvent(char data, unsigned port);
/**
* (Conditional) Jump-instruction handler.
* @param flagTriggered \c true if the jump was triggered due to a
* specific FLAG (zero/carry/sign/overflow/parity flag)
* @param opcode the opcode of the conrecete jump instruction
*/
virtual void onJumpEvent(bool flagTriggered, unsigned opcode);
/* ********************************************************************
* Simulator Controller & Access API (SCA-API):
* ********************************************************************/
/**
* Save simulator state.
* @param path Location to store state information
*/
virtual void save(const string& path) = 0;
/**
* Restore simulator state.
* @param path Location to previously saved state information
*/
virtual void restore(const string& path) = 0;
/**
* Reboot simulator.
*/
virtual void reboot() = 0;
/**
* Terminate simulator
* @param exCode Individual exit code
*/
virtual void terminate(int exCode = EXIT_SUCCESS) = 0;
/**
* Check whether the interrupt should be suppressed.
* @param interruptNum the interrupt-type id
* @return \c true if the interrupt is suppressed, \c false oterwise
*/
virtual bool isSuppressedInterrupt(unsigned interruptNum);
/**
* Add a Interrupt to the list of suppressed.
* @param interruptNum the interrupt-type id
* @return \c true if sucessfully added, \c false otherwise (already
* existing)
*/
virtual bool addSuppressedInterrupt(unsigned interruptNum);
/**
* Remove a Interrupt from the list of suppressed.
* @param interruptNum the interrupt-type id
* @return \c true if sucessfully removed, \c false otherwise (not
* found)
*/
virtual bool removeSuppressedInterrupt(unsigned interruptNum);
/**
* Returns the (constant) initialized register manager.
* @return a reference to the register manager
*/
RegisterManager& getRegisterManager() { return (*m_Regs); }
const RegisterManager& getRegisterManager() const { return (*m_Regs); }
/**
* Sets the register manager.
* @param pReg the new register manager (or a concrete derived class of
* RegisterManager)
*/
void setRegisterManager(RegisterManager* pReg) { m_Regs = pReg; }
/**
* Returns the (constant) initialized memory manager.
* @return a reference to the memory manager
*/
MemoryManager& getMemoryManager() { return (*m_Mem); }
const MemoryManager& getMemoryManager() const { return (*m_Mem); }
/**
* Sets the memory manager.
* @param pMem a new concrete memory manager
*/
void setMemoryManager(MemoryManager* pMem) { m_Mem = pMem; }
/* ********************************************************************
* Experiment-Flow & Event Management API (EFEM-API):
* ********************************************************************/
/**
* Adds the specified experiment or plugin and creates a coroutine to
* run it in.
* @param flow the experiment flow object to be added
*/
void addFlow(fi::ExperimentFlow* flow);
/**
* Removes the specified experiment or plugin and destroys its coroutine
* and all associated events.
* @param flow the experiment flow object to be removed
*/
void removeFlow(fi::ExperimentFlow* flow);
/**
* Add event ev to the event management. This causes the event to be
* active.
* @param ev the event pointer to be added for the current flow
* @return the id of the event used to identify the object on occurrence
*/
fi::EventId addEvent(fi::BaseEvent* ev);
/**
* Removes the event with the specified id.
* @param ev the pointer of the event-object to be removed; if \a ev is
* equal to \c NULL all events (for all experiments) will be
* removed
*/
void removeEvent(fi::BaseEvent* ev) { m_EvList.remove(ev); }
/**
* Removes all previously added events for all experiments. This is
* equal to removeEvent(NULL);
*/
void clearEvents() { removeEvent(NULL); }
/**
* Waits on any events which have been added to the event management. If
* one of those events occour, waitAny() will return the id of that
* event.
* @return the previously occurred event
*/
fi::BaseEvent* waitAny();
/**
* Add event \a ev to the global buffer and wait for it (combines
* \c addEvent() and \c waitAny()).
* @param ev the event pointer to be added
* @return the pointer of the occurred event (it is not guaranteed that
* this pointer will be equal to ev)
*/
fi::BaseEvent* addEventAndWait(fi::BaseEvent* ev);
/**
* Removes all residual events associated with the specified experiment
* flow \a pExp.
* @param pExp the experiment whose events should be removed
*/
void cleanup(fi::ExperimentFlow* pExp);
/**
* Fetches data for the experiments from the Job-Server.
* @return the Experiment-Data from the Job-Server.
*/
template <class T> T* getExperimentData();
};
} // end-of-namespace: sal
#endif /* __SIMULATOR_CONTROLLER_HPP__ */

View File

@ -0,0 +1,24 @@
#ifndef __BOCHS_CONFIG_HPP__
#define __BOCHS_CONFIG_HPP__
#include "../../../bochs/bochs.h"
#include "../../../bochs/config.h"
// Type definitions and configuration settings for
// the Bochs simulator.
namespace sal
{
typedef bx_address guest_address_t; //!< the guest memory address type
typedef Bit8u* host_address_t; //!< the host memory address type
#if BX_SUPPORT_X86_64
typedef Bit64u register_data_t; //!< register data type (64 bit)
#else
typedef Bit32u register_data_t; //!< register data type (32 bit)
#endif
};
#endif /* __BOCHS_CONFIG_HPP__ */

View File

@ -0,0 +1,106 @@
#ifndef __BOCHS_CONTROLLER_HPP__
#define __BOCHS_CONTROLLER_HPP__
#define DEBUG
#include <string>
#include <cassert>
#include <iostream>
#include <iomanip>
#include <string.h>
#include <stdlib.h>
#include "failbochs.hpp"
#include "../SimulatorController.hpp"
#include "../../controller/Event.hpp"
#include "../../../bochs/bochs.h"
#include "../../../bochs/cpu/cpu.h"
#include "../../../bochs/config.h"
using namespace std;
namespace fi { class ExperimentFlow; }
/// Simulator Abstraction Layer namespace
namespace sal
{
/**
* \class BochsController
* Bochs-specific implementation of a SimulatorController.
*/
class BochsController : public SimulatorController
{
private:
/**
* stores the current flow for save/restore-operations
*/
fi::ExperimentFlow* m_CurrFlow;
#ifdef DEBUG
unsigned m_Regularity;
unsigned m_Counter;
std::ostream* m_pDest;
#endif
public:
// Initialize the controller.
BochsController();
~BochsController();
/* ********************************************************************
* Standard Event Handler API (SEH-API):
* ********************************************************************/
/**
* Instruction pointer modification handler. This method is called (from
* the CPULoop aspect) every time when the Bochs-internal IP changes.
* @param instrPtr
*/
void onInstrPtrChanged(address_t instrPtr);
/* ********************************************************************
* Simulator Controller & Access API (SCA-API):
* ********************************************************************/
/**
* Save simulator state.
* @param path Location to store state information
*/
void save(const string& path);
/**
* Save finished: Callback from Simulator
*/
void saveDone();
/**
* Restore simulator state. Clears all Events.
* @param path Location to previously saved state information
*/
void restore(const string& path);
/**
* Restore finished: Callback from Simulator
*/
void restoreDone();
/**
* Reboot simulator. Clears all Events.
*/
void reboot();
/**
* Reboot finished: Callback from Simulator
*/
void rebootDone();
/**
* Terminate simulator
* @param exCode Individual exit code
*/
void terminate(int exCode = EXIT_SUCCESS);
#ifdef DEBUG
/**
* Enables instruction pointer debugging output.
* @param regularity the output regularity; 1 to display every
* instruction pointer, 0 to disable
* @param dest specifies the output destition; defaults to \c std::cout
*/
void dbgEnableInstrPtrOutput(unsigned regularity, std::ostream* dest = &cout);
#endif
};
} // end-of-namespace: sal
#endif /* __BOCHS_CONTROLLER_HPP__ */

View File

@ -0,0 +1,115 @@
#ifndef __BOCHS_MEMORY_HPP__
#define __BOCHS_MEMORY_HPP__
#include "../Memory.hpp"
namespace sal
{
/**
* \class BochsMemoryManager
* Represents a concrete implemenation of the abstract
* MemoryManager to provide access to Bochs' memory pool.
*/
class BochsMemoryManager : public MemoryManager
{
public:
/**
* Constructs a new MemoryManager object and initializes
* it's attributes appropriately.
*/
BochsMemoryManager() : MemoryManager() { }
/**
* Retrieves the size of the available simulated memory.
* @return the size of the memory pool in bytes
*/
size_t getPoolSize() const
{
return (static_cast<size_t>(BX_MEM(0)->get_memory_len()));
}
/**
* Retrieves the starting address of the host memory. This is the
* first valid address in memory.
* @return the starting address
*/
host_address_t getStartAddr() const
{
return (0);
}
/**
* Retrieves the byte at address \a addr in the memory.
* @param addr The guest address where the byte is located.
* The address is expected to be valid.
* @return the byte at \a addr
*/
byte_t getByte(guest_address_t addr)
{
host_address_t haddr = guestToHost(addr);
assert(haddr != (host_address_t)ADDR_INV && "FATAL ERROR: Invalid guest address provided!");
return (static_cast<byte_t>(*reinterpret_cast<Bit8u*>(haddr)));
}
/**
* Retrieves \a cnt bytes at address \a addr in the memory.
* @param addr The guest address where the bytes are located.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param dest The destination buffer to write the bytes to
*/
void getBytes(guest_address_t addr, size_t cnt, std::vector<byte_t>& dest)
{
for(size_t i = 0; i < cnt; i++)
dest.push_back(getByte(addr+i));
}
/**
* Writes the byte \a data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new byte to write
*/
void setByte(guest_address_t addr, byte_t data)
{
host_address_t haddr = guestToHost(addr);
assert(haddr != (host_address_t)ADDR_INV &&
"FATAL ERROR: Invalid guest address provided!");
*reinterpret_cast<Bit8u*>(haddr) = data;
}
/**
* Writes the bytes \a data to memory. Consequently \c data.size()
* bytes will be written.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new bytes to write
*/
void setBytes(guest_address_t addr, const std::vector<byte_t>& data)
{
for(size_t i = 0; i < data.size(); i++)
setByte(addr+i, data[i]);
}
/**
* Transforms the guest address \a addr to a host address.
* @param addr The (logical) guest address to be transformed
* @return the transformed (host) address or \c ADDR_INV on errors
*/
host_address_t guestToHost(guest_address_t addr)
{
const unsigned SEGMENT_SELECTOR_IDX = 2; // always the code segment
const bx_address logicalAddr = static_cast<bx_address>(addr); // offset within the segment
// Get the linear address:
Bit32u linearAddr = BX_CPU(0)->get_laddr32(SEGMENT_SELECTOR_IDX/*seg*/, logicalAddr/*offset*/);
// Map the linear address to the physical address:
bx_phy_address physicalAddr;
bx_bool fValid = BX_CPU(0)->dbg_xlate_linear2phy(linearAddr, (bx_phy_address*)&physicalAddr);
// Determine the *host* address of the physical address:
Bit8u* hostAddr = BX_MEM(0)->getHostMemAddr(BX_CPU(0), physicalAddr, BX_READ);
// Now, hostAddr contains the "final" address
if(!fValid)
return ((host_address_t)ADDR_INV); // error
else
return (reinterpret_cast<host_address_t>(hostAddr)); // okay
}
};
}
#endif

View File

@ -0,0 +1,219 @@
#ifndef __BOCHS_REGISTER_HPP__
#define __BOCHS_REGISTER_HPP__
#include "../Register.hpp"
#include "../../../bochs/bochs.h"
#include <iostream>
namespace sal {
/**
* \class BochsRegister
* Bochs-specific implementation of x86 registers.
*/
class BochsRegister : public Register
{
protected:
regdata_t* m_pData;
public:
/**
* Constructs a new register object.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs interal register memory
* @param t type of the register
*/
BochsRegister(unsigned int id, regwidth_t width, regdata_t* link, RegisterType t)
: Register(id, t, width), m_pData(link) { }
/**
* Retrieves the data of the register.
* @return the current register data
*/
regdata_t getData() { return (*m_pData); }
/**
* Sets the content of the register.
* @param data the new register data to be written
*/
virtual void setData(regdata_t data) { *m_pData = data; }
};
/**
* \class BxGPReg
* Bochs-specific implementation of x86 general purpose (GP) registers.
*/
class BxGPReg : public BochsRegister
{
public:
/**
* Constructs a new general purpose register.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs interal register memory
*/
BxGPReg(unsigned int id, regwidth_t width, regdata_t* link)
: BochsRegister(id, width, link, RT_GP) { }
};
/**
* \enum GPRegisterId
* Symbolic identifier to access Bochs' general purpose register
* (within the corresponding GP set), e.g.
* \code
* // Print %eax register data:
* BochsController bc(...);
* cout << bc.getRegisterManager().getSetOfType(RT_GP)
* .getRegister(RID_EAX)->getData();
* \endcode
*/
enum GPRegisterId
{
#if BX_SUPPORT_X86_64 // 64 bit register id's:
RID_RAX = 0, RID_RCX, RID_RDX, RID_RBX, RID_RSP, RID_RBP, RID_RSI, RID_RDI,
RID_R8, RID_R9, RID_R10, RID_R11, RID_R12, RID_R13, RID_R14, RID_R15,
#else // 32 bit register id's:
RID_EAX = 0, RID_ECX, RID_EDX, RID_EBX, RID_ESP, RID_EBP, RID_ESI, RID_EDI,
#endif
RID_LAST_GP_ID
};
/**
* \enum PCRegisterId
* Symbolic identifier to access Bochs' program counter register.
*/
enum PCRegisterId { RID_PC = RID_LAST_GP_ID, RID_LAST_PC_ID };
/**
* \enum FlagsRegisterId
* Symbolic identifier to access Bochs' flags register.
*/
enum FlagsRegisterId { RID_FLAGS = RID_LAST_PC_ID };
/**
* \class BxPCReg
* Bochs-specific implementation of the x86 program counter register.
*/
class BxPCReg : public BochsRegister
{
public:
/**
* Constructs a new program counter register.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs internal register memory
*/
BxPCReg(unsigned int id, regwidth_t width, regdata_t* link)
: BochsRegister(id, width, link, RT_PC) { }
};
/**
* \class BxFlagsReg
* Bochs-specific implementation of the FLAGS status register.
*/
class BxFlagsReg : public BochsRegister
{
public:
/**
* Constructs a new FLAGS status register. The refenced FLAGS are
* allocated as follows:
* --------------------------------------------------
* 31|30|29|28| 27|26|25|24| 23|22|21|20| 19|18|17|16
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP| VF|AC|VM|RF
*
* 15|14|13|12| 11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0|NT| IOPL| OF|DF|IF|TF| SF|ZF| 0|AF| 0|PF| 1|CF
* --------------------------------------------------
* @param id the global unique id
* @param link pointer to bochs internal register memory
*/
BxFlagsReg(unsigned int id, regdata_t* link)
: BochsRegister(id, 32, link, RT_ST) { }
/**
* Returns \c true if the corresponding flag is set, or \c false
* otherwise.
*/
bool getCarryFlag() const { return (BX_CPU(0)->get_CF()); }
bool getParityFlag() const { return (BX_CPU(0)->get_PF()); }
bool getZeroFlag() const { return (BX_CPU(0)->get_ZF()); }
bool getSignFlag() const { return (BX_CPU(0)->get_SF()); }
bool getOverflowFlag() const { return (BX_CPU(0)->get_OF()); }
/**
* Sets/resets various status FLAGS.
*/
void setCarryFlag(bool bit) { BX_CPU(0)->set_CF(bit); }
void setParityFlag(bool bit) { BX_CPU(0)->set_PF(bit); }
void setZeroFlag(bool bit) { BX_CPU(0)->set_ZF(bit); }
void setSignFlag(bool bit) { BX_CPU(0)->set_SF(bit); }
void setOverflowFlag(bool bit) { BX_CPU(0)->set_OF(bit); }
/**
* Sets the content of the status register.
* @param data the new register data to be written; note that only the
* 32 lower bits are used (bits 32-63 are ignored in 64 bit mode)
*/
void setData(regdata_t data)
{
#ifdef BX_SUPPORT_X86_64
// We are in 64 bit mode: Just assign the lower 32 bits!
(*m_pData) = ((*m_pData) & 0xFFFFFFFF00000000ULL) |
(data & 0xFFFFFFFFULL);
#else
*m_pData = data;
#endif
}
};
/**
* \class BochsRegister
* Bochs-specific implementation of the RegisterManager.
*/
class BochsRegisterManager : public RegisterManager
{
public:
/**
* Returns the current instruction pointer.
* @return the current eip
*/
address_t getInstructionPointer()
{
return (static_cast<address_t>(
getSetOfType(RT_PC)->first()->getData()
));
}
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
address_t getStackPointer()
{
#if BX_SUPPORT_X86_64
return (static_cast<address_t>(getRegister(RID_RSP)->getData()));
#else
return (static_cast<address_t>(getRegister(RID_ESP)->getData()));
#endif
}
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
address_t getBasePointer()
{
#if BX_SUPPORT_X86_64
return (static_cast<address_t>(getRegister(RID_RBP)->getData()));
#else
return (static_cast<address_t>(getRegister(RID_EBP)->getData()));
#endif
}
};
} // end-of-namespace: sal
#endif /* __BOCHS_REGISTER_HPP__ */

35
core/SAL/bochs/CPULoop.ah Normal file
View File

@ -0,0 +1,35 @@
#ifndef __CPU_LOOP_AH__
#define __CPU_LOOP_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_EVENT_CPULOOP == 1
#include "../../../bochs/bochs.h" // for "BX_CPU_C"
#include "../../../bochs/cpu/cpu.h" // for "bxInstruction_c"
#include "../SALInst.hpp"
aspect CPULoop
{
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
//
// Event source: "instruction pointer"
//
advice execution (cpuLoop()) : after ()
{
// Points to the cpu class: "this" if BX_USE_CPU_SMF == 0,
// BX_CPU(0) otherwise
BX_CPU_C* pThis = *(tjp->arg<0>());
// Points to the *current* bxInstruction-object
bxInstruction_c* pInstr = *(tjp->arg<1>());
// report this event to the Bochs controller:
sal::simulator.onInstrPtrChanged(pThis->get_instruction_pointer());
// Note: get_bx_opcode_name(pInstr->getIaOpcode()) retrieves the mnemonics.
}
};
#endif // CONFIG_EVENT_CPULOOP
#endif /* __CPU_LOOP_AH__ */

View File

@ -0,0 +1,179 @@
#include "BochsController.hpp"
#include "BochsMemory.hpp"
#include "BochsRegister.hpp"
#include "../Register.hpp"
namespace sal
{
bx_bool restore_bochs_request = false;
bx_bool save_bochs_request = false;
bx_bool reboot_bochs_request = false;
std::string sr_path = "";
BochsController::BochsController()
: SimulatorController(new BochsRegisterManager(), new BochsMemoryManager())
{
// -------------------------------------
// Add the general purpose register:
#if BX_SUPPORT_X86_64
// -- 64 bit register --
const string names[] = { "RAX", "RCX", "RDX", "RBX", "RSP", "RBP", "RSI",
"RDI", "R8", "R9", "R10", "R11", "R12", "R13",
"R14", "R15" };
for(unsigned short i = 0; i < 16; i++)
{
BxGPReg* pReg = new BxGPReg(i, 64, &(BX_CPU(0)->gen_reg[i].rrx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#else
// -- 32 bit register --
const string names[] = { "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI",
"EDI" };
for(unsigned short i = 0; i < 8; i++)
{
BxGPReg* pReg = new BxGPReg(i, 32, &(BX_CPU(0)->gen_reg[i].dword.erx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#endif // BX_SUPPORT_X86_64
#ifdef DEBUG
m_Regularity = 0; // disabled
m_Counter = 0;
m_pDest = NULL;
#endif
// -------------------------------------
// Add the Program counter register:
#if BX_SUPPORT_X86_64
BxPCReg* pPCReg = new BxPCReg(RID_PC, 64, &(BX_CPU(0)->gen_reg[BX_64BIT_REG_RIP].rrx));
pPCReg->setName("RIP");
#else
BxPCReg* pPCReg = new BxPCReg(RID_PC, 32, &(BX_CPU(0)->gen_reg[BX_32BIT_REG_EIP].dword.erx));
pFlagReg->setName("EIP");
#endif // BX_SUPPORT_X86_64
// -------------------------------------
// Add the Status register (x86 cpu FLAGS):
BxFlagsReg* pFlagReg = new BxFlagsReg(RID_FLAGS, reinterpret_cast<regdata_t*>(&(BX_CPU(0)->eflags)));
// Note: "eflags" is (always) of type Bit32u which matches the regdata_t only in
// case of the 32 bit version (id est !BX_SUPPORT_X86_64). Therefor we need
// to ensure to assign only 32 bit to the Bochs internal register variable
// (see SAL/bochs/BochsRegister.hpp, setData) if we are in 64 bit mode.
pFlagReg->setName("FLAGS");
m_Regs->add(pFlagReg);
m_Regs->add(pPCReg);
}
BochsController::~BochsController()
{
for(RegisterManager::iterator it = m_Regs->begin(); it != m_Regs->end(); it++)
delete (*it); // free the memory, allocated in the constructor
m_Regs->clear();
delete m_Regs;
delete m_Mem;
}
#ifdef DEBUG
void BochsController::dbgEnableInstrPtrOutput(unsigned regularity, std::ostream* dest)
{
m_Regularity = regularity;
m_pDest = dest;
m_Counter = 0;
}
#endif // DEBUG
void BochsController::onInstrPtrChanged(address_t instrPtr)
{
#ifdef DEBUG
if(m_Regularity != 0 && ++m_Counter % m_Regularity == 0)
(*m_pDest) << "0x" << std::hex << instrPtr;
#endif
// Check for active breakpoint-events:
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Performance verbessern (dazu muss entsprechend auch die Speicherung
// in EventList(.cc|.hpp) angepasst bzw. verbessert werden).
fi::BPEvent* pEvBreakpt = dynamic_cast<fi::BPEvent*>(*it);
if(pEvBreakpt && (instrPtr == pEvBreakpt->getWatchInstructionPointer() ||
pEvBreakpt->getWatchInstructionPointer() == fi::ANY_ADDR))
{
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
fi::BPRangeEvent* pEvRange = dynamic_cast<fi::BPRangeEvent*>(*it);
if(pEvRange && pEvRange->isMatching(instrPtr))
{
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
continue; // dito.
}
it++;
}
m_EvList.fireActiveEvents();
// Note: SimulatorController::onBreakpointEvent will not be invoked in this
// implementation.
}
void BochsController::save(const string& path)
{
int stat;
stat = mkdir(path.c_str(), 0777);
if(!(stat == 0 || errno == EEXIST))
std::cout << "[FAIL] Can not create target-directory to save!" << std::endl;
// TODO: (Non-)Verbose-Mode? Maybe better: use return value to indicate failure?
save_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::saveDone()
{
save_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::restore(const string& path)
{
clearEvents();
restore_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::restoreDone()
{
restore_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::reboot()
{
clearEvents();
reboot_bochs_request = true;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::rebootDone()
{
reboot_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::terminate(int exCode)
{
// Attention: This could cause Problems, e.g. because of non-closed sockets
std::cout << "[FAIL] Exit called by experiment with exit code: " << exCode << std::endl;
// TODO: (Non-)Verbose-Mode?
exit(exCode);
}
} // end-of-namespace: sal

View File

@ -0,0 +1,37 @@
#ifndef __GUESTSYS_COM_AH__
#define __GUESTSYS_COM_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_EVENT_GUESTSYS == 1
#include "../../../bochs/bochs.h"
#include "../../../bochs/cpu/cpu.h"
#include "../SALInst.hpp"
#include "bochs_helpers.hpp"
// Fixed "port number" for "Guest system >> Bochs" communication
#define BOCHS_COM_PORT 0x378
aspect GuestSysCom
{
pointcut outInstructions() = "% ...::bx_cpu_c::OUT_DX%(...)";
advice execution (outInstructions()) : after ()
{
//
// Event source: "guest system"
//
unsigned rDX = getCPU(tjp->that())->gen_reg[2].word.rx; // port number
unsigned rAL = getCPU(tjp->that())->gen_reg[0].word.byte.rl; // data
if (rDX == BOCHS_COM_PORT) {
sal::simulator.onGuestSystemEvent((char)rAL, rDX);
}
}
};
#endif // CONFIG_EVENT_GUESTSYS
#endif /* __GUESTSYS_COM_AH__ */

View File

@ -0,0 +1,40 @@
#ifndef __INTERRUPT_AH__
#define __INTERRUPT_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_EVENT_INTERRUPT == 1
#include "../../../bochs/bochs.h"
#include "../../../bochs/cpu/cpu.h"
#include "../SALInst.hpp"
aspect Interrupt
{
// cpu/exception.cc
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)";
advice execution (interrupt_method()) : before ()
{
// There are six different type-arguments for the interrupt-method
// in cpu.h (lines 3867-3872):
// - BX_EXTERNAL_INTERRUPT = 0,
// - BX_NMI = 2,
// - BX_HARDWARE_EXCEPTION = 3,
// - BX_SOFTWARE_INTERRUPT = 4,
// - BX_PRIVILEGED_SOFTWARE_INTERRUPT = 5,
// - BX_SOFTWARE_EXCEPTION = 6
// Only the first and the second types are relevant for this aspect.
unsigned vector = *(tjp->arg<0>());
unsigned type = *(tjp->arg<1>());
if(type == BX_EXTERNAL_INTERRUPT)
sal::simulator.onInterruptEvent(vector, false);
else if(type == BX_NMI)
sal::simulator.onInterruptEvent(vector, true);
}
};
#endif // CONFIG_EVENT_INTERRUPT
#endif /* __INTERRUPT_AH__ */

View File

@ -0,0 +1,28 @@
#ifndef __INTERRUPT_SUPPRESSION_AH__
#define __INTERRUPT_SUPPRESSION_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_SUPPRESS_INTERRUPTS == 1
#include "../../../bochs/bochs.h"
#include "../../../bochs/cpu/cpu.h"
#include "../SALInst.hpp"
aspect Interrupt_FI
{
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)";
advice execution (interrupt_method()) : around ()
{
unsigned type = *(tjp->arg<1>());
if(!sal::simulator.isSuppressedInterrupt(type)){
tjp->proceed();
}
}
};
#endif // CONFIG_SUPPRESS_INTERRUPTS
#endif /* __INTERRUPT_SUPPRESSION_AH__ */

139
core/SAL/bochs/Jump.ah Normal file
View File

@ -0,0 +1,139 @@
#ifndef __JUMP_AH__
#define __JUMP_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_EVENT_JUMP == 1
#include <iostream>
#include <cstdlib>
#include <string>
#include <ctime>
#include "../../../bochs/bochs.h"
#include "../SALInst.hpp"
using namespace std;
aspect Jump
{
// Note: Have a look at the Bochs-Code (cpu/cpu.h) and the Intel
// Architecture Software Developer's Manual - Instruction Set Reference
// p. 3-329 (PDF p. 369) for further information:
// http://www.intel.com/design/intarch/manuals/243191.htm
// Default conditional-jump instructions: they are evaluating the FLAGS,
// defined in ctrl_xfer[16 | 32 | 64].cc, Postfix: 16-Bit: w, 32-Bit: d, 64-Bit: q
pointcut defJumpInstructions() =
"% ...::bx_cpu_c::JO_J%(...)" ||
"% ...::bx_cpu_c::JNO_J%(...)" ||
"% ...::bx_cpu_c::JB_J%(...)" ||
"% ...::bx_cpu_c::JNB_J%(...)" ||
"% ...::bx_cpu_c::JZ_J%(...)" ||
"% ...::bx_cpu_c::JNZ_J%(...)" ||
"% ...::bx_cpu_c::JBE_J%(...)" ||
"% ...::bx_cpu_c::JNBE_J%(...)" ||
"% ...::bx_cpu_c::JS_J%(...)" ||
"% ...::bx_cpu_c::JNS_J%(...)" ||
"% ...::bx_cpu_c::JP_J%(...)" ||
"% ...::bx_cpu_c::JNP_J%(...)" ||
"% ...::bx_cpu_c::JL_J%(...)" ||
"% ...::bx_cpu_c::JNL_J%(...)" ||
"% ...::bx_cpu_c::JLE_J%(...)" ||
"% ...::bx_cpu_c::JNLE_J%(...)";
// Special cases: they are evaluating the content of the CX-/ECX-/RCX-registers
// (NOT the FLAGS):
pointcut regJumpInstructions() =
"% ...::bx_cpu_c::JCXZ_Jb(...)" || // ctrl_xfer16.cc
"% ...::bx_cpu_c::JECXZ_Jb(...)" || // ctrl_xfer32.cc
"% ...::bx_cpu_c::JRCXZ_Jb(...)"; // ctrl_xfer64.cc
/* TODO: Loop-Instructions needed? Example: "LOOPNE16_Jb"
pointcut loopInstructions() = ...;
*/
/* TODO: Conditional-Data-Moves needed? Example: "CMOVZ_GwEwR"
pointcut dataMoveInstructions() = ...;
*/
advice execution (defJumpInstructions()) : around()
{
bxInstruction_c* pInstr = *(tjp->arg<0>()); // bxInstruction_c-object
sal::simulator.onJumpEvent(true, pInstr->getIaOpcode());
/*
JoinPoint::That* pThis = tjp->that();
if(pThis == NULL)
pThis = BX_CPU(0);
assert(pThis != NULL && "FATAL ERROR: tjp->that() returned null ptr! (Maybe called on a static instance?)");
// According to the Intel-Spec (p. 3-329f), the following flags are relevant:
bool fZeroFlag = pThis->get_ZF();
bool fCarryFlag = pThis->get_CF();
bool fSignFlag = pThis->get_SF();
bool fOverflowFlag = pThis->get_OF();
bool fParityFlag = pThis->get_PF();
//
// Step-1: Modify one or more of the fxxxFlag according to the error you want to inject
// (using pThis->set_XX(new_val))
// Step-2: Call tjp->proceed();
// Step-3: Eventually, unwind the changes of Step-1
//
// Example:
if(g_fEnableInjection) // event fired?
{
g_fEnableInjection = false;
// Obviously, this advice matches *all* jump-instructions so that it is not clear
// which flag have to be modified in order to invert the jump. For simplification,
// we will invert *all* flags. This avoids a few case differentiations.
cout << ">>> Manipulating jump-destination (inverted)... \"" << tjp->signature() << "\" ";
pThis->set_ZF(!fZeroFlag);
pThis->set_SF(!fSignFlag);
pThis->set_CF(!fCarryFlag);
pThis->set_OF(!fOverflowFlag);
pThis->set_PF(!fParityFlag);
tjp->proceed();
pThis->set_ZF(fZeroFlag);
pThis->set_SF(fSignFlag);
pThis->set_CF(fCarryFlag);
pThis->set_OF(fOverflowFlag);
pThis->set_PF(fParityFlag);
cout << "finished (jump taken)!" << endl;
}
else
*/
tjp->proceed();
}
advice execution (regJumpInstructions()) : around ()
{
bxInstruction_c* pInstr = *(tjp->arg<0>()); // bxInstruction_c-object
sal::simulator.onJumpEvent(false, pInstr->getIaOpcode());
/*
JoinPoint::That* pThis = tjp->that();
assert(pThis != NULL && "Unexpected: tjp->that() returned null ptr! (Maybe called on a static instance?)");
// Note: Direct access to the registers using the bochs-macros (defined in
// bochs.h) is not possibly due to the fact that they are using the this-ptr.
Bit16u CX = (Bit16u)(pThis->gen_reg[1].word.rx);
Bit32u ECX = (Bit32u)(pThis->gen_reg[1].dword.erx);
#if BX_SUPPORT_X86_64
Bit64u RCX = (Bit64u)(pThis->gen_reg[1].rrx);
#endif
//
// Step-1: Modify CX, ECX or RCX according to the error you want to inject
// Step-2: Call tjp->proceed();
// Step-3: Eventually, unwind the changes of Step-1
//
*/
tjp->proceed();
}
};
#endif // CONFIG_EVENT_JUMP
#endif /* __JUMP_AH__ */

View File

@ -0,0 +1,33 @@
#ifndef __JUMP_TO_PREVIOUS_CTX_AH__
#define __JUMP_TO_PREVIOUS_CTX_AH__
#include "../../AspectConfig.hpp"
#if 0
// #if CONFIG_SR_RESTORE == 1 || CONFIG_SR_REBOOT == 1
#include "bochs.h"
#include "../SALInst.hpp"
aspect jumpToPreviousCtx
{
pointcut end_reset_handler() = "void bx_gui_c::reset_handler(...)";
//|| "int bxmain()";
advice execution (end_reset_handler()) : after ()
{
if (sal::restore_bochs_request || sal::reboot_bochs_request )
{
sal::restore_bochs_request = false;
sal::reboot_bochs_request = false;
sal::simulator.toPreviousCtx();
}
}
};
#endif // CONFIG_SR_RESTORE == 1 || CONFIG_SR_REBOOT
#endif // __JUMP_TO_PREVIOUS_CTX_AH__

View File

@ -0,0 +1,100 @@
#ifndef __MEM_ACCESS_BIT_FLIP_AH__
#define __MEM_ACCESS_BIT_FLIP_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_FI_MEM_ACCESS_BITFLIP == 1
#include <iostream>
#include <cstdlib>
#include <ctime>
#include "bochs.h"
#include "../../controller/EventList.hpp"
#include "../../controller/Event.hpp"
using namespace std;
// FIXME this code doesn't make any sense for the read_virtual_% functions
// (the fault would need to be injected into their *return* value)
aspect MemAccessBitFlip
{
pointcut injection_methods()
= "% ...::bx_cpu_c::read_virtual_%(...)" || // -> access32/64.cc
/*
"% ...::bx_cpu_c::read_RMW_virtual_%(...)" || // -> access32.cc
"% ...::bx_cpu_c::system_read_%(...)" || // -> access.cc
"% ...::bx_cpu_c::v2h_read_byte(...)" || // -> access.cc
*/
"% ...::bx_cpu_c::write_virtual_%(...)"; // -> access32/64.cc
/*
"% ...::bx_cpu_c::write_RMW_virtual_%(...)" || // -> access32.cc
"% ...::bx_cpu_c::write_new_stack_%(...)" || // -> access32/64.cc
"% ...::bx_cpu_c::system_write_%(...)" || // -> access.cc
"% ...::bx_cpu_c::v2h_write_byte(...)"; // -> access.cc
*/
//
// Injects a bitflip each time the guest system requests to write/read
// data to/from RAM at the (hardcoded) addresses defined above:
//
// Event source: "memory write/read access"
//
advice execution (injection_methods()) : before ()
{
for(size_t i = 0; i < fi::evbuf.getEventCount(); i++) // check for active events
{
fi::SimpleBitFlip* pEv = dynamic_cast<fi::SimpleBitFlip*>(fi::evbuf.getEvent(i)); // FIXME: Performance verbessern
if(pEv && *(tjp->arg<1>())/*typed!*/ == pEv->getAddress())
{
cout << " " << tjp->signature() << endl;
// Get a pointer to the data that should be written to RAM
// *before* it is actually written:
Bit32u* pData = (Bit32u*)(tjp->arg(JoinPoint::ARGS-1));
// Flip bit at position pEv->getBitPos():
char* ptr = (char*)pData; // For simplification we're just looking at the
// first byte of the data
ptr[0] = (ptr[0]) ^ (pEv->getMask() << pEv->getBitPos());
cout << " >>> Bit flipped at index " << pEv->getBitPos()
<< " at address 0x" << hex << (*(tjp->arg<1>())) << "!" << endl;
fi::evbuf.fireEvent(pEv);
// Continue... (maybe more events to process)
}
}
}
/*
//
// Shows the mapping of a virtual address (within eCos) to a *host* address:
//
if(g_fEnableInjection) // event fired?
{
g_fEnableInjection = false;
const unsigned SEGMENT_SELECTOR_IDX = 2; // always the code segment (seg-base-addr should be zero)
const bx_address logicalAddr = MEM_ADDR_TO_INJECT; // offset within the segment ("local eCos address")
// Get the linear address:
Bit32u linearAddr = pThis->get_laddr32(SEGMENT_SELECTOR_IDX/ *seg* /, logicalAddr/ *offset* /);
// Map the linear address to the physical address:
bx_phy_address physicalAddr;
bx_bool fValid = pThis->dbg_xlate_linear2phy(linearAddr, (bx_phy_address*)&physicalAddr);
// Determine the *host* address of the physical address:
Bit8u* hostAddr = BX_MEM(0)->getHostMemAddr(pThis, physicalAddr, BX_READ);
// Now, hostAddr contains the "final" address where we are allowed to inject errors:
*(unsigned*)hostAddr = BAD_VALUE; // inject error
if(!fValid)
printf("[Error]: Could not map logical address to host address.\n");
else
printf("[Info]: Error injected at logical addr %p (host addr %p).\n", logicalAddr, hostAddr);
}
*/
};
#endif // CONFIG_FI_MEM_ACCESS_BITFLIP
#endif // __MEM_ACCESS_BIT_FLIP_AH__

146
core/SAL/bochs/MemEvents.ah Normal file
View File

@ -0,0 +1,146 @@
#ifndef __MEM_EVENTS_AH__
#define __MEM_EVENTS_AH__
#include <iostream>
#include "../../AspectConfig.hpp"
#if CONFIG_EVENT_MEMREAD == 1 || CONFIG_EVENT_MEMWRITE == 1
#include "../../../bochs/bochs.h"
#include "../../../bochs/cpu/cpu.h"
#include "../SALInst.hpp"
#include "bochs_helpers.hpp"
// FIXME we currently assume a "flat" memory model and ignore the segment
// parameter of all memory accesses
// TODO instruction fetch?
// TODO warn on uncovered memory accesses
aspect MemEvents
{
sal::address_t rmw_address;
pointcut write_methods() =
"% ...::bx_cpu_c::write_virtual_%(...)" && // -> access32/64.cc
// not an actual memory access:
!"% ...::bx_cpu_c::write_virtual_checks(...)";
pointcut write_methods_RMW() =
"% ...::bx_cpu_c::write_RMW_virtual_%(...)";
pointcut write_methods_new_stack() =
"% ...::bx_cpu_c::write_new_stack_%(...)" && // -> access32.cc
!"% ...::bx_cpu_c::write_new_stack_%_64(...)";
pointcut write_methods_new_stack_64() =
"% ...::bx_cpu_c::write_new_stack_%_64(...)"; // -> access64.cc
pointcut write_methods_system() =
"% ...::bx_cpu_c::system_write_%(...)"; // -> access.cc
// FIXME not covered:
/* "% ...::bx_cpu_c::v2h_write_byte(...)"; // -> access.cc */
pointcut read_methods() =
"% ...::bx_cpu_c::read_virtual_%(...)" &&
// sizeof() doesn't work here (see next pointcut)
!"% ...::bx_cpu_c::read_virtual_dqword_%(...)" && // -> access32/64.cc
// not an actual memory access:
!"% ...::bx_cpu_c::read_virtual_checks(...)";
pointcut read_methods_dqword() =
"% ...::bx_cpu_c::read_virtual_dqword_%(...)"; // -> access32/64.cc
pointcut read_methods_RMW() =
"% ...::bx_cpu_c::read_RMW_virtual_%(...)";
pointcut read_methods_system() =
"% ...::bx_cpu_c::system_read_%(...)"; // -> access.cc
// FIXME not covered:
/* "% ...::bx_cpu_c::v2h_read_byte(...)"; // -> access.cc */
//
// Fire a memory-write-event each time the guest system requests
// to write data to RAM:
//
// Event source: "memory write access"
//
#if CONFIG_EVENT_MEMWRITE == 1
advice execution (write_methods()) : after () {
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->arg<2>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_RMW()) : after () {
sal::simulator.onMemoryAccessEvent(
rmw_address, sizeof(*(tjp->arg<0>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_new_stack()) : after () {
std::cerr << "WOOOOOT write_methods_new_stack" << std::endl;
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->arg<3>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_new_stack_64()) : after () {
std::cerr << "WOOOOOT write_methods_new_stack_64" << std::endl;
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->arg<2>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_system()) : after () {
// We don't do anything here for now: This type of memory
// access is used when the hardware itself needs to access
// memory (e.g., to read vectors from the interrupt vector
// table).
/*
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->arg<1>())), true,
getCPU(tjp->that())->prev_rip);
*/
}
#endif
//
// Fire a memory-read-event each time the guest system requests
// to read data in RAM:
//
// Event source: "memory read access"
//
#if CONFIG_EVENT_MEMREAD == 1
advice execution (read_methods()) : before () {
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
}
advice execution (read_methods_dqword()) : before () {
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), 16, false,
getCPU(tjp->that())->prev_rip);
}
#endif
advice execution (read_methods_RMW()) : before () {
rmw_address = *(tjp->arg<1>());
#if CONFIG_EVENT_MEMREAD == 1
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
#endif
}
#if CONFIG_EVENT_MEMREAD == 1
advice execution (read_methods_system()) : before () {
// We don't do anything here for now: This type of memory
// access is used when the hardware itself needs to access
// memory (e.g., to read vectors from the interrupt vector
// table).
/*
sal::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
*/
}
#endif
};
#endif // CONFIG_EVENT_MEMACCESS
#endif /* __MEM_EVENTS_AH__ */

27
core/SAL/bochs/Trap.ah Normal file
View File

@ -0,0 +1,27 @@
#ifndef __TRAP_AH__
#define __TRAP_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_EVENT_TRAP == 1
#include "../../../bochs/bochs.h"
#include "../../../bochs/cpu/cpu.h"
#include "../SALInst.hpp"
aspect Trap
{
pointcut exception_method() = "void bx_cpu_c::exception(...)";
advice execution (exception_method()) : before ()
{
sal::simulator.onTrapEvent(*(tjp->arg<0>()));
// TODO: There are some different types of exceptions at cpu.h (line 265-281)
// Which kind of a trap are these types?
}
};
#endif // CONFIG_EVENT_TRAP
#endif /* __TRAP_AH__ */

View File

@ -0,0 +1,15 @@
#ifndef __BOCHS_HELPERS_HPP__
#define __BOCHS_HELPERS_HPP__
#include "../../../bochs/cpu/cpu.h"
static inline BX_CPU_C *getCPU(BX_CPU_C *that)
{
#if BX_USE_CPU_SMF == 0
return that;
#else
return BX_CPU_THIS;
#endif
}
#endif

27
core/SAL/bochs/credits.ah Normal file
View File

@ -0,0 +1,27 @@
#ifndef __CREDITS_AH__
#define __CREDITS_AH__
#include <string.h>
aspect credits {
bool first;
credits() : first(true) {}
advice call ("% bx_center_print(...)")
&& within ("void bx_print_header()")
&& args(file, line, maxwidth)
: around (FILE *file, const char *line, unsigned maxwidth) {
if (!first) {
tjp->proceed();
return;
}
// FIXME take version from global configuration
char buf[256] = "FailBochs 0.0.1, based on the ";
strncat(buf, line, 128);
first = false;
*(tjp->arg<1>()) = buf;
tjp->proceed();
}
};
#endif // __CREDITS_AH__

View File

@ -0,0 +1,19 @@
#ifndef __DISABLE_ADD_REMOVE_LOGFN_AH__
#define __DISABLE_ADD_REMOVE_LOGFN_AH__
/* Hack to prevent Bochs' logfunctions list (bochs.h) to overflow if the
* experiment restores simulator state more than ~1000 times.
*
* The "proper" fix would be to completely unregister all log functions before
* restore, i.e. to destroy all objects deriving from class logfunctions. We
* decided to simply ignore this tiny memory leak and to hack around the
* problem by disabling iofunctions::add/remove_logfn().
*/
aspect DisableLogfn {
pointcut add_remove_logfn() =
"void iofunctions::add_logfn(...)" ||
"void iofunctions::remove_logfn(...)";
advice execution (add_remove_logfn()) : around () {}
};
#endif /* __DISABLE_ADD_REMOVE_LOGFN_AH__ */

View File

@ -0,0 +1,25 @@
#ifndef __DISABLE_KEYBOARD_INTERRUPT_AH__
#define __DISABLE_KEYBOARD_INTERRUPT_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_DISABLE_KEYB_INTERRUPTS
#include "../../../bochs/iodev/keyboard.h"
aspect DisableKeybInt {
pointcut heyboard_interrupt() =
"void bx_keyb_c::timer_handler(...)";
advice execution (heyboard_interrupt()) : around () {
bx_keyb_c *class_ptr = (bx_keyb_c *) tjp->arg<0>();
unsigned retval;
retval=class_ptr->periodic(1);
}
};
#endif /* CONFIG_DISABLE_KEYB_INTERRUPTS */
#endif /* __DISABLE_KEYBOARD_INTERRUPT_AH__ */

View File

@ -0,0 +1,21 @@
#ifndef FAILBOCHS_H
#define FAILBOCHS_H
#include <string>
#include <string.h>
#include "config.h"
namespace sal{
//DanceOS Richard Hellwig
#ifdef DANCEOS_RESTORE
extern bx_bool restore_bochs_request;
extern bx_bool save_bochs_request;
extern bx_bool reboot_bochs_request;
extern std::string sr_path;
#endif
}
#endif //FAILBOCHS_H

View File

@ -0,0 +1,27 @@
#ifndef __FIRETIMER_AH__
#define __FIRETIMER_AH__
#include <iostream>
aspect fireTimer {
advice "bx_pc_system_c" : slice class {
public:
void fireTimer(Bit32u timerNum){
if(timerNum <= numTimers){
if(!timer[timerNum].active){
std::cout << "[FAIL] WARNING: The selected timer is actually NOT active!" << std::endl;
}
currCountdownPeriod = Bit64u(1);
timer[timerNum].timeToFire = Bit64u(currCountdownPeriod) + ticksTotal;
std::cout << "[FAIL] Timer " << timerNum <<" will fire now!" << std::endl;
}else{
std::cout << "[FAIL] There are actually only " << numTimers <<" allocated!" << std::endl;
}
}
};
};
#endif // __FIRETIMER_AH__

12
core/SAL/bochs/init.ah Normal file
View File

@ -0,0 +1,12 @@
#ifndef __BXINIT_AH__
#define __BXINIT_AH__
#include "../SALInst.hpp"
aspect BochsInit {
advice call("int bxmain()") : before () {
sal::simulator.startup();
}
};
#endif // __BXINIT_AH__

27
core/SAL/bochs/reboot.ah Normal file
View File

@ -0,0 +1,27 @@
#ifndef __REBOOT_AH__
#define __REBOOT_AH__
#include "../../AspectConfig.hpp"
#include "../SALInst.hpp"
#if CONFIG_SR_REBOOT == 1
#include "bochs.h"
aspect reboot {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
advice execution (cpuLoop()) : after () {
if (!sal::reboot_bochs_request) {
return;
}
bx_gui_c::reset_handler();
std::cout << "[FAIL] Reboot finished" << std::endl;
sal::simulator.rebootDone();
}
};
#endif // CONFIG_SR_REBOOT
#endif // __REBOOT_AH__

23
core/SAL/bochs/restore.ah Normal file
View File

@ -0,0 +1,23 @@
#ifndef __RESTORE_AH__
#define __RESTORE_AH__
#include <iostream>
#include "../../AspectConfig.hpp"
#include "../SALInst.hpp"
#if CONFIG_SR_RESTORE == 1
#include "bochs.h"
aspect restore {
pointcut restoreState() = "void bx_sr_after_restore_state()";
advice execution (restoreState()) : after () {
std::cout << "[FAIL] Restore finished" << std::endl;
sal::simulator.restoreDone();
}
};
#endif // CONFIG_SR_RESTORE
#endif // __RESTORE_AH__

32
core/SAL/bochs/save.ah Normal file
View File

@ -0,0 +1,32 @@
#ifndef __SAVE_AH__
#define __SAVE_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_SR_SAVE == 1
#include "bochs.h"
#include "../SALInst.hpp"
aspect save {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
// make sure the "save" aspect comes *after* the breakpoint stuff: In
// an "after" advice this means it must get a *higher* precedence,
// therefore it's first in the order list.
advice execution (cpuLoop()) : order ("save", "CPULoop");
advice execution (cpuLoop()) : after () {
if (!sal::save_bochs_request) {
return;
}
assert(sal::sr_path.size() > 0 && "[FAIL] tried to save state without valid path");
SIM->save_state(sal::sr_path.c_str());
std::cout << "[FAIL] Save finished" << std::endl;
sal::simulator.saveDone();
}
};
#endif // CONFIG_SR_SAVE
#endif // _SAVE_AH__

54
core/SAL/bochs/stfu.ah Normal file
View File

@ -0,0 +1,54 @@
#ifndef __NONVERBOSE_AH__
#define __NONVERBOSE_AH__
#include "../../AspectConfig.hpp"
#if CONFIG_STFU == 1
#include "bochs.h"
// Doesn't work because AspectC++ doesn't deal properly with variadic parameter
// lists:
/*
aspect nonverbose {
// needed to suppress Bochs output *before* a state restore finished
// FIXME ac++ segfaults if we use call() instead of execution()
advice execution("% logfunctions::debug(...)")
|| execution("% logfunctions::info(...)")
|| execution("% logfunctions::pass(...)")
|| execution("% logfunctions::error(...)")
: around () {
}
};
*/
aspect nonverbose {
// needed to suppress Bochs output *before* a state restore finished
advice call("int logfunctions::get_default_action(int)")
: around () {
int action;
switch (*(tjp->arg<0>())) {
case LOGLEV_DEBUG:
case LOGLEV_PASS:
case LOGLEV_INFO:
action = ACT_IGNORE;
break;
case LOGLEV_ERROR:
action = ACT_REPORT;
break;
case LOGLEV_PANIC:
default:
action = ACT_FATAL;
}
*(tjp->result()) = action;
}
// no credits header
advice call("void bx_print_header()")
: around () {
}
};
#endif
#endif

139
core/SAL/ovp/Controller.cc Normal file
View File

@ -0,0 +1,139 @@
#include <iostream>
#include "OVPController.hpp"
#include "OVPMemory.hpp"
#include "OVPRegister.hpp"
#include "../../../ovp/OVPStatusRegister.hpp"
namespace sal {
OVPController::OVPController()
: SimulatorController(new OVPRegisterManager(), new OVPMemoryManager())
{
//FIXME: This should be obsolete now...
//set = new UniformRegisterSet(RT_GP);
//setStatus = new UniformRegisterSet(RT_ST);
//setPC= new UniformRegisterSet(RT_PC);
}
OVPController::~OVPController()
{
//FIXME: This should be obsolete now...
//delete set;
//delete setStatus;
//delete setPC;
// Free memory of OVPRegister objects (actually allocated in make*Register):
for(RegisterManager::iterator it = m_Regs->begin(); it != m_Regs->end(); it++)
delete (*it); // free the memory, allocated in the constructor
}
void OVPController::makeGPRegister(int width, void *link, const string& name) {
// Add general purpose register
OVPRegister *reg = new OVPRegister(m_currentRegId++, width, link, RT_GP);
reg->setName(name);
m_Regs->add(reg);
// Note: The RegisterManager (aka m_Regs) automatically assigns the
// added registers (herein typed OVPRegister) to their matching
// UniformRegisterSet (@see RegisterManager::add).
}
void OVPController::makeSTRegister(Register *reg, const string& name) {
// Add status register
reg->setName(name);
cerr << "Add Status Register: " << reg << endl;
m_Regs->add(reg);
}
void OVPController::makePCRegister(int width, void *link, const string& name) {
// Add general purpose register
OVPRegister *reg = new OVPRegister(m_currentRegId++, width, link, RT_PC);
reg->setName(name);
m_Regs->add(reg);
}
//FIXME: This should be obsolete now...
//void OVPController::finishedRegisterCreation() {
// m_Regs->add(*set);
// m_Regs->add(*setStatus);
// m_Regs->add(*setPC);
//}
void OVPController::onInstrPtrChanged(address_t instrPtr)
{
// make some funny outputs
unsigned int r0 = m_Regs->getSetOfType(RT_GP)->getRegister(0)->getData();
OVPRegisterManager *ovp_Regs = (OVPRegisterManager *) m_Regs;
// FIXME: This cast seems to be invalid: RT_GP vs. OVPStatusRegister (= RT_ST)?
OVPStatusRegister *rid_st = (OVPStatusRegister *) m_Regs->getSetOfType(RT_GP)->first();
// cerr << "Addr: " << rid_st << endl;
unsigned int st = rid_st->getData();
// cerr << "instrPtr: 0x" << hex << instrPtr << " SP: 0x" << hex << m_Regs->getStackPointer() \
<< " R0: 0x" << hex << r0 << " ST: 0x" << hex << st << endl;
// Check for active breakpoint-events:
fi::EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Performance verbessern (dazu muss entsprechend auch die Speicherung
// in EventList(.cc|.hpp) angepasst bzw. verbessert werden).
fi::BPEvent* pEvBreakpt = dynamic_cast<fi::BPEvent*>(*it);
if(pEvBreakpt && (instrPtr == pEvBreakpt->getWatchInstructionPointer() ||
pEvBreakpt->getWatchInstructionPointer() == fi::ANY_ADDR))
{
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
fi::BPRangeEvent* pEvRange = dynamic_cast<fi::BPRangeEvent*>(*it);
if(pEvRange && pEvRange->isMatching(instrPtr))
{
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
continue; // dito.
}
it++;
}
m_EvList.fireActiveEvents();
}
void OVPController::save(const string& path)
{
//TODO
//SIM->save_state(path.c_str());
//bx_gui_c::power_handler();
}
void OVPController::restore(const string& path)
{
//TODO
//bx_pc_system.restore_bochs_request = true;
assert(path.length() > 0 &&
"FATAL ERROR: Tried to restore state without valid path!");
//strncpy(bx_pc_system.sr_path, path.c_str(), 512 /*CI_PATH_LENGTH, @see gui/textconfig.cc*/);
}
void OVPController::reboot()
{
//TODO
//bx_pc_system.Reset(BX_RESET_HARDWARE);
//bx_gui_c::reset_handler();//TODO: leider protected, so geht das also nicht...
}
void OVPController::toPreviousCtx()
{
// TODO
}
void OVPController::terminate(int exCode){
}
void OVPController::fireTimer(uint32_t){
};
};

View File

@ -0,0 +1,18 @@
#ifndef __OVP_CONFIG_HPP__
#define __OVP_CONFIG_HPP__
// Type definitions and configuration settings for
// the OVP simulator.
namespace sal
{
typedef uint32_t guest_address_t; //!< the guest memory address type
typedef uint8_t* host_address_t; //!< the host memory address type
typedef uint32_t register_data_t; //!< register data type (32 bit)
};
#endif /* __OVP_CONFIG_HPP__ */

View File

@ -0,0 +1,90 @@
#ifndef __OVP_CONTROLLER_HPP__
#define __OVP_CONTROLLER_HPP__
#include <string>
#include <cassert>
#include <string.h>
#include <string>
#include "../SimulatorController.hpp"
#include "../../controller/Event.hpp"
#include "../../../ovp/OVPPlatform.hpp"
#include "../Register.hpp"
using namespace std;
extern OVPPlatform ovpplatform;
/// Simulator Abstraction Layer namespace
namespace sal
{
/**
* \class OVPController
* OVP-specific implementation of a SimulatorController.
*/
class OVPController : public SimulatorController
{
private:
//FIXME: This should be obsolete now...
//UniformRegisterSet *set; //(RT_GP);
//UniformRegisterSet *setStatus;//(RT_ST);
//UniformRegisterSet *setPC;//(RT_PC);
// (FIXME: perhaps this should be declared as a static member)
unsigned int m_currentRegId;
// NOTE: Constants (such as GPRegisterId in SAL/bochs/BochsRegister.hpp)
// are much easier to read...
public:
// Initialize the controller.
OVPController();
virtual ~OVPController();
virtual void onInstrPtrChanged(address_t instrPtr);
/**
* Save simulator state.
* @param path Location to store state information
*/
virtual void save(const string& path);
/**
* Restore simulator state.
* @param path Location to previously saved state information
*/
virtual void restore(const string& path);
/**
* Reboot simulator.
*/
virtual void reboot();
/**
* Handles the control back to the previous coroutine which
* triggered the reboot. Need not to be called explicitly.
*/
void toPreviousCtx();
/**
* Returns the current instruction pointer.
* @return the current eip
*/
/**
* Terminate simulator
*/
virtual void terminate(int exCode = EXIT_SUCCESS);
virtual void fireTimer(uint32_t);
void makeGPRegister(int, void*, const string&);
void makeSTRegister(Register *, const string&);
void makePCRegister(int, void*, const string&);
//DELETE-ME:This should be obsolete now...
/**
* Due to empty RegisterSets are not allowed, OVP platform
* must tell OVPController when it is finished
*/
//void finishedRegisterCreation();
};
};
#endif

View File

@ -0,0 +1,92 @@
#ifndef __OVP_MEMORY_HPP__
#define __OVP_MEMORY_HPP__
#include "../Memory.hpp"
namespace sal
{
/**
* \class OVPMemoryManager
* Represents a concrete implemenation of the abstract
* MemoryManager to provide access to OVP's memory pool.
*/
class OVPMemoryManager : public MemoryManager
{
public:
/**
* Constructs a new MemoryManager object and initializes
* it's attributes appropriately.
*/
OVPMemoryManager() : MemoryManager() { }
/**
* Retrieves the size of the available simulated memory.
* @return the size of the memory pool in bytes
*/
size_t getPoolSize() const
{
return 0;
}
/**
* Retrieves the starting address of the host memory. This is the
* first valid address in memory.
* @return the starting address
*/
host_address_t getStartAddr() const
{
return (0);
}
/**
* Retrieves the byte at address \a addr in the memory.
* @param addr The guest address where the byte is located.
* The address is expected to be valid.
* @return the byte at \a addr
*/
byte_t getByte(guest_address_t addr)
{
return (0);
}
/**
* Retrieves \a cnt bytes at address \a addr in the memory.
* @param addr The guest address where the bytes are located.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param dest The destination buffer to write the bytes to
*/
void getBytes(guest_address_t addr, size_t cnt, std::vector<byte_t>& dest)
{
}
/**
* Writes the byte \a data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new byte to write
*/
void setByte(guest_address_t addr, byte_t data)
{
}
/**
* Writes the bytes \a data to memory. Consequently \c data.size()
* bytes will be written.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new bytes to write
*/
void setBytes(guest_address_t addr, const std::vector<byte_t>& data)
{
}
/**
* Transforms the guest address \a addr to a host address.
* @param addr The (logical) guest address to be transformed
* @return the transformed (host) address or \c ADDR_INV on errors
*/
host_address_t guestToHost(guest_address_t addr)
{
return (0);
}
};
}
#endif

View File

@ -0,0 +1,80 @@
#ifndef __OVP_REGISTER_HPP__
#define __OVP_REGISTER_HPP__
#include "../Register.hpp"
#include "../../../ovp/OVPPlatform.hpp"
//#include "../../../ovp/OVPStatusRegister.hpp"
extern OVPPlatform ovpplatform;
namespace sal {
/**
* \class OVPRegister
* OVP-specific implementation of x86 registers.
*/
class OVPRegister : public Register
{
private:
void *reg;
public:
/**
* Constructs a new register object.
* @param id the unique id of this register (simulator specific)
* @param width width of the register (8, 16, 32 or 64 bit should suffice)
* @param link pointer to bochs internal register memory
* @param t type of the register
*/
OVPRegister(unsigned int id, regwidth_t width, void* link, RegisterType t)
: Register(id, t, width) {
reg = link;
}
/**
* Retrieves the data of the register.
* @return the current register data
*/
regdata_t getData() { return ovpplatform.getRegisterData(reg); }
/**
* Sets the content of the register.
* @param data the new register data to be written
*/
void setData(regdata_t data) { ovpplatform.setRegisterData(reg, data); }
};
/**
* \class OVPRegister
* OVP-specific implementation of the RegisterManager.
*/
class OVPRegisterManager : public RegisterManager
{
public:
/**
* Returns the current instruction pointer.
* @return the current eip
*/
virtual address_t getInstructionPointer()
{
return ovpplatform.getPC();
}
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
virtual address_t getStackPointer()
{
return ovpplatform.getSP();
}
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
virtual address_t getBasePointer()
{
return 0;
}
};
}
#endif

13
core/SAL/ovp/init.ah Normal file
View File

@ -0,0 +1,13 @@
#ifndef __OVPINIT_AH__
#define __OVPINIT_AH__
#include "../SALInst.hpp"
aspect OVPInit {
advice call("% ...::startSimulation(...)") : before () {
cout << "OVP init aspect!" << endl;
sal::simulator.startup();
}
};
#endif // __OVPINIT_AH__

View File

@ -0,0 +1,13 @@
option( EXP_MHTEST "MH Testcampaign" on)
option( EXP_FAULTCOV "Fault coverage experiment" OFF)
option( EXP_HSCSIMPLE "HSC simple experiment" OFF)
option( EXP_COOLCHECKSUM "Test campaign for chb's cool checksum" OFF)
option( EXP_CHECKSUM_OOSTUBS "OOStuBS Checksum" OFF)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/experiments.hpp.in
${CMAKE_CURRENT_BINARY_DIR}/experiments.hpp @ONLY}
)

View File

@ -0,0 +1,24 @@
/**
* Copyright DanceOS Project
* http://www.danceos.org
*
* \file experiments.h.in
* \brief Experiment configuration
* \author Martin Hoffmann <hoffmann@cs.fau.de>
*
* The defines are generated by cmake.
* \attention THIS FILE IS AUTOGENERATED, DO NOT EDIT!
*/
#ifndef EXPERIMENTS_H
#define EXPERIMENTS_H
#cmakedefine EXP_MHTEST
#cmakedefine EXP_FAULTCOV
#cmakedefine EXP_HSCSIMPLE
#cmakedefine EXP_COOLCHECKSUM
#cmakedefine EXP_CHECKSUM_OOSTUBS
#endif // EXPERIMENTS_H

View File

@ -0,0 +1,11 @@
set(SRCS
CampaignManager.cc
CoroutineManager.cc
Event.cc
EventList.cc
ExperimentDataQueue.cc
Signal.cc
SynchronizedExperimentDataQueue.cc
)
add_library(controller ${SRCS})

View File

@ -0,0 +1,31 @@
#ifndef __CAMPAIGN_HPP__
#define __CAMPAIGN_HPP__
// Author: Martin Hoffmann
// Date: 09.12.2011
namespace fi
{
/**
* \class Campaign
* Basic interface for user-defined campaigns. To create a new
* campaign, derive your own class from Campaign,
* define the run method, and add it to the CampaignManager.
*/
class Campaign
{
public:
Campaign() { };
/**
* Defines the campaign.
* @return \c true if the campaign was successful, \c false otherwise
*/
virtual bool run() = 0;
};
}
#endif /* __CAMPAIGN_HPP__ */

View File

@ -0,0 +1,9 @@
#include "CampaignManager.hpp"
namespace fi
{
CampaignManager campaignmanager;
}//end-of-namespace

View File

@ -0,0 +1,90 @@
/**
* \brief The manager for an entire campaign
*
* The CampaignManager allows a user-campaign access to all constant
* simulator information and forwards single experiments to the JobServer.
*
* \author Martin Hoffmann
*
*/
#ifndef __CAMPAIGN_MANAGER_H__
#define __CAMPAIGN_MANAGER_H__
#include "SAL/SALInst.hpp"
#include "ExperimentData.hpp"
#include "jobserver/JobServer.hpp"
#include "controller/Campaign.hpp"
namespace fi
{
/**
* \class CampaignManager
* Class manageing an FI campaign.
*/
class CampaignManager
{
JobServer m_jobserver;
Campaign* m_currentCampaign;
public:
CampaignManager(){};
/**
* Executes a user campaign
*/
bool runCampaign(Campaign* c){
m_currentCampaign = c;
bool ret = c->run();
m_jobserver.done();
return ret;
}
/**
* Returns a const reference for acquiring constant simlator specific information.
* e.g., Registernames, to ease experiment data construction.
* The campaign description is not allowed to change the simulator
* state, as the actual simulation runs within another process (Minion)
* @return c constant reference to the current simulator backend.
*/
sal::SimulatorController const& getSimulator() const { return sal::simulator; };
/**
* Add a experiment parameter set.
* The user campaign has to allocate the Parameter object,
* and deallocate it after result reception.
* A Parameter set includes space for results.
* @param exp A pointer to a ExperimentData set.
*/
void addParam(ExperimentData* exp){ m_jobserver.addParam(exp); };
/**
* A user campaign can request a single result (blocking) from the queue.
*
* @return Pointer to a parameter object with filled result data @see addParam.
*/
ExperimentData* getDone() { return m_jobserver.getDone(); };
/**
* Signal, that there will not come any further parameter sets.
*/
void noMoreParameters() { m_jobserver.setNoMoreExperiments(); };
/**
* Wait actively, until all experiments expired.
*/
// void waitForCompletion();
/**
* User campaign has finished..
*/
void done() { m_jobserver.done(); };
};
extern CampaignManager campaignmanager;
} //end-of-namespace
#endif

View File

@ -0,0 +1,96 @@
// Author: Adrian Böckenkamp
// Date: 05.10.2011
#include <iostream>
#include "CoroutineManager.hpp"
#include "../controller/ExperimentFlow.hpp"
namespace fi
{
void CoroutineManager::m_invoke(void* pData)
{
//std::cerr << "CORO m_invoke " << co_current() << std::endl;
reinterpret_cast<ExperimentFlow*>(pData)->coroutine_entry();
co_exit(); // deletes the associated coroutine memory as well
// we really shouldn't get here
std::cerr << "CoroutineManager::m_invoke() shitstorm unloading" << std::endl;
while (1) ;
}
CoroutineManager::~CoroutineManager()
{
}
void CoroutineManager::toggle(ExperimentFlow* flow)
{
m_togglerstack.push(co_current());
//std::cerr << "CORO toggle from " << m_togglerstack.top() << " to ";
if (flow == SIM_FLOW) {
co_call(m_simCoro);
return;
}
flowmap_t::iterator it = m_Flows.find(flow);
assert(it != m_Flows.end() && "FATAL ERROR: Flow does not exist!");
//std::cerr << it->second << std::endl;
co_call(it->second);
}
void CoroutineManager::create(ExperimentFlow* flow)
{
corohandle_t res = co_create(CoroutineManager::m_invoke, flow, NULL,
STACK_SIZE_DEFAULT);
//std::cerr << "CORO create " << res << std::endl;
m_Flows.insert(std::pair<ExperimentFlow*,corohandle_t>(flow, res));
}
void CoroutineManager::remove(ExperimentFlow* flow)
{
// find coroutine handle for this flow
flowmap_t::iterator it = m_Flows.find(flow);
if (it == m_Flows.end()) {
assert(false && "FATAL ERROR: Cannot remove flow");
return;
}
corohandle_t coro = it->second;
//std::cerr << "CORO remove " << coro << std::endl;
// remove flow from active list
m_Flows.erase(it);
// FIXME make sure resume() keeps working
// delete coroutine (and handle the special case we're removing
// ourselves)
if (coro == co_current()) {
co_exit();
} else {
co_delete(coro);
}
}
void CoroutineManager::resume()
{
corohandle_t next = m_togglerstack.top();
m_togglerstack.pop();
//std::cerr << "CORO resume from " << co_current() << " to " << next << std::endl;
co_call(next);
}
ExperimentFlow* CoroutineManager::getCurrent()
{
coroutine_t cr = co_current();
for(std::map<ExperimentFlow*,corohandle_t>::iterator it = m_Flows.begin();
it != m_Flows.end(); it++)
if(it->second == cr)
return (it->first);
assert(false && "FATAL ERROR: The current flow could not be retrieved!");
return 0;
}
const ExperimentFlow* CoroutineManager::SIM_FLOW = NULL;
}

View File

@ -0,0 +1,78 @@
#ifndef __COROUTINE_MANAGER_HPP__
#define __COROUTINE_MANAGER_HPP__
// Author: Adrian Böckenkamp
// Date: 05.10.2011
#include <map>
#include <stack>
#include <pcl.h> // the underlying "portable coroutine library"
namespace fi
{
class ExperimentFlow;
/**
* \class CoroutineManager
* Manages the experiments flow encapsulated in coroutines. Each
* experiment (flow) has it's associated data structure which is
* represented by the ExperimentData-class.
*/
class CoroutineManager
{
private:
//! the default stack size for coroutines (= experiment flows)
static const unsigned STACK_SIZE_DEFAULT = 4096*4096;
//! the abstraction for coroutine identification
typedef coroutine_t corohandle_t;
typedef std::map<ExperimentFlow*,corohandle_t> flowmap_t;
//! the mapping "flows <-> coro-handle"
flowmap_t m_Flows;
//! the simulator/backend coroutine handle
corohandle_t m_simCoro;
//! stack of coroutines that explicitly activated another one with toggle()
std::stack<corohandle_t> m_togglerstack;
//! manages the run-calls for each ExperimentFlow-object
static void m_invoke(void* pData);
public:
static const ExperimentFlow* SIM_FLOW; //!< the simulator coroutine flow
CoroutineManager() : m_simCoro(co_current()) { }
~CoroutineManager();
/**
* Creates a new coroutine for the specified experiment flow.
* @param flow the flow to be executed in the newly created coroutine
*/
void create(ExperimentFlow* flow);
/**
* Destroys coroutine for the specified experiment flow.
* @param flow the flow to be removed
*/
void remove(ExperimentFlow* flow);
/**
* Switches the control flow to the experiment \a flow. If \a flow is
* equal to \c SIM_FLOW, the control will be handed back to the
* simulator. The current control flow is pushed onto an
* internal stack.
* @param flow the destination control flow or \c SIM_FLOW (= \c NULL )
*/
void toggle(ExperimentFlow* flow);
/**
* Gives the control back to the coroutine that toggle()d the
* current one, by drawing from the internal stack built from
* calls to toggle().
*/
void resume();
/**
* Retrieves the current (active) coroutine (= flow).
* @return the current experiment flow.
*/
ExperimentFlow* getCurrent();
};
} // end-of-namespace: fi
#endif /* __COROUTINE_MANAGER_HPP__ */

79
core/controller/Event.cc Normal file
View File

@ -0,0 +1,79 @@
// Author: Adrian Böckenkamp
// Date: 08.06.2011
#include "Event.hpp"
namespace fi
{
EventId BaseEvent::m_Counter = 0;
bool TroubleEvent::isMatching(unsigned troubleNum) const
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNum ||
m_WatchNumbers[i] == ANY_TRAP)
return true;
}
return false;
}
bool TroubleEvent::removeWatchNumber(unsigned troubleNum)
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNum)
{
m_WatchNumbers.erase(m_WatchNumbers.begin()+i);
return true;
}
}
return false;
}
bool TroubleEvent::addWatchNumber(unsigned troubleNumber)
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNumber)
return false;
}
m_WatchNumbers.push_back(troubleNumber);
return true;
}
bool MemAccessEvent::isMatching(sal::address_t addr, accessType_t accesstype) const
{
if(!(m_WatchType & accesstype))
return (false);
else if(m_WatchAddr != addr &&
m_WatchAddr != ANY_ADDR)
return (false);
return (true);
}
void BPRangeEvent::setWatchInstructionPointerRange(sal::address_t start, sal::address_t end)
{
m_WatchStartAddr = start;
m_WatchEndAddr = end;
}
bool BPRangeEvent::isMatching(sal::address_t addr) const
{
if ((m_WatchStartAddr != ANY_ADDR && addr < m_WatchStartAddr) ||
(m_WatchEndAddr != ANY_ADDR && addr > m_WatchEndAddr))
return false;
return true;
}
bool BPEvent::isMatching(sal::address_t addr) const
{
if(m_WatchInstrPtr == ANY_ADDR || m_WatchInstrPtr == addr)
return (true);
return (false);
}
} // end-of-namespace: fi

486
core/controller/Event.hpp Normal file
View File

@ -0,0 +1,486 @@
#ifndef __EVENT_HPP__
#define __EVENT_HPP__
#include <ctime>
#include <string>
#include <cassert>
#include <vector>
#include "../SAL/SALConfig.hpp"
namespace fi
{
class ExperimentFlow;
typedef unsigned long EventId; //!< type of event ids
//! invalid event id (used as a return indicator)
const EventId INVALID_EVENT = (EventId)-1;
//! address wildcard (e.g. for BPEvent)
const sal::address_t ANY_ADDR = static_cast<sal::address_t>(-1);
//! instruction wildcard
const unsigned ANY_INSTR = static_cast<unsigned>(-1);
//! trap wildcard
const unsigned ANY_TRAP = static_cast<unsigned>(-1);
//! interrupt wildcard
const unsigned ANY_INTERRUPT = static_cast<unsigned>(-1);
/**
* \class BaseEvent
* This is the base class for all event types.
*/
class BaseEvent
{
private:
//! current class-scoped id counter to provide \a unique id's
static EventId m_Counter;
protected:
EventId m_Id; //!< unique id of this event
time_t m_tStamp; //!< time stamp of event
unsigned int m_OccCounter; //!< event fires when 0 is reached
unsigned int m_OccCounterInit; //!< initial value for m_OccCounter
ExperimentFlow* m_Parent; //!< this event belongs to experiment m_Parent
public:
BaseEvent() : m_Id(++m_Counter), m_OccCounter(1), m_OccCounterInit(1), m_Parent(NULL)
{ updateTime(); }
virtual ~BaseEvent() { }
/**
* Retrieves the unique event id for this event.
* @return the unique id
*/
EventId getId() const { return (m_Id); }
/**
* Retrieves the time stamp of this event. The time stamp is set when
* the event gets created, id est the constructor is called. The meaning
* of this value depends on the actual event type.
* @return the time stamp
*/
std::time_t getTime() const { return (m_tStamp); }
/**
* Decreases the event counter by one. When this counter reaches zero, the
* event will be triggered.
*/
void decreaseCounter() { --m_OccCounter; }
/**
* Sets the event counter to the specified value (default is one).
* @param val the new counter value
*/
void setCounter(unsigned int val = 1) { m_OccCounter = m_OccCounterInit = val; }
/**
* Returns the current counter value.
* @return the counter value
*/
unsigned int getCounter() const { return (m_OccCounter); }
/**
* Resets the event counter to its default value, or the last
* value that was set through setCounter().
*/
void resetCounter() { m_OccCounter = m_OccCounterInit; }
/**
* Sets the time stamp for this event to the current system time.
*/
void updateTime() { time(&m_tStamp); }
/**
* Returns the parent experiment of this event (context).
* If the event was created temporarily or wasn't linked to a context,
* the return value is \c NULL (unknown identity).
*/
ExperimentFlow* getParent() const { return (m_Parent); }
/**
* Sets the parent (context) of this event. The default context
* is \c NULL (unknown identity).
*/
void setParent(ExperimentFlow* pFlow) { m_Parent = pFlow; }
};
// FIXME: Dynamische Casts zur Laufzeit evtl. zu uneffizient?
// (vgl. auf NULL evtl. akzeptabel?) Bessere Lösungen?
// ----------------------------------------------------------------------------
// Specialized events:
//
/**
* \class BPEvent
* A Breakpoint event to observe specific instruction pointers.
* FIXME consider renaming to BPSingleEvent, introducing common BPEvent base class
*/
class BPEvent : virtual public BaseEvent
{
private:
sal::address_t m_WatchInstrPtr;
sal::address_t m_TriggerInstrPtr;
public:
/**
* Creates a new breakpoint event.
* @param ip the instruction pointer of the breakpoint. If the control
* flow reaches this address and its counter value is zero, the
* event will be triggered. \a eip can be set to the ANY_ADDR
* wildcard to allow arbitrary addresses.
*/
BPEvent(sal::address_t ip = 0)
: m_WatchInstrPtr(ip), m_TriggerInstrPtr(ANY_ADDR) { }
/**
* Returns the instruction pointer this event waits for.
*/
sal::address_t getWatchInstructionPointer() const
{ return m_WatchInstrPtr; }
/**
* Sets the instruction pointer this event waits for.
*/
void setWatchInstructionPointer(sal::address_t iptr)
{ m_WatchInstrPtr = iptr; }
/**
* Checks whether a given address is matching.
*/
bool isMatching(sal::address_t addr) const;
/**
* Returns the instruction pointer that triggered this event.
*/
sal::address_t getTriggerInstructionPointer() const
{ return m_TriggerInstrPtr; }
/**
* Sets the instruction pointer that triggered this event. Should not
* be used by experiment code.
*/
void setTriggerInstructionPointer(sal::address_t iptr)
{ m_TriggerInstrPtr = iptr; }
};
/**
* \class BPRangeEvent
* A event type to observe ranges of instruction pointers.
*/
class BPRangeEvent : virtual public BaseEvent
{
private:
sal::address_t m_WatchStartAddr;
sal::address_t m_WatchEndAddr;
sal::address_t m_TriggerInstrPtr;
public:
/**
* Creates a new breakpoint-range event. The range's ends are both
* inclusive, i.e. an address matches if start <= addr <= end.
* ANY_ADDR denotes the lower respectively the upper end of the address
* space.
*/
BPRangeEvent(sal::address_t start = 0, sal::address_t end = 0)
: m_WatchStartAddr(start), m_WatchEndAddr(end),
m_TriggerInstrPtr(ANY_ADDR) { }
/**
* Sets the instruction pointer watch range. Both ends of the range
* may be ANY_ADDR (cf. constructor).
*/
void setWatchInstructionPointerRange(sal::address_t start,
sal::address_t end);
/**
* Checks whether a given address is within the range.
*/
bool isMatching(sal::address_t addr) const;
/**
* Returns the instruction pointer that triggered this event.
*/
sal::address_t getTriggerInstructionPointer() const
{ return m_TriggerInstrPtr; }
/**
* Sets the instruction pointer that triggered this event. Should not
* be used by experiment code.
*/
void setTriggerInstructionPointer(sal::address_t iptr)
{ m_TriggerInstrPtr = iptr; }
};
/**
* \class MemAccessEvent
* Observes memory read/write accesses.
* FIXME? currently >8-bit accesses only match if their lowest address is being watched
* (e.g., a 32-bit write to 0x4 also accesses 0x7, but this cannot be matched)
*/
class MemAccessEvent : virtual public BaseEvent
{
public:
enum accessType_t
{
MEM_UNKNOWN = 0x0,
MEM_READ = 0x1,
MEM_WRITE = 0x2,
MEM_READWRITE = 0x3
};
private:
//! Specific guest system address to watch, or ANY_ADDR.
sal::address_t m_WatchAddr;
/**
* Memory access type we want to watch
* (MEM_READ || MEM_WRITE || MEM_READWRITE).
*/
accessType_t m_WatchType;
//! Specific guest system address that actually triggered the event.
sal::address_t m_TriggerAddr;
//! Width of the memory access (# bytes).
size_t m_TriggerWidth;
//! Address of the instruction that caused the memory access.
sal::address_t m_TriggerIP;
//! Memory access type at m_TriggerAddr.
accessType_t m_AccessType;
public:
MemAccessEvent(accessType_t watchtype = MEM_READWRITE)
: m_WatchAddr(ANY_ADDR), m_WatchType(watchtype),
m_TriggerAddr(ANY_ADDR), m_TriggerIP(ANY_ADDR),
m_AccessType(MEM_UNKNOWN) { }
MemAccessEvent(sal::address_t addr,
accessType_t watchtype = MEM_READWRITE)
: m_WatchAddr(addr), m_WatchType(watchtype),
m_TriggerAddr(ANY_ADDR), m_TriggerIP(ANY_ADDR),
m_AccessType(MEM_UNKNOWN) { }
/**
* Returns the memory address to be observed.
*/
sal::address_t getWatchAddress() const { return m_WatchAddr; }
/**
* Sets the memory address to be observed. (Wildcard: ANY_ADDR)
*/
void setWatchAddress(sal::address_t addr) { m_WatchAddr = addr; }
/**
* Checks whether a given address is matching.
*/
bool isMatching(sal::address_t addr, accessType_t accesstype) const;
/**
* Returns the specific memory address that actually triggered the
* event.
*/
sal::address_t getTriggerAddress() const { return (m_TriggerAddr); }
/**
* Sets the specific memory address that actually triggered the event.
* Should not be used by experiment code.
*/
void setTriggerAddress(sal::address_t addr) { m_TriggerAddr = addr; }
/**
* Returns the specific memory address that actually triggered the
* event.
*/
size_t getTriggerWidth() const { return (m_TriggerWidth); }
/**
* Sets the specific memory address that actually triggered the event.
* Should not be used by experiment code.
*/
void setTriggerWidth(size_t width) { m_TriggerWidth = width; }
/**
* Returns the address of the instruction causing this memory
* access.
*/
sal::address_t getTriggerInstructionPointer() const
{ return (m_TriggerIP); }
/**
* Sets the address of the instruction causing this memory
* access. Should not be used by experiment code.
*/
void setTriggerInstructionPointer(sal::address_t addr)
{ m_TriggerIP = addr; }
/**
* Returns type (MEM_READ || MEM_WRITE) of the memory access that
* triggered this event.
*/
accessType_t getTriggerAccessType() const { return (m_AccessType); }
/**
* Sets type of the memory access that triggered this event. Should
* not be used by experiment code.
*/
void setTriggerAccessType(accessType_t type) { m_AccessType = type; }
/**
* Returns memory access types (MEM_READ || MEM_WRITE || MEM_READWRITE)
* this event watches. Should not be used by experiment code.
*/
accessType_t getWatchAccessType() const { return (m_WatchType); }
};
/**
* \class MemReadEvent
* Observes memory read accesses.
*/
class MemReadEvent : virtual public MemAccessEvent
{
public:
MemReadEvent()
: MemAccessEvent(MEM_READ) { }
MemReadEvent(sal::address_t addr)
: MemAccessEvent(addr, MEM_READ) { }
};
/**
* \class MemWriteEvent
* Observes memory write accesses.
*/
class MemWriteEvent : virtual public MemAccessEvent
{
public:
MemWriteEvent()
: MemAccessEvent(MEM_READ) { }
MemWriteEvent(sal::address_t addr)
: MemAccessEvent(addr, MEM_WRITE) { }
};
/**
* \class TroubleEvent
* Observes interrupt/trap activties.
*/
class TroubleEvent : virtual public BaseEvent
{
private:
/**
* Specific guest system interrupt/trap number that actually
* trigger the event.
*/
int m_TriggerNumber;
/**
* Specific guest system interrupt/trap numbers to watch,
* or ANY_INTERRUPT/ANY_TRAP.
*/
std::vector<unsigned> m_WatchNumbers;
public:
TroubleEvent() : m_TriggerNumber (-1) { }
TroubleEvent(unsigned troubleNumber)
: m_TriggerNumber(-1)
{ addWatchNumber(troubleNumber); }
/**
* Add an interrupt/trap-number which should be observed
* @param troubleNumber number of an interrupt or trap
* @return \c true if number is added to the list \c false if the number
* was already in the list
*/
bool addWatchNumber(unsigned troubleNumber);
/**
* Remove an interrupt/trap-number which is in the list of observed
* numbers
* @param troubleNumber number of an interrupt or trap
* @return \c true if the number was found and removed \c false if the
* number was not in the list
*/
bool removeWatchNumber(unsigned troubleNum);
/**
* Returns the list of observed numbers
* @return a copy of the list which contains all observed numbers
*/
std::vector<unsigned> getWatchNumbers() { return (m_WatchNumbers); }
/**
* Checks whether a given interrupt-/trap-number is matching.
*/
bool isMatching(unsigned troubleNum) const;
/**
* Sets the specific interrupt-/trap-number that actually triggered
* the event. Should not be used by experiment code.
*/
void setTriggerNumber(unsigned troubleNum)
{ m_TriggerNumber = troubleNum; }
/**
* Returns the specific interrupt-/trap-number that actually triggered
* the event.
*/
unsigned getTriggerNumber() { return (m_TriggerNumber); }
};
/**
* \class InterruptEvent
* Observes interrupts of the guest system.
*/
class InterruptEvent : virtual public TroubleEvent
{
private:
bool m_IsNMI; //!< non maskable interrupt flag
public:
InterruptEvent() : m_IsNMI(false) { }
InterruptEvent(unsigned interrupt) : m_IsNMI(false)
{ addWatchNumber(interrupt); }
/**
* Returns \c true if the interrupt is non maskable, \c false otherwise.
*/
bool isNMI() { return (m_IsNMI); }
/**
* Sets the interrupt type (non maskable or not).
*/
void setNMI(bool enabled) { m_IsNMI = enabled; }
};
/**
* \class TrapEvent
* Observes traps of the guest system.
*/
class TrapEvent : virtual public TroubleEvent
{
public:
TrapEvent() { }
TrapEvent(unsigned trap) { addWatchNumber(trap); }
};
/**
* \class GuestEvent
* Used to receive data from the guest system.
*/
class GuestEvent : virtual public BaseEvent
{
private:
char m_Data;
unsigned m_Port;
public:
GuestEvent() : m_Data(0), m_Port(0) { }
/**
* Returns the data, transmitted by the guest system.
*/
char getData() const { return (m_Data); }
/**
* Sets the data which had been transmitted by the guest system.
*/
void setData(char data) { m_Data = data; }
/**
* Returns the data length, transmitted by the guest system.
*/
unsigned getPort() const { return (m_Data); }
/**
* Sets the data length which had been transmitted by the guest system.
*/
void setPort(unsigned port) { m_Port = port; }
};
/**
* \class JumpEvent
* JumpEvents are used to observe condition jumps (if...else if...else).
*/
class JumpEvent : virtual public BaseEvent
{
private:
unsigned m_Opcode;
bool m_FlagTriggered;
public:
/**
* Constructs a new event object.
* @param parent the parent object
* @param opcode the opcode of the jump-instruction to be observed
* or ANY_INSTR to match all jump-instructions
*/
JumpEvent(unsigned opcode = ANY_INSTR)
: m_Opcode(opcode), m_FlagTriggered(false) { }
/**
* Retrieves the opcode of the jump-instruction.
*/
unsigned getOpcode() const { return (m_Opcode); }
/**
* Returns \c true, of the event was triggered due to specific register
* content, \c false otherwise.
*/
bool isRegisterTriggered() { return (!m_FlagTriggered); }
/**
* Returns \c true, of the event was triggered due to specific FLAG
* state, \c false otherwise. This is the common case.
*/
bool isFlagTriggered() { return (m_FlagTriggered); }
/**
* Sets the requestet jump-instruction opcode.
*/
void setOpcode(unsigned oc) { oc = m_Opcode; }
/**
* Sets the trigger flag.
*/
void setFlagTriggered(bool flagTriggered)
{ m_FlagTriggered = flagTriggered; }
};
} // end-of-namespace: fi
#endif /* __EVENT_HPP__ */

View File

@ -0,0 +1,136 @@
#include <set>
#include "EventList.hpp"
#include "../SAL/SALInst.hpp"
namespace fi
{
EventId EventList::add(BaseEvent* ev, ExperimentFlow* pExp)
{
assert(ev != NULL && "FATAL ERROR: Event (of base type BaseEvent*) cannot be NULL!");
// a zero counter does not make sense
assert(ev->getCounter() != 0);
ev->setParent(pExp); // event is linked to experiment flow
m_BufferList.push_back(ev);
return (ev->getId());
}
bool EventList::remove(BaseEvent* ev)
{
if(ev != NULL)
{
iterator it = std::find(m_BufferList.begin(), m_BufferList.end(), ev);
if(it != end())
{
m_BufferList.erase(it);
m_DeleteList.push_back(ev);
return (true);
}
}
else
{
for(iterator it = m_BufferList.begin(); it != m_BufferList.end();
it++)
m_DeleteList.push_back(*it);
m_BufferList.clear();
return (true);
}
return (false);
}
EventList::iterator EventList::remove(iterator it)
{
return (m_remove(it, false));
}
EventList::iterator EventList::m_remove(iterator it, bool skip_deletelist)
{
if(!skip_deletelist)
m_DeleteList.push_back(*it);
return (m_BufferList.erase(it));
}
void EventList::getEventsOf(ExperimentFlow* pWhat,
std::vector<BaseEvent*>& dest) const
{
assert(pWhat && "FATAL ERROR: The context cannot be NULL!");
for(bufferlist_t::const_iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
if((*it)->getParent() == pWhat)
dest.push_back(*it);
}
EventList::~EventList()
{
// nothing to do here yet
}
BaseEvent* EventList::getEventFromId(EventId id)
{
// Loop through all events:
for(bufferlist_t::iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
if((*it)->getId() == id)
return (*it);
return (NULL); // Nothing found.
}
void EventList::makeActive(BaseEvent* ev)
{
assert(ev && "FATAL ERROR: Event object pointer cannot be NULL!");
ev->decreaseCounter();
if (ev->getCounter() > 0) {
return;
}
ev->resetCounter();
if(remove(ev)) // remove event from buffer-list
m_FireList.push_back(ev);
}
EventList::iterator EventList::makeActive(iterator it)
{
assert(it != m_BufferList.end() &&
"FATAL ERROR: Iterator has already reached the end!");
BaseEvent* ev = *it;
assert(ev && "FATAL ERROR: Event object pointer cannot be NULL!");
ev->decreaseCounter();
if (ev->getCounter() > 0) {
return ++it;
}
ev->resetCounter();
// Note: This is the one and only situation in which remove() should NOT
// store the removed item in the delete-list.
iterator it_next = m_remove(it, true); // remove event from buffer-list
m_FireList.push_back(ev);
return (it_next);
}
void EventList::fireActiveEvents()
{
for(firelist_t::iterator it = m_FireList.begin();
it != m_FireList.end(); it++)
{
if(std::find(m_DeleteList.begin(), m_DeleteList.end(), *it)
== m_DeleteList.end()) // not found in delete-list?
{
m_pFired = *it;
ExperimentFlow* pFlow = m_pFired->getParent();
assert(pFlow && "FATAL ERROR: The event has no parent experiment (owner)!");
sal::simulator.m_Flows.toggle(pFlow);
}
}
m_FireList.clear();
m_DeleteList.clear();
}
size_t EventList::getContextCount() const
{
set<ExperimentFlow*> uniqueFlows; // count unique ExperimentFlow-ptr
for(bufferlist_t::const_iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
uniqueFlows.insert((*it)->getParent());
return (uniqueFlows.size());
}
} // end-of-namespace: fi

View File

@ -0,0 +1,201 @@
#ifndef __EVENT_LIST_HPP__
#define __EVENT_LIST_HPP__
// Author: Adrian Böckenkamp
// Date: 04.02.2012
#include <cassert>
#include <list>
#include <vector>
#include <algorithm>
#include "Event.hpp"
namespace fi
{
class ExperimentFlow;
/**
* Buffer-list for a specific experiment; acts as a simple storage container
* for events to watch for:
*/
typedef std::list<BaseEvent*> bufferlist_t;
/**
* List of events that match the current simulator event; these events will
* be triggered next (the list is used temporarily).
*/
typedef std::vector<BaseEvent*> firelist_t;
/**
* List of events that have been deleted during a toggled experiment flow while
* triggering the events in the fire-list. This list is used to skip already
* deleted events (therefore it is used temporarily either).
*/
typedef std::vector<BaseEvent*> deletelist_t;
/**
* \class EventList
*
* \brief This class manages the events of the Fail* implementation.
*
* If a event is triggered, the internal data structure will be updated (id est,
* the event will be removed from the so called buffer-list and added to the
* fire-list). Additionaly, if an experiment-flow deletes an "active" event
* which is currently stored in the fire-list, the event (to be removed) will
* be added to a -so called- delete-list. This ensures to prevent triggering
* "active" events which have already been deleted by a previous experiment
* flow. (See makeActive() and fireActiveEvent() for implementation specific
* details.) EventList is part of the SimulatorController and "outsources"
* it's event management.
*/
class EventList
{
private:
bufferlist_t m_BufferList; //!< the storage for events added by exp.
firelist_t m_FireList; //!< the active events (used temporarily)
deletelist_t m_DeleteList; //!< the deleted events (used temporarily)
// TODO: Hashing?
BaseEvent* m_pFired; //!< the recently fired Event-object
public:
/**
* The iterator of this class used to loop through the list of
* added events. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef bufferlist_t::iterator iterator;
EventList() : m_pFired(NULL) { }
~EventList();
/**
* Adds the specified event object for the given ExperimentFlow to the
* list of events to be watched for.
* @param ev pointer to the event object to be added (cannot be \c NULL)
* @param pExp the event context (a pointer to the experiment object
* which is interested in such events, cannot be \c NULL)
* @return the id of the added event object, that is ev->getId()
*/
EventId add(BaseEvent* ev, ExperimentFlow* pExp);
/**
* Removes the event based upon the specified \a ev pointer (requires
* to loop through the whole buffer-list).
* @param ev the pointer of the event to be removed; if ev is set to
* \c NULL, all events (for \a all experiments) will be
* removed
* @return \c true if the object has been removed or \c false if the
* pointer could not be found
*/
bool remove(BaseEvent* ev);
/**
* Behaves like remove(BaseEvent) and additionally updates the provided
* iteration.
* @return the updated iterator which will point to the next element
*/
iterator remove(iterator it);
private:
/**
* Internal implementation of remove(iterator it) that allows
* to skip the delete-list.
* @return the updated iterator which will point to the next element
*/
iterator m_remove(iterator it, bool skip_deletelist);
public:
/**
* Returns an iterator to the beginning of the internal data structure.
* Don't forget to update the returned iterator when calling one of the
* modifying methods like makeActive() or remove(). Therefore you need
* to call the iterator-based variants of makeActive() and remove().
* \code
* [X|1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_BufferList.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* Don't forget to update the returned iterator when calling one of the
* modifying methods like makeActive() or remove(). Therefore you need
* to call the iterator-based variants of makeActive() and remove().
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_BufferList.end()); }
/**
* Retrieves the event object for the given \a id. The internal data
* remains unchanged.
* @param id of event to be retrieved.
* @return pointer to event or \c NULL of \a id could not be found
*/
BaseEvent* getEventFromId(EventId id);
/**
* Retrieves all events for the specified experiment.
* @param pWhat pointer to experiment context (this pointer is expected
* to be valid!)
* @param dest a reference to a vector-object to be used as the
* destination buffer for the machting event objects. This
* objects may remains unchanged if no matching event objects
* were found.
*/
void getEventsOf(ExperimentFlow* pWhat, std::vector<BaseEvent*>& dest) const;
/**
* Retrieves the number of experiments which currently have active
* events. This number is trivially equal to the (current) total
* number of ExperimentFlow-objects.
* @return number of experiments having active events
*/
size_t getContextCount() const;
/**
* Retrieves the total number of events.
* @return the total event count (for all flows)
*/
size_t getEventCount() const { return (m_BufferList.size()); }
/**
* Retrieves the recently triggered event object. To map this object to
* it's context (id est, the related ExerimentFlow), use
* \c getLastFiredDest().
* @return a pointer to the recent event or \c NULL if nothing has been
* triggered so far
*/
BaseEvent* getLastFired() { return (m_pFired); }
/**
* Retrieves the ExperimentFlow-object for the given BaseEvent (it's
* \a context).
* @param pEv the event object to be looked up
* @return a pointer to the context of \a pEv or \c NULL if the
* corresponding context could not be found
*/
ExperimentFlow* getExperimentOf(BaseEvent* pEv);
/**
* Moves the events from the (internal) buffer-list to the fire-list. To
* actually fire the events activated by calling makeActive(), call
* fireActiveEvents().
* @param ev the event to trigger
* TODO: besserer Name statt "makeActive"?
*/
void makeActive(BaseEvent* ev);
/**
* Behaves like makeActive(BaseEvent) and additionally returns an
* updated iterator which points to the next BaseEvent-element.
* @param ev the event to trigger
* @return returns the updated iteration, pointing to the next element
* after makeActive returns, "it" is invalid, so the returned
* iterator should be used to continue the iteration
* TODO: besserer Name statt "makeActive"?
*/
iterator makeActive(iterator it);
/**
* Triggers the active events. Each event is triggered if it has not
* recently been removed (id est: is not found in the delete-list). See
* makeActive() for more details. The recently triggered event can be
* retrieved by calling \a getLastFired(). After all events have been
* triggered, the (internal) fire- and delete-list will be cleared.
* TODO: besserer Name statt "fireActiveEvents"?
*/
void fireActiveEvents();
};
}; // end-of-namespace: fi
#endif /* __EVENT_LIST_HPP__ */

View File

@ -0,0 +1,56 @@
/**
* \brief ExperimentData interface
*
* This is the base class for all user-defined data types for
* expirement parameter and results.
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
#ifndef __EXPERIMENT_DATA_H__
#define __EXPERIMENT_DATA_H__
#include <string>
#include <google/protobuf/message.h>
using namespace std;
namespace fi{
/**
* \class ExperimentData
* Container for experiment data with wrapper methods for serialization and deserialization.
*/
class ExperimentData
{
protected:
google::protobuf::Message* msg;
uint32_t m_workloadID;
public:
ExperimentData() : msg(0), m_workloadID(0) {};
ExperimentData(google::protobuf::Message* m) : msg(m) , m_workloadID(0) {};
google::protobuf::Message& getMessage() { return *msg; };
uint32_t getWorkloadID() const { return m_workloadID;};
void setWorkloadID(uint32_t id) { m_workloadID = id; };
/**
* Serializes the ExperimentData.
* @param ped output the target-stream.
* @return \c true if the serialization was successful, \c false otherwise
*/
bool serialize(ostream * output) const { return msg->SerializeToOstream(output); }
/**
* Unserializes the ExperimentData.
* @param ped input the stream which is read from
* @return \c true if the unserialization was successful, \c false otherwise
*/
bool unserialize(istream * input) { return msg->ParseFromIstream(input); }
string DebugString() const { return msg->DebugString(); };
};
};
#endif //__EXPERIMENT_DATA_H__

View File

@ -0,0 +1,22 @@
#include "ExperimentDataQueue.hpp"
#include <assert.h>
namespace fi
{
void ExperimentDataQueue::addData(ExperimentData* exp)
{
assert(exp != 0);
m_queue.push_front(exp);
}
ExperimentData* ExperimentDataQueue::getData()
{
ExperimentData* ret = m_queue.back();
m_queue.pop_back();
return ret;
}
}

View File

@ -0,0 +1,53 @@
/**
* \brief A queue for experiment data.
*
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
#ifndef __EXPERIMENT_DATA_QUEUE_H__
#define __EXPERIMENT_DATA_QUEUE_H__
#include <deque>
#include "ExperimentData.hpp"
namespace fi{
/**
* \class ExperimentDataQueue
* Class which manage ExperimentData in a queue.
*/
class ExperimentDataQueue
{
protected:
std::deque<ExperimentData*> m_queue;
public:
ExperimentDataQueue() {}
~ExperimentDataQueue() {}
/**
* Adds ExperimentData to the queue.
* @param exp ExperimentData that is to be added to the queue.
*/
void addData(ExperimentData* exp);
/**
* Returns an item from the queue
* @return the next element of the queue
*/
ExperimentData* getData();
/**
* Returns the number of elements in the queue
* @return the size of teh queue
*/
size_t size() const { return m_queue.size(); };
};
};
#endif //__EXPERIMENT_DATA_QUEUE_H__

View File

@ -0,0 +1,41 @@
#ifndef __EXPERIMENT_FLOW_HPP__
#define __EXPERIMENT_FLOW_HPP__
// Author: Adrian Böckenkamp
// Date: 09.09.2011
#include "../SAL/SALInst.hpp"
namespace fi
{
/**
* \class ExperimentFlow
* Basic interface for user-defined experiments. To create a new
* experiment, derive your own class from ExperimentFlow and
* define the run method.
*/
class ExperimentFlow
{
public:
ExperimentFlow() { }
/**
* Defines the experiment flow.
* @return \c true if the experiment was successful, \c false otherwise
*/
virtual bool run() = 0;
/**
* The entry point for this experiment's coroutine.
* Should do some cleanup afterwards.
*/
void coroutine_entry()
{
run();
sal::simulator.cleanup(this); // remove residual events
}
};
}
#endif /* __EXPERIMENT_FLOW_HPP__ */

View File

@ -0,0 +1,67 @@
/**
* \brief The representation of a minion.
*
* \author Richard Hellwig
*
*/
#ifndef __MINION_HPP__
#define __MINION_HPP__
#include "controller/ExperimentData.hpp"
namespace fi
{
/**
* \class Minion
*
* Contains all informations about a minion.
*/
class Minion
{
private:
string hostname;
bool isWorking;
ExperimentData* currentExperimentData;
int sockfd;
public:
Minion() : isWorking(false), currentExperimentData(0), sockfd(-1) { }
void setSocketDescriptor(int sock) { sockfd = sock; }
int getSocketDescriptor() const { return (sockfd); }
/**
* Returns the hostname of the minion.
* @return the hostname
*/
string getHostname() { return (hostname); }
/**
* Sets the hostname of the minion.
* @param host the hostname
*/
void setHostname(string host) { hostname = host; }
/**
* Returns the current ExperimentData which the minion is working with.
* @return a pointer of the current ExperimentData
*/
ExperimentData* getCurrentExperimentData() { return currentExperimentData; }
/**
* Sets the current ExperimentData which the minion is working with.
* @param exp the current ExperimentData
*/
void setCurrentExperimentData(ExperimentData* exp) { currentExperimentData = exp; }
/**
* Returns the current state of the minion.
* @return the current state
*/
bool isBusy() { return (isWorking); }
/**
* Sets the current state of the minion
* @param state the current state
*/
void setBusy(bool state) { isWorking = state; }
};
};
#endif /* __MINION_HPP__ */

14
core/controller/Signal.cc Normal file
View File

@ -0,0 +1,14 @@
// Author: Adrian Böckenkamp
// Date: 15.06.2011
#include "Signal.hpp"
namespace fi
{
std::auto_ptr<Signal> Signal::m_This;
Mutex Signal::m_InstanceMutex;
} // end-of-namespace: fi

136
core/controller/Signal.hpp Normal file
View File

@ -0,0 +1,136 @@
#ifndef __SIGNAL_HPP__
#define __SIGNAL_HPP__
// Author: Adrian Böckenkamp
// Date: 15.06.2011
#include <cassert>
#include <memory>
#include <iostream>
#ifndef __puma
#include <boost/thread.hpp>
#include <boost/interprocess/sync/named_semaphore.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/mutex.hpp>
#endif
namespace fi
{
#ifndef __puma
typedef boost::mutex Mutex; // lock/unlock
typedef boost::mutex::scoped_lock ScopeLock; // use RAII with lock/unlock mechanism
typedef boost::condition_variable ConditionVariable; // wait/notify_one
#else
typedef int Mutex;
typedef int ScopeLock;
typedef int ConditionVariable;
#endif
// Simulate a "private" semaphore using boost-mechanisms:
class Semaphore
{
private:
Mutex m_Mutex;
ConditionVariable m_CondVar;
unsigned long m_Value;
public:
// Create a semaphore object based on a mutex and a condition variable
// and initialize it to value "init".
Semaphore(unsigned long init = 0) : m_Value(init) { }
void post()
{
ScopeLock lock(m_Mutex);
++m_Value; // increase semaphore value:
#ifndef __puma
m_CondVar.notify_one(); // wake up other thread, currently waiting on condition var.
#endif
}
void wait()
{
ScopeLock lock(m_Mutex);
#ifndef __puma
while(!m_Value) // "wait-if-zero"
m_CondVar.wait(lock);
#endif
--m_Value; // decrease semaphore value
}
};
class Signal
{
private:
static Mutex m_InstanceMutex; // used to sync calls to getInst()
static std::auto_ptr<Signal> m_This; // the one and only instance
Semaphore m_semBochs;
Semaphore m_semContr;
Semaphore m_semSimCtrl;
bool m_Locked; // prevent misuse of thread-sync
// Singleton class (forbid creation, copying and assignment):
Signal()
: m_semBochs(0), m_semContr(0),
m_semSimCtrl(0), m_Locked(false) { }
Signal(Signal const& s)
: m_semBochs(), m_semContr(),
m_semSimCtrl(), m_Locked(false) { } // never called.
Signal& operator=(Signal const&) { return *this; } // dito.
~Signal() { }
friend class std::auto_ptr<Signal>;
public:
static Signal& getInst()
{
ScopeLock lock(m_InstanceMutex); // lock/unlock handled by RAII principle
if(!m_This.get())
m_This.reset(new Signal());
return (*m_This);
}
// Called from Experiment-Controller class ("beyond Bochs"):
void lockExperiment()
{
assert(!m_Locked &&
"[Signal::lockExperiment]: lockExperiment called twice without calling unlockExperiment() in between.");
m_Locked = true;
m_semContr.wait(); // suspend experiment process
}
// Called from Experiment-Controller class ("beyond Bochs"):
void unlockExperiment()
{
assert(m_Locked &&
"[Signal::unlockExperiment]: unlockExperiment called twice without calling lockExperiment() in between.");
m_Locked = false;
m_semBochs.post(); // resume experiment (continue bochs simulation)
}
// Called from Advice-Code ("within Bochs") to trigger event occurrence:
void signalEvent()
{
m_semContr.post(); // Signal event (to Experiment-Controller)
m_semBochs.wait(); // Wait upon handling to finish
}
// Called from Experiment-Controller to allow simulation start:
void startSimulation()
{
m_semSimCtrl.post();
}
// Called from Bochs, directly after thread creation for Experiment-Controller:
// (This ensures that Bochs waits until the experiment has been set up in the
// Experiment-Controller.)
void waitForStartup()
{
m_semSimCtrl.wait();
}
};
} // end-of-namespace: fi
#endif /* __SIGNAL_HPP__ */

View File

@ -0,0 +1,23 @@
#include "SynchronizedExperimentDataQueue.hpp"
namespace fi {
void SynchronizedExperimentDataQueue::addData(ExperimentData* exp){
//
m_sema_full.wait();
ExperimentDataQueue::addData(exp);
m_sema_empty.post();
//
}
ExperimentData* SynchronizedExperimentDataQueue::getData(){
//
m_sema_empty.wait();
return ExperimentDataQueue::getData();
m_sema_full.post();
//
}
};

View File

@ -0,0 +1,55 @@
/**
* \brief A queue for experiment data.
*
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
#ifndef __SYNC_EXPERIMENT_DATA_QUEUE_H__
#define __SYNC_EXPERIMENT_DATA_QUEUE_H__
#include "ExperimentDataQueue.hpp"
#include "Signal.hpp"
namespace fi{
/**
* \class SynchronizedExperimentDataQueue
* Class which manage ExperimentData in a queue.
* Thread safe using semphores.
*/
class SynchronizedExperimentDataQueue : public ExperimentDataQueue
{
private:
/// There are maxSize elements in at a time
/// Or do we allow a really possibly huge queue?
Semaphore m_sema_full;
Semaphore m_sema_empty;
public:
SynchronizedExperimentDataQueue(int maxSize = 1024) : m_sema_full(maxSize), m_sema_empty(0) {}
~SynchronizedExperimentDataQueue() {}
/**
* Adds ExperimentData to the queue.
* @param exp ExperimentData that is to be added to the queue.
*/
void addData(ExperimentData* exp);
/**
* Returns an item from the queue
* @return the next element of the queue
*/
ExperimentData* getData();
/**
* Returns the number of elements in the queue
* @return the size of the queue
*/
size_t size() const { return m_queue.size(); };
};
};
#endif //__EXPERIMENT_DATA_QUEUE_H__

View File

@ -0,0 +1,6 @@
# Note that we're allowing *multiple* experiments to be enabled at once.
set(EXPERIMENTS_ACTIVATED coolchecksum CACHE STRING "Activated experiments (a semicolon-separated list of fail/experiments/ subdirectories)")
foreach(experiment_name ${EXPERIMENTS_ACTIVATED})
add_subdirectory(${experiment_name})
endforeach(experiment_name)

View File

@ -0,0 +1,18 @@
#FaultCoverage experiment
set(EXPERIMENT_NAME FaultCoverageExperiment)
set(EXPERIMENT_TYPE FaultCoverageExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
#experiment sources
set(MY_EXPERIMENT_SRCS
experiment.cc
experiment.hpp
)
#### include directories ####
include_directories(${CMAKE_CURRENT_BINARY_DIR})
## build library
add_library(${EXPERIMENT_NAME} ${MY_EXPERIMENT_SRCS})

View File

@ -0,0 +1,140 @@
#include <iostream>
#include <stdint.h>
#include <sstream>
#include <cassert>
#include <time.h>
#include "experiment.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/bochs/BochsRegister.hpp"
#include "../../util/Logger.hpp"
using namespace std;
using namespace sal;
using namespace fi;
using namespace sal;
bool FaultCoverageExperiment::run()
{
/*
Experimentskizze:
- starte Gastsystem
- setze Breakpoint auf Beginn der betrachteten Funktion; warte darauf
- sichere Zustand
- iteriere über alle Register
-- iteriere über alle 32 Bit in diesem Register
--- iteriere über alle Instruktionsadressen innerhalb der betrachteten Funktion
---- setze Breakpoint auf diese Adresse; warte darauf
---- flippe Bit x in Register y
---- setze Breakpoint auf Verlassen der Funktion; warte darauf
---- bei Erreichen des Breakpoint: sichere Funktionsergebnis (irgendein bestimmtes Register)
---- lege Ergebnisdaten ab:
a) Ergebnis korrekt (im Vergleich zum bekannt korrekten Ergebnis für die Eingabe)
b) Ergebnis falsch
c) Breakpoint wird nicht erreicht, Timeout (z.B. gefangen in Endlosschleife)
d) Trap wurde ausgelöst
---- stelle zuvor gesicherten Zustand wieder her
*/
// set breakpoint at start address of the function to be analyzed ("observed");
// wait until instruction pointer reaches that address
cout << "[FaultCoverageExperiment] Setting up experiment. Allowing to start now." << endl;
BPEvent ev_func_start(INST_ADDR_FUNC_START);
simulator.addEvent(&ev_func_start);
cout << "[FaultCoverageExperiment] Waiting for function start address..." << endl;
while(simulator.waitAny() != &ev_func_start)
;
// store current state
cout << "[FaultCoverageExperiment] Saving state in ./bochs_save_point ..."; cout.flush();
simulator.save("./bochs_save_point");
cout << "done!" << endl;
// log the results on std::cout
Logger res;
cout << "[FaultCoverageExperiment] Logging results on std::cout." << endl;
RegisterManager& regMan = simulator.getRegisterManager();
// iterate over all registers
for(RegisterManager::iterator it = regMan.begin(); it != regMan.end(); it++)
{
Register* pReg = *it; // get a ptr to the current register-object
// loop over the 32 bits within this register
for(regwidth_t bitnr = 0; bitnr < pReg->getWidth(); ++bitnr)
{
// loop over all instruction addresses of observed function
for(int instr = 0; ; ++instr)
{
// clear event queues
simulator.clearEvents();
// restore previously saved simulator state
cout << "[FaultCoverageExperiment] Restoring previous simulator state..."; cout.flush();
simulator.restore("./bochs_save_point");
cout << "done!" << endl;
// breakpoint at function exit
BPEvent ev_func_end(INST_ADDR_FUNC_END);
simulator.addEvent(&ev_func_end);
// no need to continue simulation if we want to
// inject *now*
if (instr > 0) {
// breakpoint $instr instructions in the future
BPEvent ev_instr_reached(ANY_ADDR);
ev_instr_reached.setCounter(instr);
simulator.addEvent(&ev_instr_reached);
// if we reach the exit first, this round is done
if (simulator.waitAny() == &ev_func_end)
break;
}
// inject bit-flip at bit $bitnr in register $reg
regdata_t data = pReg->getData();
data ^= 1 << bitnr;
pReg->setData(data); // write back data to register
// catch traps and timeout
TrapEvent ev_trap; // any traps
simulator.addEvent(&ev_trap);
BPEvent ev_timeout(ANY_ADDR);
ev_timeout.setCounter(1000);
simulator.addEvent(&ev_timeout);
// wait for function exit, trap or timeout
BaseEvent* ev = simulator.waitAny();
if(ev == &ev_func_end)
{
// log result
#if BX_SUPPORT_X86_64
const GPRegisterId targetreg = sal::RID_RAX;
const size_t expected_size = sizeof(uint32_t)*8;
#else
const GPRegisterId targetreg = sal::RID_EAX;
const size_t expected_size = sizeof(uint64_t)*8;
#endif
Register* pEAX = simulator.getRegisterManager().getSetOfType(RT_GP)->getRegister(targetreg);
assert(expected_size == pEAX->getWidth()); // we assume to get 32(64) bits...
regdata_t result = pEAX->getData();
res << "[FaultCoverageExperiment] Reg: " << pReg->getName()
<< ", #Bit: " << bitnr << ", Instr-Idx: " << instr
<< ", Data: " << result;
}
else if(ev == &ev_trap)
res << "[FaultCoverageExperiment] Reg: " << pReg->getName()
<< ", #Bit: " << bitnr << ", Instr-Idx: " << instr
<< ", Trap#: " << ev_trap.getTriggerNumber() << " (Trap)";
else if(ev == &ev_timeout)
res << "[FaultCoverageExperiment] Reg: " << pReg->getName()
<< ", #Bit: " << bitnr << ", Instr-Idx: " << instr
<< " (Timeout)";
else
cout << "We've received an unkown event! "
<< "What the hell is going on?" << endl;
}
}
}
return (true);
}

View File

@ -0,0 +1,32 @@
#ifndef __FAULTCOVERAGE_EXPERIMENT_HPP__
#define __FAULTCOVERAGE_EXPERIMENT_HPP__
#include <iostream>
#include <fstream>
#include "AspectConfig.hpp"
#include "controller/ExperimentFlow.hpp"
#define INST_ADDR_FUNC_START 0x4ae6
#define INST_ADDR_FUNC_END 0x4be6
/*
// Check if aspect dependencies are satisfied:
#if CONFIG_EVENT_CPULOOP != 1 || CONFIG_EVENT_TRAP != 1 || \
CONFIG_SR_RESTORE != 1 || CONFIG_SR_SAVE != 1
#error At least one of the following aspect-dependencies are not satisfied: \
cpu loop, traps, save/restore. Enable aspects first (see AspectConfig.hpp)!
#endif
// This is disabled because the AspectConfig.hpp-header disables
// all aspects on default.
*/
using namespace fi;
class FaultCoverageExperiment : public ExperimentFlow
{
public:
bool run();
};
#endif // __FAULTCOVERAGE_EXPERIMENT_HPP__

View File

@ -0,0 +1,31 @@
set(EXPERIMENT_NAME MHTestCampaign)
set(EXPERIMENT_TYPE MHTestExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
MHTest.proto
)
set(MY_CAMPAIGN_SRCS
MHTestCampaign.hpp
MHTestCampaign.cc
experiment.hpp
experiment.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})
## This is the example's campaign server distributing experiment parameters
add_executable(${EXPERIMENT_NAME}-server mhcampaign.cc)
target_link_libraries(${EXPERIMENT_NAME}-server fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})

View File

@ -0,0 +1,5 @@
message MHTestData {
optional string foo = 1;
optional int32 input = 2;
optional int32 output = 3;
}

View File

@ -0,0 +1,42 @@
#include "MHTestCampaign.hpp"
#include <controller/CampaignManager.hpp>
#include <iostream>
using namespace fi;
bool MHTestCampaign::run()
{
MHExperimentData* datas[m_parameter_count];
cout << "[MHTestCampaign] Adding " << m_parameter_count << " values." << endl;
for(int i = 1; i <= m_parameter_count; i++){
datas[i] = new MHExperimentData;
datas[i]->msg.set_input(i);
campaignmanager.addParam(datas[i]);
usleep(100 * 1000); // 100 ms
}
campaignmanager.noMoreParameters();
// test results.
int f;
int res = 0;
int res2 = 0;
MHExperimentData * exp;
for(int i = 1; i <= m_parameter_count; i++){
exp = static_cast<MHExperimentData*>( campaignmanager.getDone() );
f = exp->msg.output();
// cout << ">>>>>>>>>>>>>>> Output: " << i << "^2 = " << f << endl;
res += f;
res2 += (i*i);
delete exp;
}
if (res == res2) {
cout << "TEST SUCCESSFUL FINISHED! " << "[" << res << "==" << res2 << "]" << endl;
}else{
cout << "TEST FAILED!" << " [" << res << "!=" << res2 << "]" << endl;
}
cout << "thats all... " << endl;
return true;
}

View File

@ -0,0 +1,27 @@
#ifndef __TESTCAMPAIGN_HPP__
#define __TESTCAMPAIGN_HPP__
#include <controller/Campaign.hpp>
#include "controller/ExperimentData.hpp"
#include <experiments/MHTestCampaign/MHTest.pb.h>
using namespace fi;
class MHExperimentData : public ExperimentData {
public:
MHTestData msg;
public:
MHExperimentData() : ExperimentData(&msg){ };
};
class MHTestCampaign : public Campaign {
int m_parameter_count;
public:
MHTestCampaign(int parametercount) : m_parameter_count(parametercount){};
virtual bool run();
};
#endif

View File

@ -0,0 +1,42 @@
#include "experiment.hpp"
#include "MHTestCampaign.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/Register.hpp"
#include "controller/Event.hpp"
#include <iostream>
bool MHTestExperiment::run()
{
cout << "[MHTestExperiment] Let's go" << endl;
#if 0
fi::BPEvent mainbp(0x00003c34);
sal::simulator.addEventAndWait(&mainbp);
cout << "[MHTestExperiment] breakpoint reached, saving" << endl;
sal::simulator.save("hello.main");
#else
MHExperimentData par;
if(m_jc.getParam(par)){
int num = par.msg.input();
cout << "[MHExperiment] stepping " << num << " instructions" << endl;
if (num > 0) {
fi::BPEvent nextbp(fi::ANY_ADDR);
nextbp.setCounter(num);
sal::simulator.addEventAndWait(&nextbp);
}
sal::address_t instr = sal::simulator.getRegisterManager().getInstructionPointer();
cout << "[MHTestExperiment] Reached instruction: "
<< hex << instr
<< endl;
par.msg.set_output(instr);
m_jc.sendResult(par);
} else {
cout << "No data for me? :(" << endl;
}
#endif
sal::simulator.terminate();
return true;
}

View File

@ -0,0 +1,17 @@
#ifndef __TESTEXPERIMENT_HPP__
#define __TESTEXPERIMENT_HPP__
#include "controller/ExperimentFlow.hpp"
#include "jobserver/JobClient.hpp"
class MHTestExperiment : public fi::ExperimentFlow {
fi::JobClient m_jc;
public:
MHTestExperiment(){};
~MHTestExperiment(){};
bool run();
};
#endif

View File

@ -0,0 +1,25 @@
#include "controller/CampaignManager.hpp"
#include "experiments/MHTestCampaign/MHTestCampaign.hpp"
#include <iostream>
#include <cstdlib>
using namespace std;
int main(int argc, char**argv){
int paramcount = 0;
if(argc == 2){
paramcount = atoi(argv[1]);
}else{
paramcount = 10;
}
cout << "Running MHTestCampaign [" << paramcount << " parameter sets]" << endl;
MHTestCampaign mhc(paramcount);
campaignmanager.runCampaign(&mhc);
cout << "Campaign complete." << endl;
return 0;
}

View File

@ -0,0 +1,15 @@
set(EXPERIMENT_NAME TracingTest)
set(EXPERIMENT_TYPE TracingTest)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
set(MY_CAMPAIGN_SRCS
experiment.hpp
experiment.cc
)
include_directories(${CMAKE_CURRENT_BINARY_DIR})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})

View File

@ -0,0 +1,79 @@
#include <iostream>
#include "SAL/SALInst.hpp"
#include "SAL/Register.hpp"
#include "experiment.hpp"
#include "plugins/tracing/TracingPlugin.hpp"
/*
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/io/gzip_stream.h>
*/
using std::cout;
using std::endl;
using namespace fi;
using namespace sal;
bool TracingTest::run()
{
cout << "[TracingTest] Setting up experiment" << endl;
#if 1
// STEP 1: run until interesting function starts, and save state
BPEvent breakpoint(0x00101658);
simulator.addEventAndWait(&breakpoint);
cout << "[TracingTest] main() reached, saving" << endl;
simulator.save("state");
#else
// STEP 2: test tracing plugin
simulator.restore("state");
cout << "[TracingTest] enabling tracing" << endl;
TracingPlugin tp;
tp.setOstream(&cout);
Trace trace;
tp.setTraceMessage(&trace);
// this must be done *after* configuring the plugin:
simulator.addFlow(&tp);
cout << "[TracingTest] tracing 1000000 instructions" << endl;
BPEvent timeout(fi::ANY_ADDR);
timeout.setCounter(1000000);
simulator.addEvent(&timeout);
InterruptEvent ie(fi::ANY_INTERRUPT);
while (simulator.addEventAndWait(&ie) != &timeout) {
cout << "INTERRUPT #" << ie.getTriggerNumber() << "\n";
}
cout << "[TracingTest] disabling tracing (trace size: "
<< std::dec << trace.ByteSize() << " bytes)\n";
simulator.removeFlow(&tp);
/*
// serialize trace to file
std::ofstream of("trace.pb");
if (of.fail()) { return false; }
trace.SerializeToOstream(&of);
of.close();
// serialize trace to gzip-compressed file
int fd = open("trace.pb.gz", O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (!fd) { return false; }
google::protobuf::io::FileOutputStream fo(fd);
google::protobuf::io::GzipOutputStream::Options options;
options.compression_level = 9;
google::protobuf::io::GzipOutputStream go(&fo, options);
trace.SerializeToZeroCopyStream(&go);
go.Close();
fo.Close();
*/
#endif
cout << "[TracingTest] Finished." << endl;
simulator.terminate();
return true;
}

View File

@ -0,0 +1,12 @@
#ifndef __TRACING_TEST_HPP__
#define __TRACING_TEST_HPP__
#include "controller/ExperimentFlow.hpp"
class TracingTest : public fi::ExperimentFlow
{
public:
bool run();
};
#endif /* __TRACING_TEST_HPP__ */

View File

@ -0,0 +1,36 @@
#include <iostream>
#include "DataRetrievalExperiment.hpp"
#include "../SAL/SALInst.hpp"
#include "../controller/Event.hpp"
#include "ExperimentDataExample/FaultCoverageExperiment.pb.h"
using std::cout;
using std::endl;
using std::hex;
#define MEMTEST86_BREAKPOINT 0x4EDC
bool DataRetrievalExperiment::run()
{
cout << "[getExperimentDataExperiment] Experiment start." << endl;
// Breakpoint address for Memtest86:
fi::BPEvent mainbp(MEMTEST86_BREAKPOINT);
sal::simulator.addEventAndWait(&mainbp);
cout << "[getExperimentDataExperiment] Breakpoint reached." << endl;
FaultCoverageExperimentData* test = NULL;
cout << "[getExperimentDataExperiment] Getting ExperimentData (FaultCoverageExperiment)..." << endl;
test = sal::simulator.getExperimentData<FaultCoverageExperimentData>();
cout << "[getExperimentDataExperiment] Content of ExperimentData (FaultCoverageExperiment):" << endl;
if(test->has_data_name())
cout << "Name: "<< test->data_name() << endl;
// m_instrptr1 augeben
cout << "m_instrptr1: " << hex << test->m_instrptr1() << endl;
// m_instrptr2 augeben
cout << "m_instrptr2: " << hex << test->m_instrptr2() << endl;
return (true); // experiment successful
}

View File

@ -0,0 +1,14 @@
#ifndef __DATA_RETRIEVAL_EXPERIMENT_HPP__
#define __DATA_RETRIEVAL_EXPERIMENT_HPP__
#include "../controller/ExperimentFlow.hpp"
class DataRetrievalExperiment : public fi::ExperimentFlow
{
public:
DataRetrievalExperiment() { }
bool run();
};
#endif /* __DATA_RETRIEVAL_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,19 @@
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
FaultCoverageExperiment.proto
)
set(SRCS
example.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRNET_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS} )
## Build library
add_library(fcexperimentmessage ${PROTO_SRCS} ${SRCS} )

View File

@ -0,0 +1,7 @@
message FaultCoverageExperimentData{
optional string data_name = 1;
required int64 m_InstrPtr1 = 2;
required int64 m_InstrPtr2 = 3;
}

View File

@ -0,0 +1,3 @@
#!/bin/bash
cd $(dirname $0)
g++ ../../controller/JobServer.cc ../../controller/ExperimentDataQueue.cc example.cc FaultCoverageExperiment.pb.cc -o ./ExperimentData_example -l protobuf -pthread

View File

@ -0,0 +1,89 @@
#include <iostream>
#include <fstream>
#include "controller/ExperimentData.hpp"
#include "controller/ExperimentDataQueue.hpp"
#include "jobserver/JobServer.hpp"
#include "FaultCoverageExperiment.pb.h"
using namespace std;
int main(int argc, char* argv[]){
fi::ExperimentDataQueue exDaQu;
fi::ExperimentData* readFromQueue;
//Daten in Struktur schreiben und in Datei speichern
ofstream fileWrite;
fileWrite.open("test.txt");
FaultCoverageExperimentData faultCovExWrite;
//Namen setzen
faultCovExWrite.set_data_name("Testfall 42");
//Instruktionpointer 1
faultCovExWrite.set_m_instrptr1(0x4711);
//Instruktionpointer 2
faultCovExWrite.set_m_instrptr2(0x1122);
//In ExperimentData verpacken
fi::ExperimentData exDaWrite(&faultCovExWrite);
//In Queue einbinden
exDaQu.addData(&exDaWrite);
//Aus Queue holen
if(exDaQu.size() != 0)
readFromQueue = exDaQu.getData();
//Serialisierung ueber Wrapper-Methode in ExperimentData
readFromQueue->serialize(&fileWrite);
//cout << "Ausgabe: " << out << endl;
fileWrite.close();
//-------------------------------------------------------------------------------------------------
//Daten aus Datei lesen und in Struktur schreiben
ifstream fileRead;
fileRead.open("test.txt");
FaultCoverageExperimentData faultCovExRead;
fi::ExperimentData exDaRead(&faultCovExRead);
exDaRead.unserialize( &fileRead);
//Wenn Name, dann ausgeben
if(faultCovExRead.has_data_name()){
cout << "Name: "<< faultCovExRead.data_name() << endl;
}
//m_instrptr1 augeben
cout << "m_instrptr1: " << faultCovExRead.m_instrptr1() << endl;
//m_instrptr2 augeben
cout << "m_instrptr2: " << faultCovExRead.m_instrptr2() << endl;
fileRead.close();
return 0;
}

View File

@ -0,0 +1,80 @@
#ifndef __JUMP_AND_RUN_EXPERIMENT_HPP__
#define __JUMP_AND_RUN_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 07.11.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "../SAL/bochs/BochsRegister.hpp"
#include "../AspectConfig.hpp"
// Check if aspect dependencies are satisfied:
#if CONFIG_EVENT_CPULOOP != 1 || CONFIG_EVENT_JUMP != 1
#error Breakpoint- and jump-events needed! Enable aspects first (see AspectConfig.hpp)!
#endif
using namespace fi;
using namespace std;
using namespace sal;
class JumpAndRunExperiment : public fi::ExperimentFlow
{
public:
bool run()
{
/************************************
* Description of experiment flow. *
************************************/
// Wait for function entry adresss:
cout << "[JumpAndRunExperiment] Setting up experiment. Allowing to "
<< "start now." << endl;
BPEvent mainFuncEntry(0x3c1f);
simulator.addEvent(&mainFuncEntry);
if(&mainFuncEntry != simulator.waitAny())
{
cerr << "[JumpAndRunExperiment] Now, we are completely lost! "
<< "It's time to cry! :-(" << endl;
return (false);
}
else
cout << "[JumpAndRunExperiment] Entry of main function reached! "
<< " Let's see who's jumping around here..." << endl;
const unsigned COUNTER = 20000;
unsigned i = 0;
BxFlagsReg* pFlags = dynamic_cast<BxFlagsReg*>(simulator.
getRegisterManager().getSetOfType(RT_ST).snatch());
assert(pFlags != NULL && "FATAL ERROR: NULL ptr not expected!");
JumpEvent ev;
// Catch the next "counter" jumps:
while(++i <= COUNTER)
{
ev.setWatchInstructionPointer(ANY_INSTR);
simulator.addEvent(&ev);
if(simulator.waitAny() != &ev)
{
cerr << "[JumpAndRunExperiment] Damn! Something went "
<< "terribly wrong! Who added that event?! :-(" << endl;
return (false);
}
else
cout << "[JumpAndRunExperiment] Jump detected. Instruction: "
<< "0x" hex << ev.getTriggerInstructionPointer()
<< " -- FLAGS [CF, ZF, OF, PF, SF] = ["
<< pFlags->getCarryFlag() << ", "
<< pFlags->getZeroFlag() << ", "
<< pFlags->getOverflowFlag() << ", "
<< pFlags->getParityFlag() << ", "
<< pFlags->getSignFlag() << "]." << endl;
}
cout << "[JumpAndRunExperiment] " << dec << counter
<< " jump(s) detected -- enough for today...exiting! :-)"
<< endl;
return (true);
}
};
#endif /* __JUMP_AND_RUN_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,76 @@
#ifndef __MEM_WRITE_EXPERIMENT_HPP__
#define __MEM_WRITE_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 16.06.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "../AspectConfig.hpp"
// Check aspect dependencies:
#if CONFIG_EVENT_CPULOOP != 1 || CONFIG_EVENT_MEMACCESS != 1 || CONFIG_SR_SAVE != 1 || CONFIG_FI_MEM_ACCESS_BITFLIP != 1
#error Event dependecies not satisfied! Enabled needed aspects in AspectConfig.hpp!
#endif
using namespace fi;
using namespace std;
using sal::simulator;
class MemWriteExperiment : public ExperimentFlow
{
public:
bool run() // Example experiment (defines "what we wanna do")
{
/************************************
* Description of experiment flow. *
************************************/
// 1. Add some events (set up the experiment):
cout << "[MemWriteExperiment] Setting up experiment. Allowing to"
<< " start now." << endl;
MemWriteEvent mem1(0x000904F0), mem2(0x02ff0916), mem3(0x0050C8E8);
BPEvent breakpt(0x4ae6);
simulator.addEvent(&mem1);
simulator.addEvent(&mem2);
simulator.addEvent(&mem3);
simulator.addEvent(&breakpt);
// 2. Wait for event condition "(id1 && id2) || id3" to become true:
cout << "[MemWriteExperiment] Waiting for condition (1) (\"(id1 &&"
<< " id2) || id3\") to become true..." << endl;
bool f1 = false, f2 = false, f3 = false, f4 = false;
while(!(f1 || f2 || f3 || f4))
{
BPEvent* pev = simulator.waitAny();
cout << "[MemWriteExperiment] Received event id=" << id
<< "." << endl;
if(pev == &mem4)
f4 = true;
if(pev == &mem3)
f3 = true;
if(pev == &mem2)
f2 = true;
if(pev == &mem1)
f1 = true;
}
cout << "[MemWriteExperiment] Condition (1) satisfied! Ready to "
<< "add next event..." << endl;
// 3. Add a new event now:
cout << "[MemWriteExperiment] Adding new Event..."; cout.flush();
simulator.clearEvents(); // remove residual events in the buffer
// (we're just interested in the new event)
simulator.save("./bochs_save_point");
cout << "done!" << endl;
// 4. Continue simulation (waitAny) and inject bitflip:
// ...
return (true);
}
};
#endif /* __MEM_WRITE_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,64 @@
#ifndef __MY_EXPERIMENT_HPP__
#define __MY_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 16.06.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
using namespace fi;
using namespace std;
using sal::simulator;
class MyExperiment : public fi::ExperimentFlow
{
public:
bool run() // Example experiment (defines "what we wanna do")
{
/************************************
* Description of experiment flow. *
************************************/
// 1. Add some events (set up the experiment):
cout << "[MyExperiment] Setting up experiment. Allowing to start"
<< " now." << endl;
BPEvent ev1(0x8048A00), ev2(0x8048F01), ev3(0x3c1f);
simulator.addEvent(&ev1);
simulator.addEvent(&ev2);
simulator.addEvent(&ev3);
// 2. Wait for event condition "(id1 && id2) || id3" to become true:
BPEvent* pev;
cout << "[MyExperiment] Waiting for condition (1) (\"(id1 && id2)"
<< " || id3\") to become true..." << endl;
bool f1 = false, f2 = false, f3 = false;
while(!((f1 && f2) || f3))
{
pev = simulator.waitAny();
cout << "[MyExperiment] Received event id=" << pev->getId()
<< "." << endl;
if(pev == &ev3)
f3 = true;
if(pev == &ev2)
f2 = true;
if(pev == &ev1)
f1 = true;
}
cout << "[MyExperiment] Condition (1) satisfied! Ready..." << endl;
// Remove residual (for all active experiments!)
// events in the buffer:
simulator.clearEvents();
BPEvent foobar(ANY_ADDR);
foobar.setCounter(400);
cout << "[MyExperiment] Adding breakpoint-event, firing after the"
<< " next 400 instructions..."; cout.flush();
simulator.addEventAndWait(&foobar);
cout << "cought! Exiting now." << endl;
return (true);
}
};
#endif /* __MY_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,64 @@
#ifndef __SINGLE_STEPPING_EXPERIMENT_HPP__
#define __SINGLE_STEPPING_EXPERIMENT_HPP__
// Author: Adrian Böckenkamp
// Date: 09.11.2011
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "../AspectConfig.hpp"
#include "../SAL/bochs/BochsRegister.hpp"
// Check if aspect dependency is satisfied:
#if CONFIG_EVENT_CPULOOP != 1
#error Breakpoint-events needed! Enable aspect first (see AspectConfig.hpp)!
#endif
using namespace fi;
using namespace std;
using namespace sal;
#define FUNCTION_ENTRY_ADDRESS 0x3c1f
class SingleSteppingExperiment : public fi::ExperimentFlow
{
public:
bool run()
{
/************************************
* Description of experiment flow. *
************************************/
// Wait for function entry adresss:
cout << "[SingleSteppingExperiment] Setting up experiment. Allowing"
<< " to start now." << endl;
BPEvent mainFuncEntry(FUNCTION_ENTRY_ADDRESS);
simulator.addEvent(&mainFuncEntry);
if(&mainFuncEntry != simulator.waitAny())
{
cerr << "[SingleSteppingExperiment] Now, we are completely lost!"
<< " It's time to cry! :-(" << endl;
return (false);
}
cout << "[SingleSteppingExperiment] Entry of main function reached!"
<< " Beginning single-stepping..." << endl;
char action;
while(true)
{
BPEvent bp(ANY_ADDR);
simulator.addEvent(&bp);
simulator.waitAny();
cout << "0x" << hex
<< simulator.getRegisterManager().getInstructionPointer()
<< endl;
cout << "Continue (y/n)? ";
cin >> action; cin.sync(); cin.clear();
if(action != 'y')
break;
}
return (true);
}
};
#endif /* __SINGLE_STEPPING_EXPERIMENT_HPP__ */

View File

@ -0,0 +1,16 @@
#ifndef __INSTANTIATE_EXPERIMENT_AH__
#define __INSTANTIATE_EXPERIMENT_AH__
// copy this file to a .ah file and instantiate the experiment(s) you need
#include "hscsimple.hpp"
#include "../SAL/SALInst.hpp"
aspect hscsimple {
hscsimpleExperiment experiment;
advice execution ("void sal::SimulatorController::initExperiments()") : after () {
sal::simulator.addFlow(&experiment);
}
};
#endif // __INSTANTIATE_EXPERIMENT_AH__

View File

@ -0,0 +1,31 @@
set(EXPERIMENT_NAME checksum-oostubs)
set(EXPERIMENT_TYPE CoolChecksumExperiment) # FIXME naming conflict
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
checksum-oostubs.proto
)
set(MY_CAMPAIGN_SRCS
experiment.hpp
experiment.cc
campaign.hpp
campaign.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})
## This is the example's campaign server distributing experiment parameters
add_executable(${EXPERIMENT_NAME}-server main.cc)
target_link_libraries(${EXPERIMENT_NAME}-server ${EXPERIMENT_NAME} fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})

View File

@ -0,0 +1 @@
../../util/MemoryMap.hpp

View File

@ -0,0 +1,140 @@
#include <iostream>
#include "campaign.hpp"
#include "experimentInfo.hpp"
#include "controller/CampaignManager.hpp"
#include "util/Logger.hpp"
using namespace fi;
using std::endl;
char const * const results_csv = "chksumoostubs.csv";
//TODO: generate new values for the updated experiment
const unsigned memoryMap[49][2] = {
{0x109134, 4},
{0x10913c, 4},
{0x109184, 4},
{0x1091cc, 1},
{0x109238, 256},
{0x109344, 4},
{0x109350, 4},
{0x109354, 4},
{0x109368, 1},
{0x109374, 4},
{0x109388, 1},
{0x109398, 4},
{0x1093a0, 4},
{0x1093b4, 4},
{0x1093b8, 4},
{0x1093c0, 4},
{0x1093d0, 4},
{0x1093dc, 4},
{0x1093e0, 4},
{0x1093e8, 1},
{0x1093f0, 4},
{0x1093f4, 4},
{0x10a460, 4},
{0x10a468, 4},
{0x10a470, 4},
{0x10a478, 4},
{0x10a480, 4},
{0x10a488, 4},
{0x10a494, 4},
{0x10a498, 4},
{0x10a4a8, 4},
{0x10a4ad, 1},
{0x10a4b4, 4},
{0x10a4b8, 4},
{0x10a4c8, 4},
{0x10a4cd, 1},
{0x10a4d4, 4},
{0x10a4d8, 4},
{0x10a4e8, 4},
{0x10a4ed, 1},
{0x10a4f4, 4},
{0x10a4f8, 4},
{0x10a500, 4},
{0x10d350, 4},
{0x10d358, 4},
{0x10d37c, 4},
{0x10d384, 4},
{0x10d3a8, 4},
{0x10d3b0, 4},
};
bool CoolChecksumCampaign::run()
{
Logger log("CoolChecksumCampaign");
ifstream test(results_csv);
if (test.is_open()) {
log << results_csv << " already exists" << endl;
return false;
}
ofstream results(results_csv);
if (!results.is_open()) {
log << "failed to open " << results_csv << endl;
return false;
}
log << "startup" << endl;
unsigned count = 0;
for(int member = 0; member < 49; ++member){ //TODO: 49 -> constant
for (int bit_offset = 0; bit_offset < (memoryMap[member][1])*8; ++bit_offset) {
for (int instr_offset = 0; instr_offset < OOSTUBS_NUMINSTR; ++instr_offset) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
d->msg.set_instr_offset(instr_offset);
d->msg.set_mem_addr(memoryMap[member][0]);
d->msg.set_bit_offset(bit_offset);
fi::campaignmanager.addParam(d);
++count;
}
}
}
#if 0
for (int bit_offset = 0; bit_offset < COOL_ECC_OBJUNDERTEST_SIZE*8; ++bit_offset) {
for (int instr_offset = 0; instr_offset < OOSTUBS_NUMINSTR; ++instr_offset) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
d->msg.set_instr_offset(instr_offset);
d->msg.set_mem_addr(0x0);
d->msg.set_bit_offset(bit_offset);
fi::campaignmanager.addParam(d);
++count;
}
}
#endif
fi::campaignmanager.noMoreParameters();
log << "done enqueueing parameter sets (" << count << ")." << endl;
// collect results
CoolChecksumExperimentData *res;
int rescount = 0;
results << "injection_ip\tinstr_offset\tinjection_bit\tresulttype\tresultdata\terror_corrected\tdetails" << endl;
while ((res = static_cast<CoolChecksumExperimentData *>(fi::campaignmanager.getDone()))) {
rescount++;
results
<< res->msg.injection_ip() << "\t"
<< res->msg.instr_offset() << "\t"
<< res->msg.mem_addr() << "\t"
<< res->msg.bit_offset() << "\t"
<< res->msg.resulttype() << "\t"
<< res->msg.resultdata() << "\t"
<< res->msg.error_corrected() << "\t"
<< res->msg.details() << "\n";
delete res;
}
log << "done. sent " << count << " received " << rescount << endl;
results.close();
return true;
}

View File

@ -0,0 +1,20 @@
#ifndef __COOLCAMPAIGN_HPP__
#define __COOLCAMPAIGN_HPP__
#include "controller/Campaign.hpp"
#include "controller/ExperimentData.hpp"
#include "checksum-oostubs.pb.h"
class CoolChecksumExperimentData : public fi::ExperimentData {
public:
OOStuBSProtoMsg msg;
CoolChecksumExperimentData() : fi::ExperimentData(&msg) {}
};
class CoolChecksumCampaign : public fi::Campaign {
public:
virtual bool run();
};
#endif

View File

@ -0,0 +1,29 @@
message OOStuBSProtoMsg {
// parameters
required int32 instr_offset = 1;
required int32 mem_addr = 2;
required int32 bit_offset = 3;
// results
// make these optional to reduce overhead for server->client communication
enum ResultType {
CALCDONE = 1;
TIMEOUT = 2;
TRAP = 3;
UNKNOWN = 4;
}
// instruction pointer where injection was done
optional uint32 injection_ip = 4;
// result type, see above
optional ResultType resulttype = 5;
// result data, depending on resulttype:
// CALCDONE: resultdata = calculated value
// TIMEOUT: resultdata = latest EIP
// TRAP: resultdata = latest EIP
// UNKNOWN: resultdata = latest EIP
optional uint32 resultdata = 6;
// did ECC correct the fault?
optional int32 error_corrected = 7;
// optional textual description of what happened
optional string details = 8;
}

View File

@ -0,0 +1,180 @@
#include <iostream>
#include "util/Logger.hpp"
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "campaign.hpp"
#include "SAL/SALConfig.hpp"
#include "SAL/SALInst.hpp"
#include "SAL/Memory.hpp"
#include "SAL/bochs/BochsRegister.hpp"
#include "controller/Event.hpp"
#include "checksum-oostubs.pb.h"
using std::endl;
bool CoolChecksumExperiment::run()
{
#if BX_SUPPORT_X86_64
int targetreg = sal::RID_RDX;
#else
int targetreg = sal::RID_EDX;
#endif
Logger log("Checksum-OOStuBS", false);
fi::BPEvent bp;
log << "startup" << endl;
#if 1
fi::GuestEvent g;
while (true) {
sal::simulator.addEventAndWait(&g);
std::cout << g.getData() << std::flush;
}
#elif 0
// STEP 1: run until interesting function starts, and save state
bp.setWatchInstructionPointer(OOSTUBS_FUNC_ENTRY);
sal::simulator.addEventAndWait(&bp);
log << "test function entry reached, saving state" << endl;
log << "EIP = " << std::hex << bp.getTriggerInstructionPointer() << " or " << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
log << "error_corrected = " << std::dec << ((int)sal::simulator.getMemoryManager().getByte(OOSTUBS_ERROR_CORRECTED)) << endl;
sal::simulator.save("checksum-oostubs.state");
#elif 1
// STEP 2: determine # instructions from start to end
log << "restoring state" << endl;
sal::simulator.restore("checksum-oostubs.state");
log << "EIP = " << std::hex << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
// make sure the timer interrupt doesn't disturb us
//sal::simulator.deactivateTimer(0); // leave it on, explicitly
unsigned count;
bp.setWatchInstructionPointer(fi::ANY_ADDR);
for (count = 0; bp.getTriggerInstructionPointer() != OOSTUBS_FUNC_DONE; ++count) {
//for (count = 0; count < OOSTUBS_NUMINSTR; ++count) { //TODO?
sal::simulator.addEventAndWait(&bp);
//log << "EIP = " << std::hex << sal::simulator.getRegisterManager().getInstructionPointer() << endl;
}
log << "experiment finished after " << count << " instructions" << endl;
unsigned char results[OOSTUBS_RESULTS_BYTES];
for(int i=0; i<OOSTUBS_RESULTS_BYTES; ++i){
results[i] = (unsigned)sal::simulator.getMemoryManager().getByte(OOSTUBS_RESULTS_ADDR + i);
}
for(int i=0; i<OOSTUBS_RESULTS_BYTES/4; ++i){
log << "results[" << i << "]: " << std::hex << *(((unsigned*)results)+i) << endl;
}
#elif 1
// FIXME consider moving experiment repetition into Fail* or even the
// SAL -- whether and how this is possible with the chosen backend is
// backend specific
for (int i = 0; i < 20; ++i) {
// STEP 3: The actual experiment.
log << "restoring state" << endl;
sal::simulator.restore("coolecc.state");
log << "asking job server for experiment parameters" << endl;
CoolChecksumExperimentData param;
if (!m_jc.getParam(param)) {
log << "Dying." << endl;
// communicate that we were told to die
sal::simulator.terminate(1);
}
int id = param.getWorkloadID();
int instr_offset = param.msg.instr_offset();
int bit_offset = param.msg.bit_offset();
log << "job " << id << " instr " << instr_offset << " bit " << bit_offset << endl;
// FIXME could be improved (especially for backends supporting
// breakpoints natively) by utilizing a previously recorded instruction
// trace
bp.setWatchInstructionPointer(fi::ANY_ADDR);
for (int count = 0; count < instr_offset; ++count) {
sal::simulator.addEventAndWait(&bp);
}
// inject
sal::guest_address_t inject_addr = COOL_ECC_OBJUNDERTEST + bit_offset / 8;
sal::MemoryManager& mm = sal::simulator.getMemoryManager();
sal::byte_t data = mm.getByte(inject_addr);
sal::byte_t newdata = data ^ (1 << (bit_offset % 8));
mm.setByte(inject_addr, newdata);
// note at what IP we did it
int32_t injection_ip = sal::simulator.getRegisterManager().getInstructionPointer();
param.msg.set_injection_ip(injection_ip);
log << "inject @ ip " << injection_ip
<< " offset " << std::dec << (bit_offset / 8)
<< " (bit " << (bit_offset % 8) << ") 0x"
<< std::hex << ((int)data) << " -> 0x" << ((int)newdata) << endl;
// aftermath
fi::BPEvent ev_done(COOL_ECC_CALCDONE);
sal::simulator.addEvent(&ev_done);
fi::BPEvent ev_timeout(fi::ANY_ADDR);
ev_timeout.setCounter(COOL_ECC_NUMINSTR + 3000);
sal::simulator.addEvent(&ev_timeout);
fi::TrapEvent ev_trap(fi::ANY_TRAP);
sal::simulator.addEvent(&ev_trap);
fi::BaseEvent* ev = sal::simulator.waitAny();
if (ev == &ev_done) {
int32_t data = sal::simulator.getRegisterManager().getSetOfType(sal::RT_GP).getRegister(targetreg)->getData();
log << std::dec << "Result EDX = " << data << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_CALCDONE);
param.msg.set_resultdata(data);
} else if (ev == &ev_timeout) {
log << std::dec << "Result TIMEOUT" << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_TIMEOUT);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
} else if (ev == &ev_trap) {
log << std::dec << "Result TRAP #" << ev_trap.getTriggerNumber() << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_TRAP);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
} else {
log << std::dec << "Result WTF?" << endl;
param.msg.set_resulttype(CoolChecksumProtoMsg_ResultType_UNKNOWN);
param.msg.set_resultdata(sal::simulator.getRegisterManager().getInstructionPointer());
std::stringstream ss;
ss << "eventid " << ev << " EIP " << sal::simulator.getRegisterManager().getInstructionPointer();
param.msg.set_details(ss.str());
}
int32_t error_corrected = sal::simulator.getMemoryManager().getByte(COOL_ECC_ERROR_CORRECTED);
param.msg.set_error_corrected(error_corrected);
m_jc.sendResult(param);
}
#endif
// FIXME We currently need to explicitly terminate. See below.
sal::simulator.terminate();
// FIXME Simply returning currently fails, because afterwards
// a) the ExperimentFlow base class cleans up this experiment's
// remaining events,
// b) the CoroutineManager deletes this coroutine and frees the
// associated stack (and in particular the memory the event that
// most recently activated us lies in),
// c) BochsController tries to dynamic_cast<fi::BPRangeEvent*>(pBase)
// this very event (bochs/Controller.cc:112).
// This could be partially fixed by adding a "continue;" to the first
// if() in this loop in BochsController, but it would still fail if
// there were more events waiting to be fired. The general problem is
// that we're removing events while we're in BochsController's (or
// whose ever) event handling loop.
//
// Outline for a proper fix: Split all event handling loops into two
// parts,
// 1. collect all events to be fired in some kind of list data
// structure,
// 2. fire all collected events in a centralized SimulatorController
// function.
// The data structure and the centralized function should be chosen in
// a way that this construct *can* deal with events being removed while
// iterating over them.
return true;
}

View File

@ -0,0 +1,14 @@
#ifndef __COOLEXPERIMENT_HPP__
#define __COOLEXPERIMENT_HPP__
#include "controller/ExperimentFlow.hpp"
#include "jobserver/JobClient.hpp"
class CoolChecksumExperiment : public fi::ExperimentFlow {
fi::JobClient m_jc;
public:
CoolChecksumExperiment() : m_jc("ios.cs.tu-dortmund.de") {}
bool run();
};
#endif

View File

@ -0,0 +1,48 @@
#ifndef __EXPERIMENT_INFO_HPP__
#define __EXPERIMENT_INFO_HPP__
// FIXME autogenerate this
#if 1 // with ECC
// the task function's entry address:
// nm -C ecc.elf|fgrep main
#define OOSTUBS_FUNC_ENTRY 0x00103f2c
// empty function that is called explicitly when the experiment finished
// nm -C ecc.elf|fgrep "finished()"
#define OOSTUBS_FUNC_DONE 0x001093f0
// number of instructions the target executes under non-error conditions from ENTRY to DONE:
// (result of experiment's step #2)
#define OOSTUBS_NUMINSTR 0x4a3401
// number of instructions that are executed additionally for error corrections
// (this is a rough guess ... TODO)
#define OOSTUBS_RECOVERYINSTR 0x2000
// the ECC protected object's address:
// nm -C ecc.elf|fgrep objectUnderTest
#define COOL_ECC_OBJUNDERTEST 0x002127a4 //FIXME
// the ECC protected object's payload size:
// (we know that from the object's definition and usual memory layout)
#define COOL_ECC_OBJUNDERTEST_SIZE 10 //FIXME
// the variable that's increased if ECC corrects an error:
// nm -C ecc.elf|fgrep errors_corrected
#define OOSTUBS_ERROR_CORRECTED 0x0010e3a4
//
// nm -C ecc.elf|fgrep results
#define OOSTUBS_RESULTS_ADDR 0x0010d794
#define OOSTUBS_RESULTS_BYTES 12
#define OOSTUBS_RESULT0 0xab3566a9
#define OOSTUBS_RESULT1 0x44889112
#define OOSTUBS_RESULT2 0x10420844
#else // without ECC
#define COOL_ECC_FUNC_ENTRY 0x00200a90
#define COOL_ECC_CALCDONE 0x00200ab7
#define COOL_ECC_NUMINSTR 97
#define COOL_ECC_OBJUNDERTEST 0x0021263c
#define COOL_ECC_OBJUNDERTEST_SIZE 10
#define COOL_ECC_ERROR_CORRECTED 0x002127b0 // dummy
#endif
#endif

View File

@ -0,0 +1,15 @@
#include <iostream>
#include <cstdlib>
#include "controller/CampaignManager.hpp"
#include "experiments/checksum-oostubs/campaign.hpp"
int main(int argc, char **argv)
{
CoolChecksumCampaign c;
if (fi::campaignmanager.runCampaign(&c)) {
return 0;
} else {
return 1;
}
}

View File

@ -0,0 +1,31 @@
set(EXPERIMENT_NAME coolchecksum)
set(EXPERIMENT_TYPE CoolChecksumExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
coolchecksum.proto
)
set(MY_CAMPAIGN_SRCS
experiment.hpp
experiment.cc
campaign.hpp
campaign.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})
## This is the example's campaign server distributing experiment parameters
add_executable(${EXPERIMENT_NAME}-server main.cc)
target_link_libraries(${EXPERIMENT_NAME}-server ${EXPERIMENT_NAME} fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})

View File

@ -0,0 +1,273 @@
#include <iostream>
#include "campaign.hpp"
#include "experimentInfo.hpp"
#include "controller/CampaignManager.hpp"
#include "util/Logger.hpp"
#include "SAL/SALConfig.hpp"
#if COOL_FAULTSPACE_PRUNING
#include "plugins/tracing/TracingPlugin.hpp"
char const * const trace_filename = "trace.pb";
#endif
using namespace fi;
using std::endl;
char const * const results_csv = "coolcampaign.csv";
// equivalence class type: addr, [i1, i2]
// addr: byte to inject a bit-flip into
// [i1, i2]: interval of instruction numbers, counted from experiment
// begin
struct equivalence_class {
unsigned byte_offset;
int instr1, instr2;
sal::address_t instr2_absolute; // FIXME we could record them all here
};
bool CoolChecksumCampaign::run()
{
Logger log("CoolChecksumCampaign");
ifstream test(results_csv);
if (test.is_open()) {
log << results_csv << " already exists" << endl;
return false;
}
ofstream results(results_csv);
if (!results.is_open()) {
log << "failed to open " << results_csv << endl;
return false;
}
log << "startup" << endl;
#if !COOL_FAULTSPACE_PRUNING
int count = 0;
for (int bit_offset = 0; bit_offset < COOL_ECC_OBJUNDERTEST_SIZE*8; ++bit_offset) {
for (int instr_offset = 0; instr_offset < COOL_ECC_NUMINSTR; ++instr_offset) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
d->msg.set_instr_offset(instr_offset);
d->msg.set_bit_offset(bit_offset);
fi::campaignmanager.addParam(d);
++count;
}
}
fi::campaignmanager.noMoreParameters();
log << "done enqueueing parameter sets (" << count << ")." << endl;
// collect results
CoolChecksumExperimentData *res;
int rescount = 0;
results << "injection_ip\tinstr_offset\tinjection_bit\tresulttype\tresultdata\terror_corrected\tdetails" << endl;
while ((res = static_cast<CoolChecksumExperimentData *>(fi::campaignmanager.getDone()))) {
rescount++;
results
<< res->msg.injection_ip() << "\t"
<< res->msg.instr_offset() << "\t"
<< res->msg.bit_offset() << "\t"
<< res->msg.resulttype() << "\t"
<< res->msg.resultdata() << "\t"
<< res->msg.error_corrected() << "\t"
<< res->msg.details() << "\n";
delete res;
}
#else
// load trace
ifstream tracef(trace_filename);
if (tracef.fail()) {
log << "couldn't open " << trace_filename << endl;
return false;
}
Trace trace;
trace.ParseFromIstream(&tracef);
tracef.close();
// set of equivalence classes that need one (rather: eight, one for
// each bit in that byte) experiment to determine them all
std::vector<equivalence_class> ecs_need_experiment;
// set of equivalence classes that need no experiment, because we know
// they'd be identical to the golden run
std::vector<equivalence_class> ecs_no_effect;
Trace_Event end_event; // pseudo event
equivalence_class current_ec;
// for every injection address ...
// XXX in more complex cases we'll need to iterate over a MemoryMap here
for (unsigned byte_offset = 0; byte_offset < COOL_ECC_OBJUNDERTEST_SIZE; ++byte_offset) {
current_ec.instr1 = 0;
// for every section in the trace between subsequent memory
// accesses to that address ...
// XXX reorganizing the trace for efficient seeks could speed this up
int instr = 0;
sal::address_t instr_absolute = 0; // FIXME this one probably should also be recorded ...
Trace_Event const *ev;
for (int eventnr = 0; eventnr < trace.event_size(); ++eventnr) {
ev = &trace.event(eventnr);
// only count instruction events
if (!ev->has_memaddr()) {
// new instruction
instr++;
instr_absolute = ev->ip();
continue;
// skip accesses to other data
} else if (ev->memaddr() != byte_offset + COOL_ECC_OBJUNDERTEST) {
continue;
// skip zero-sized intervals: these can
// occur when an instruction accesses a
// memory location more than once
// (e.g., INC, CMPXCHG)
} else if (current_ec.instr1 > instr) {
continue;
}
// we now have an interval-terminating R/W
// event to the memaddr we're currently looking
// at:
// complete the equivalence interval
current_ec.instr2 = instr;
current_ec.instr2_absolute = instr_absolute;
current_ec.byte_offset = byte_offset;
if (ev->accesstype() == ev->READ) {
// a sequence ending with READ: we need
// to do one experiment to cover it
// completely
ecs_need_experiment.push_back(current_ec);
} else if (ev->accesstype() == ev->WRITE) {
// a sequence ending with WRITE: an
// injection anywhere here would have
// no effect.
ecs_no_effect.push_back(current_ec);
} else {
log << "WAT" << endl;
}
// next interval must start at next
// instruction; the aforementioned
// skipping mechanism wouldn't work
// otherwise
current_ec.instr1 = instr + 1;
}
// close the last interval:
// Why -1? In most cases it does not make sense to inject before the
// very last instruction, as we won't execute it anymore. This *only*
// makes sense if we also inject into parts of the result vector. This
// is not the case in this experiment, and with -1 we'll get a
// result comparable to the non-pruned campaign.
current_ec.instr2 = instr - 1;
current_ec.instr2_absolute = 0; // won't be used
current_ec.byte_offset = byte_offset;
// zero-sized? skip.
if (current_ec.instr1 > current_ec.instr2) {
continue;
}
// as the experiment ends, this byte is a "don't care":
ecs_no_effect.push_back(current_ec);
}
log << "equivalence classes generated:"
<< " need_experiment = " << ecs_need_experiment.size()
<< " no_effect = " << ecs_no_effect.size() << endl;
// statistics
int num_dumb_experiments = 0;
for (std::vector<equivalence_class>::const_iterator it = ecs_need_experiment.begin();
it != ecs_need_experiment.end(); ++it) {
num_dumb_experiments += (*it).instr2 - (*it).instr1 + 1;
}
for (std::vector<equivalence_class>::const_iterator it = ecs_no_effect.begin();
it != ecs_no_effect.end(); ++it) {
num_dumb_experiments += (*it).instr2 - (*it).instr1 + 1;
}
log << "pruning: reduced " << num_dumb_experiments * 8 <<
" experiments to " << ecs_need_experiment.size() * 8 << endl;
// map for efficient access when results come in
std::map<CoolChecksumExperimentData *, equivalence_class *> experiment_ecs;
int count = 0;
for (std::vector<equivalence_class>::iterator it = ecs_need_experiment.begin();
it != ecs_need_experiment.end(); ++it) {
for (int bitnr = 0; bitnr < 8; ++bitnr) {
CoolChecksumExperimentData *d = new CoolChecksumExperimentData;
// we pick the rightmost instruction in that interval
d->msg.set_instr_offset((*it).instr2);
d->msg.set_instr_address((*it).instr2_absolute);
d->msg.set_bit_offset((*it).byte_offset * 8 + bitnr);
experiment_ecs[d] = &(*it);
fi::campaignmanager.addParam(d);
++count;
}
}
fi::campaignmanager.noMoreParameters();
log << "done enqueueing parameter sets (" << count << ")." << endl;
// CSV header
results << "injection_ip\tinstr_offset\tinjection_bit\tresulttype\tresultdata\terror_corrected\tdetails" << endl;
// store no-effect "experiment" results
// (for comparison reasons; we'll store that more compactly later)
for (std::vector<equivalence_class>::const_iterator it = ecs_no_effect.begin();
it != ecs_no_effect.end(); ++it) {
for (int bitnr = 0; bitnr < 8; ++bitnr) {
for (int instr = (*it).instr1; instr <= (*it).instr2; ++instr) {
results
<< (*it).instr2_absolute << "\t" // incorrect in all but one case!
<< instr << "\t"
<< ((*it).byte_offset * 8 + bitnr) << "\t"
<< "1" << "\t"
<< "45" << "\t"
<< "0" << "\t"
<< "" << "\n";
}
}
}
// collect results
CoolChecksumExperimentData *res;
int rescount = 0;
while ((res = static_cast<CoolChecksumExperimentData *>(fi::campaignmanager.getDone()))) {
rescount++;
equivalence_class *ec = experiment_ecs[res];
// sanity check
if (ec->instr2 != res->msg.instr_offset()) {
results << "WTF" << endl;
log << "WTF" << endl;
delete res;
continue;
}
// explode equivalence class to single "experiments"
// (for comparison reasons; we'll store that more compactly later)
for (int instr = ec->instr1; instr <= ec->instr2; ++instr) {
results
<< res->msg.injection_ip() << "\t" // incorrect in all but one case!
<< instr << "\t"
<< res->msg.bit_offset() << "\t"
<< res->msg.resulttype() << "\t"
<< res->msg.resultdata() << "\t"
<< res->msg.error_corrected() << "\t"
<< res->msg.details() << "\n";
}
delete res;
}
#endif
log << "done. sent " << count << " received " << rescount << endl;
results.close();
return true;
}

Some files were not shown because too many files have changed in this diff Show More