remove deprecated stuff

Change-Id: Ifc25d216bbf782416159ceb0c366a080d2c8c428
This commit is contained in:
Horst Schirmeier
2016-03-15 23:20:05 +01:00
parent 69da134956
commit 94a56c43c8
27 changed files with 0 additions and 1320 deletions

View File

@ -1,29 +0,0 @@
#ifndef __FIRETIMER_AH__
#define __FIRETIMER_AH__
#include <iostream>
// FIXME: This seems deprecated...?!
aspect fireTimer {
advice "bx_pc_system_c" : slice class {
public:
// TODO: Log-level?
void fireTimer(Bit32u timerNum){
if(timerNum <= numTimers){
if(!timer[timerNum].active){
std::cout << "[FAIL] WARNING: The selected timer is actually NOT active!" << std::endl;
}
currCountdownPeriod = Bit64u(1);
timer[timerNum].timeToFire = Bit64u(currCountdownPeriod) + ticksTotal;
std::cout << "[FAIL] Timer " << timerNum <<" will fire now!" << std::endl;
}else{
std::cout << "[FAIL] There are actually only " << numTimers <<" allocated!" << std::endl;
}
}
};
};
#endif // __FIRETIMER_AH__

View File

@ -1,35 +0,0 @@
#ifndef __JUMP_TO_PREVIOUS_CTX_AH__
#define __JUMP_TO_PREVIOUS_CTX_AH__
#include "config/FailConfig.hpp"
// FIXME: What's the purpose of this file/code? Deprecated?
#if 0
// #if defined(CONFIG_SR_RESTORE) || defined(CONFIG_SR_REBOOT)
#include "bochs.h"
#include "../SALInst.hpp"
aspect jumpToPreviousCtx
{
pointcut end_reset_handler() = "void bx_gui_c::reset_handler(...)";
//|| "int bxmain()";
advice execution (end_reset_handler()) : after ()
{
if (fail::restore_bochs_request || fail::reboot_bochs_request )
{
fail::restore_bochs_request = false;
fail::reboot_bochs_request = false;
fail::simulator.toPreviousCtx();
}
}
};
#endif // CONFIG_SR_RESTORE || CONFIG_SR_REBOOT
#endif // __JUMP_TO_PREVIOUS_CTX_AH__

View File

@ -1,102 +0,0 @@
#ifndef __MEM_ACCESS_BIT_FLIP_AH__
#define __MEM_ACCESS_BIT_FLIP_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_FI_MEM_ACCESS_BITFLIP
#include <iostream>
#include <cstdlib>
#include <ctime>
#include "bochs.h"
#include "../../controller/EventList.hpp"
#include "../../controller/Event.hpp"
// FIXME: This is deprecated stuff. Delete this file.
using namespace std;
// FIXME this code doesn't make any sense for the read_virtual_% functions
// (the fault would need to be injected into their *return* value)
aspect MemAccessBitFlip
{
pointcut injection_methods()
= "% ...::bx_cpu_c::read_virtual_%(...)" || // -> access32/64.cc
/*
"% ...::bx_cpu_c::read_RMW_virtual_%(...)" || // -> access32.cc
"% ...::bx_cpu_c::system_read_%(...)" || // -> access.cc
"% ...::bx_cpu_c::v2h_read_byte(...)" || // -> access.cc
*/
"% ...::bx_cpu_c::write_virtual_%(...)"; // -> access32/64.cc
/*
"% ...::bx_cpu_c::write_RMW_virtual_%(...)" || // -> access32.cc
"% ...::bx_cpu_c::write_new_stack_%(...)" || // -> access32/64.cc
"% ...::bx_cpu_c::system_write_%(...)" || // -> access.cc
"% ...::bx_cpu_c::v2h_write_byte(...)"; // -> access.cc
*/
//
// Injects a bitflip each time the guest system requests to write/read
// data to/from RAM at the (hardcoded) addresses defined above:
//
// Event source: "memory write/read access"
//
advice execution (injection_methods()) : before ()
{
for(size_t i = 0; i < fi::evbuf.getEventCount(); i++) // check for active events
{
fi::SimpleBitFlip* pEv = dynamic_cast<fi::SimpleBitFlip*>(fi::evbuf.getEvent(i)); // FIXME: Performance verbessern
if(pEv && *(tjp->arg<1>())/*typed!*/ == pEv->getAddress())
{
cout << " " << tjp->signature() << endl;
// Get a pointer to the data that should be written to RAM
// *before* it is actually written:
Bit32u* pData = (Bit32u*)(tjp->arg(JoinPoint::ARGS-1));
// Flip bit at position pEv->getBitPos():
char* ptr = (char*)pData; // For simplification we're just looking at the
// first byte of the data
ptr[0] = (ptr[0]) ^ (pEv->getMask() << pEv->getBitPos());
cout << " >>> Bit flipped at index " << pEv->getBitPos()
<< " at address 0x" << hex << (*(tjp->arg<1>())) << "!" << endl;
fi::evbuf.fireEvent(pEv);
// Continue... (maybe more events to process)
}
}
}
/*
//
// Shows the mapping of a virtual address (within eCos) to a *host* address:
//
if(g_fEnableInjection) // event fired?
{
g_fEnableInjection = false;
const unsigned SEGMENT_SELECTOR_IDX = 2; // always the code segment (seg-base-addr should be zero)
const bx_address logicalAddr = MEM_ADDR_TO_INJECT; // offset within the segment ("local eCos address")
// Get the linear address:
Bit32u linearAddr = pThis->get_laddr32(SEGMENT_SELECTOR_IDX/ *seg* /, logicalAddr/ *offset* /);
// Map the linear address to the physical address:
bx_phy_address physicalAddr;
bx_bool fValid = pThis->dbg_xlate_linear2phy(linearAddr, (bx_phy_address*)&physicalAddr);
// Determine the *host* address of the physical address:
Bit8u* hostAddr = BX_MEM(0)->getHostMemAddr(pThis, physicalAddr, BX_READ);
// Now, hostAddr contains the "final" address where we are allowed to inject errors:
*(unsigned*)hostAddr = BAD_VALUE; // inject error
if(!fValid)
printf("[Error]: Could not map logical address to host address.\n");
else
printf("[Info]: Error injected at logical addr %p (host addr %p).\n", logicalAddr, hostAddr);
}
*/
};
#endif // CONFIG_FI_MEM_ACCESS_BITFLIP
#endif // __MEM_ACCESS_BIT_FLIP_AH__

View File

@ -1,36 +0,0 @@
#include <iostream>
#include "DataRetrievalExperiment.hpp"
#include "../SAL/SALInst.hpp"
#include "../controller/Event.hpp"
#include "ExperimentDataExample/FaultCoverageExperiment.pb.h"
using namespace std;
using namespace fail;
#define MEMTEST86_BREAKPOINT 0x4EDC
bool DataRetrievalExperiment::run()
{
cout << "[getExperimentDataExperiment] Experiment start." << endl;
// Breakpoint address for Memtest86:
BPSingleEvent mainbp(MEMTEST86_BREAKPOINT);
simulator.addEventAndWait(&mainbp);
cout << "[getExperimentDataExperiment] Breakpoint reached." << endl;
FaultCoverageExperimentData* test = NULL;
cout << "[getExperimentDataExperiment] Getting ExperimentData (FaultCoverageExperiment)..." << endl;
test = simulator.getExperimentData<FaultCoverageExperimentData>();
cout << "[getExperimentDataExperiment] Content of ExperimentData (FaultCoverageExperiment):" << endl;
if (test->has_data_name())
cout << "Name: "<< test->data_name() << endl;
// m_instrptr1 augeben
cout << "m_instrptr1: " << hex << test->m_instrptr1() << endl;
// m_instrptr2 augeben
cout << "m_instrptr2: " << hex << test->m_instrptr2() << endl;
simulator.clearEvents(this);
return true; // experiment successful
}

View File

@ -1,14 +0,0 @@
#ifndef __DATA_RETRIEVAL_EXPERIMENT_HPP__
#define __DATA_RETRIEVAL_EXPERIMENT_HPP__
#include "../controller/ExperimentFlow.hpp"
class DataRetrievalExperiment : public fail::ExperimentFlow
{
public:
DataRetrievalExperiment() { }
bool run();
};
#endif // __DATA_RETRIEVAL_EXPERIMENT_HPP__

View File

@ -1,19 +0,0 @@
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
FaultCoverageExperiment.proto
)
set(SRCS
example.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRNET_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS} )
## Build library
add_library(fcexperimentmessage ${PROTO_SRCS} ${SRCS} )

View File

@ -1,7 +0,0 @@
message FaultCoverageExperimentData{
optional string data_name = 1;
required int64 m_InstrPtr1 = 2;
required int64 m_InstrPtr2 = 3;
}

View File

@ -1,3 +0,0 @@
#!/bin/bash
cd $(dirname $0)
g++ ../../controller/JobServer.cc ../../controller/ExperimentDataQueue.cc example.cc FaultCoverageExperiment.pb.cc -o ./ExperimentData_example -l protobuf -pthread

View File

@ -1,63 +0,0 @@
#include <iostream>
#include <fstream>
#include "controller/ExperimentData.hpp"
#include "controller/ExperimentDataQueue.hpp"
#include "jobserver/JobServer.hpp"
#include "FaultCoverageExperiment.pb.h"
using namespace std;
int main(int argc, char* argv[])
{
// FIXME: Translation missing.
ExperimentDataQueue exDaQu;
ExperimentData* readFromQueue;
// Daten in Struktur schreiben und in Datei speichern
ofstream fileWrite;
fileWrite.open("test.txt");
FaultCoverageExperimentData faultCovExWrite;
// Namen setzen
faultCovExWrite.set_data_name("Testfall 42");
// Instruktionpointer 1
faultCovExWrite.set_m_instrptr1(0x4711);
// Instruktionpointer 2
faultCovExWrite.set_m_instrptr2(0x1122);
// In ExperimentData verpacken
ExperimentData exDaWrite(&faultCovExWrite);
// In Queue einbinden
exDaQu.addData(&exDaWrite);
// Aus Queue holen
if (exDaQu.size() != 0)
readFromQueue = exDaQu.getData();
// Serialisierung ueber Wrapper-Methode in ExperimentData
readFromQueue->serialize(&fileWrite);
// cout << "Ausgabe: " << out << endl;
fileWrite.close();
//---------------------------------------------------------------
// Daten aus Datei lesen und in Struktur schreiben
ifstream fileRead;
fileRead.open("test.txt");
FaultCoverageExperimentData faultCovExRead;
ExperimentData exDaRead(&faultCovExRead);
exDaRead.unserialize( &fileRead);
// Wenn Name, dann ausgeben
if(faultCovExRead.has_data_name()){
cout << "Name: "<< faultCovExRead.data_name() << endl;
}
// m_instrptr1 augeben
cout << "m_instrptr1: " << faultCovExRead.m_instrptr1() << endl;
// m_instrptr2 augeben
cout << "m_instrptr2: " << faultCovExRead.m_instrptr2() << endl;
fileRead.close();
return 0;
}

View File

@ -1,76 +0,0 @@
#ifndef __JUMP_AND_RUN_EXPERIMENT_HPP__
#define __JUMP_AND_RUN_EXPERIMENT_HPP__
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "../SAL/bochs/BochsRegister.hpp"
#include "config/FailConfig.hpp"
// Check if aspect dependencies are satisfied:
#if !defined(CONFIG_EVENT_CPULOOP) || !defined(CONFIG_EVENT_JUMP)
#error Breakpoint- and jump-events needed! Enable aspects first (see FailConfig.hpp)!
#endif
using namespace std;
using namespace fail;
class JumpAndRunExperiment : public fail::ExperimentFlow {
public:
bool run()
{
/************************************
* Description of experiment flow. *
************************************/
// Wait for function entry adresss:
cout << "[JumpAndRunExperiment] Setting up experiment. Allowing to "
<< "start now." << endl;
BPEvent mainFuncEntry(0x3c1f);
simulator.addEvent(&mainFuncEntry);
if (&mainFuncEntry != simulator.waitAny()) {
cerr << "[JumpAndRunExperiment] Now, we are completely lost! "
<< "It's time to cry! :-(" << endl;
simulator.clearEvents(this);
return false;
}
else
cout << "[JumpAndRunExperiment] Entry of main function reached! "
<< " Let's see who's jumping around here..." << endl;
const unsigned COUNTER = 20000;
unsigned i = 0;
BxFlagsReg* pFlags = dynamic_cast<BxFlagsReg*>(simulator.
getRegisterManager().getSetOfType(RT_ST).snatch());
assert(pFlags != NULL && "FATAL ERROR: NULL ptr not expected!");
JumpEvent ev;
// Catch the next "counter" jumps:
while (++i <= COUNTER) {
ev.setWatchInstructionPointer(ANY_INSTR);
simulator.addEvent(&ev);
if (simulator.waitAny() != &ev) {
cerr << "[JumpAndRunExperiment] Damn! Something went "
<< "terribly wrong! Who added that event?! :-(" << endl;
simulator.clearEvents(this);
return false;
}
else
cout << "[JumpAndRunExperiment] Jump detected. Instruction: "
<< "0x" hex << ev.getTriggerInstructionPointer()
<< " -- FLAGS [CF, ZF, OF, PF, SF] = ["
<< pFlags->getCarryFlag() << ", "
<< pFlags->getZeroFlag() << ", "
<< pFlags->getOverflowFlag() << ", "
<< pFlags->getParityFlag() << ", "
<< pFlags->getSignFlag() << "]." << endl;
}
cout << "[JumpAndRunExperiment] " << dec << counter
<< " jump(s) detected -- enough for today...exiting! :-)"
<< endl;
simulator.clearEvents(this);
return true;
}
};
#endif // __JUMP_AND_RUN_EXPERIMENT_HPP__

View File

@ -1,71 +0,0 @@
#ifndef __MEM_WRITE_EXPERIMENT_HPP__
#define __MEM_WRITE_EXPERIMENT_HPP__
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "config/FailConfig.hpp"
// Check aspect dependencies:
#if !defined(CONFIG_EVENT_CPULOOP) || !defined(CONFIG_EVENT_MEMACCESS) || !defined(CONFIG_SR_SAVE) || !defined(CONFIG_FI_MEM_ACCESS_BITFLIP)
#error Event dependecies not satisfied! Enabled needed aspects in FailConfig.hpp!
#endif
using namespace std;
using namespace fail;
class MemWriteExperiment : public fail::ExperimentFlow {
public:
bool run() // Example experiment (defines "what we wanna do")
{
/************************************
* Description of experiment flow. *
************************************/
// 1. Add some events (set up the experiment):
cout << "[MemWriteExperiment] Setting up experiment. Allowing to"
<< " start now." << endl;
MemWriteEvent mem1(0x000904F0), mem2(0x02ff0916), mem3(0x0050C8E8);
BPEvent breakpt(0x4ae6);
simulator.addEvent(&mem1);
simulator.addEvent(&mem2);
simulator.addEvent(&mem3);
simulator.addEvent(&breakpt);
// 2. Wait for event condition "(id1 && id2) || id3" to become true:
cout << "[MemWriteExperiment] Waiting for condition (1) (\"(id1 &&"
<< " id2) || id3\") to become true..." << endl;
bool f1 = false, f2 = false, f3 = false, f4 = false;
while (!(f1 || f2 || f3 || f4)) {
BPEvent* pev = simulator.waitAny();
cout << "[MemWriteExperiment] Received event id=" << id
<< "." << endl;
if(pev == &mem4)
f4 = true;
if(pev == &mem3)
f3 = true;
if(pev == &mem2)
f2 = true;
if(pev == &mem1)
f1 = true;
}
cout << "[MemWriteExperiment] Condition (1) satisfied! Ready to "
<< "add next event..." << endl;
// 3. Add a new event now:
cout << "[MemWriteExperiment] Adding new Event..."; cout.flush();
simulator.clearEvents(); // remove residual events in the buffer
// (we're just interested in the new event)
simulator.save("./bochs_save_point");
cout << "done!" << endl;
// 4. Continue simulation (waitAny) and inject bitflip:
// ...
simulator.clearEvents(this);
return true;
}
};
#endif // __MEM_WRITE_EXPERIMENT_HPP__

View File

@ -1,60 +0,0 @@
#ifndef __MY_EXPERIMENT_HPP__
#define __MY_EXPERIMENT_HPP__
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
using namespace std;
using namespace fail;
class MyExperiment : public fail::ExperimentFlow {
public:
bool run() // Example experiment (defines "what we wanna do")
{
/************************************
* Description of experiment flow. *
************************************/
// 1. Add some events (set up the experiment):
cout << "[MyExperiment] Setting up experiment. Allowing to start"
<< " now." << endl;
BPEvent ev1(0x8048A00), ev2(0x8048F01), ev3(0x3c1f);
simulator.addEvent(&ev1);
simulator.addEvent(&ev2);
simulator.addEvent(&ev3);
// 2. Wait for event condition "(id1 && id2) || id3" to become true:
BPEvent* pev;
cout << "[MyExperiment] Waiting for condition (1) (\"(id1 && id2)"
<< " || id3\") to become true..." << endl;
bool f1 = false, f2 = false, f3 = false;
while (!((f1 && f2) || f3)) {
pev = simulator.waitAny();
cout << "[MyExperiment] Received event id=" << pev->getId()
<< "." << endl;
if(pev == &ev3)
f3 = true;
if(pev == &ev2)
f2 = true;
if(pev == &ev1)
f1 = true;
}
cout << "[MyExperiment] Condition (1) satisfied! Ready..." << endl;
// Remove residual (for all active experiments!)
// events in the buffer:
simulator.clearEvents();
BPEvent foobar(ANY_ADDR);
foobar.setCounter(400);
cout << "[MyExperiment] Adding breakpoint-event, firing after the"
<< " next 400 instructions..."; cout.flush();
simulator.addEventAndWait(&foobar);
cout << "cought! Exiting now." << endl;
simulator.clearEvents(this);
return true;
}
};
#endif // __MY_EXPERIMENT_HPP__

View File

@ -1,60 +0,0 @@
#ifndef __SINGLE_STEPPING_EXPERIMENT_HPP__
#define __SINGLE_STEPPING_EXPERIMENT_HPP__
#include <iostream>
#include "../controller/ExperimentFlow.hpp"
#include "../SAL/SALInst.hpp"
#include "config/FailConfig.hpp"
#include "../SAL/bochs/BochsRegister.hpp"
// Check if aspect dependency is satisfied:
#ifndef CONFIG_EVENT_CPULOOP
#error Breakpoint-events needed! Enable aspect first (see FailConfig.hpp)!
#endif
using namespace std;
using namespace fail;
#define FUNCTION_ENTRY_ADDRESS 0x3c1f
class SingleSteppingExperiment : public fail::ExperimentFlow {
public:
bool run()
{
/************************************
* Description of experiment flow. *
************************************/
// Wait for function entry adresss:
cout << "[SingleSteppingExperiment] Setting up experiment. Allowing"
<< " to start now." << endl;
BPEvent mainFuncEntry(FUNCTION_ENTRY_ADDRESS);
simulator.addEvent(&mainFuncEntry);
if (&mainFuncEntry != simulator.waitAny()) {
cerr << "[SingleSteppingExperiment] Now, we are completely lost!"
<< " It's time to cry! :-(" << endl;
simulator.clearEvents(this);
return false;
}
cout << "[SingleSteppingExperiment] Entry of main function reached!"
<< " Beginning single-stepping..." << endl;
char action;
while (true) {
BPEvent bp(ANY_ADDR);
simulator.addEvent(&bp);
simulator.waitAny();
cout << "0x" << hex
<< simulator.getRegisterManager().getInstructionPointer()
<< endl;
cout << "Continue (y/n)? ";
cin >> action; cin.sync(); cin.clear();
if (action != 'y')
break;
}
simulator.clearEvents(this);
return true;
}
};
#endif // __SINGLE_STEPPING_EXPERIMENT_HPP__

View File

@ -1,16 +0,0 @@
#ifndef __INSTANTIATE_EXPERIMENT_AH__
#define __INSTANTIATE_EXPERIMENT_AH__
// copy this file to a .ah file and instantiate the experiment(s) you need
#include "hscsimple.hpp"
#include "../SAL/SALInst.hpp"
aspect hscsimple {
hscsimpleExperiment experiment;
advice execution ("void fail::SimulatorController::initExperiments()") : after () {
fail::simulator.addFlow(&experiment);
}
};
#endif // __INSTANTIATE_EXPERIMENT_AH__

View File

@ -1,34 +0,0 @@
## Setup desired protobuf descriptions HERE ##
#set(MY_PROTOS
# TestData.proto
#)
set (CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_SOURCE_DIR}/cmake)
#find_package (LibElf REQUIRED)
#find_package (LibDwarf REQUIRED)
#### PROTOBUFS ####
#find_package(Protobuf REQUIRED)
#include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_BINARY_DIR})
include_directories(${CMAKE_CURERNT_BINARY_DIR})
#PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS} )
## Build library
#add_library(testmessages ${PROTO_SRCS})
## Add some tests
#add_executable(testclient client.cc )
#add_executable(testclient testjc.cc )
#add_executable(testserver server.cc)
#target_link_libraries(testclient fail ${PROTOBUF_LIBRARY} ${CMAKE_THREAD_LIBS_INIT} anexperimentmessage protomessages)
#target_link_libraries(testserver fail ${PROTOBUF_LIBRARY} ${CMAKE_THREAD_LIBS_INIT} anexperimentmessage protomessages)
#add_executable(dwarf dwarf.cc)
#target_link_libraries(dwarf ${LIBDWARF_LIBRARIES} ${LIBELF_LIBRARIES} )
#include_directories(${CMAKE_BINARY_DIR}/core/experiments/MHTestCampaign)
#add_executable(mhcampaign mhcampaign.cc)
#target_link_libraries(mhcampaign mhtestcampaign fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})

View File

@ -1,6 +0,0 @@
message TestData {
optional string foo = 1;
optional int64 input = 2;
optional int64 output = 3;
}

View File

@ -1,110 +0,0 @@
#include <iostream>
#include "jobserver/messagedefs/FailControlMessage.pb.h"
#include "jobserver/SocketComm.hpp"
#include "experiments/AnExperiment/AnExperiment.pb.h"
#include <stdio.h>
using namespace std;
void error(const char *s)
{
perror(s);
exit(0);
}
template <typename Message>
Message *get_job(int sockfd)
{
Message *msg = new Message;
FailControlMessage ctrlmsg;
ctrlmsg.set_command(FailControlMessage_Command_NEED_WORK);
ctrlmsg.set_build_id(42);
cout << "Sending need work msg: " << ctrlmsg.build_id() << ", Command: " << ctrlmsg.command() << endl;
fail::SocketComm::send_msg(sockfd, ctrlmsg);
cout << "sent ctrl message." << endl;
fail::SocketComm::rcv_msg(sockfd, ctrlmsg);
cout << "Received ctrl message: " << ctrlmsg.command() << endl;
switch(ctrlmsg.command()){
case FailControlMessage_Command_DIE: return 0;
case FailControlMessage_Command_WORK_FOLLOWS:
fail::SocketComm::rcv_msg(sockfd, *msg);
return msg;
default:
cerr << "wtf?" << endl;
}
return 0;
}
template <typename Message>
void return_result(int sockfd, Message *msg)
{
FailControlMessage ctrlmsg;
ctrlmsg.set_command(FailControlMessage_Command_RESULT_FOLLOWS);
ctrlmsg.set_build_id(42);
cout << "Sending Result msg: " << ctrlmsg.build_id() << ", Command: " << ctrlmsg.command() << endl;
fail::SocketComm::send_msg(sockfd, ctrlmsg);
fail::SocketComm::send_msg(sockfd, *msg);
delete msg;
}
int main(int argc, char **argv){
int portno;
struct hostent *server;
cout << "JobClient" << endl;
if (argc < 3) {
cerr << "usage: " << argv[0] << " hostname port" << endl;
return 1;
}
portno = atoi(argv[2]);
server = gethostbyname(argv[1]);
if (server == NULL) {
cerr << "cannot resolve host " << argv[1] << endl;
return 1;
}
int i = 1;
while (1) {
int sockfd;
struct sockaddr_in serv_addr;
cout << ">>>>>>>>>Durchgang " << i++ << endl;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {
error("socket()");
}
memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
memcpy(&serv_addr.sin_addr.s_addr, server->h_addr, server->h_length);
serv_addr.sin_port = htons(portno);
if (connect(sockfd, (sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
error("connect()");
}
MHTestData *msg = get_job<MHTestData>(sockfd);
if(!msg){
break;
close(sockfd);
}
cout << "[Minion] received job input: " << msg->input() << endl;
cout << "[Minion] Calculating " << msg->input() << "^2 = " << msg->input() * msg->input() << endl;
msg->set_output(msg->input() * msg->input());
sleep(1);
cout << "[Minion] returning result: " << msg->output() << endl;
return_result<MHTestData>(sockfd, msg);
close(sockfd);
}
cout << "ByeBye" << endl;
return 0;
}

View File

@ -1,163 +0,0 @@
/* Code sample: Using libdwarf for getting the address of a function
** from DWARF in an ELF executable.
** Not much error-handling or resource-freeing is done here...
**
** Eli Bendersky (http://eli.thegreenplace.net)
** This code is in the public domain.
*/
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <dwarf.h>
#include <libdwarf.h>
void die(char* fmt, ...)
{
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
exit(EXIT_FAILURE);
}
/* List a function if it's in the given DIE.
*/
void list_func_in_die(Dwarf_Debug dgb, Dwarf_Die the_die)
{
char* die_name = 0;
const char* tag_name = 0;
Dwarf_Error err;
Dwarf_Half tag;
Dwarf_Attribute* attrs;
Dwarf_Addr lowpc, highpc;
Dwarf_Signed attrcount, i;
int rc = dwarf_diename(the_die, &die_name, &err);
if (rc == DW_DLV_ERROR)
die("Error in dwarf_diename\n");
else if (rc == DW_DLV_NO_ENTRY)
return;
if (dwarf_tag(the_die, &tag, &err) != DW_DLV_OK)
die("Error in dwarf_tag\n");
/* Only interested in subprogram DIEs here */
if (tag != DW_TAG_subprogram)
return;
if (dwarf_get_TAG_name(tag, &tag_name) != DW_DLV_OK)
die("Error in dwarf_get_TAG_name\n");
printf("DW_TAG_subprogram: '%s'\n", die_name);
/* Grab the DIEs attributes for display */
if (dwarf_attrlist(the_die, &attrs, &attrcount, &err) != DW_DLV_OK)
die("Error in dwarf_attlist\n");
for (i = 0; i < attrcount; ++i) {
Dwarf_Half attrcode;
if (dwarf_whatattr(attrs[i], &attrcode, &err) != DW_DLV_OK)
die("Error in dwarf_whatattr\n");
/* We only take some of the attributes for display here.
** More can be picked with appropriate tag constants.
*/
if (attrcode == DW_AT_low_pc)
dwarf_formaddr(attrs[i], &lowpc, 0);
else if (attrcode == DW_AT_high_pc)
dwarf_formaddr(attrs[i], &highpc, 0);
}
printf("low pc : 0x%08llx\n", lowpc);
printf("high pc : 0x%08llx\n", highpc);
}
/* List all the functions from the file represented by the given descriptor.
*/
void list_funcs_in_file(Dwarf_Debug dbg)
{
Dwarf_Unsigned cu_header_length, abbrev_offset, next_cu_header;
Dwarf_Half version_stamp, address_size;
Dwarf_Error err;
Dwarf_Die no_die = 0, cu_die, child_die;
/* Find compilation unit header */
while (dwarf_next_cu_header(
dbg,
&cu_header_length,
&version_stamp,
&abbrev_offset,
&address_size,
&next_cu_header,
&err) != DW_DLV_ERROR) {
/* Expect the CU to have a single sibling - a DIE */
if (dwarf_siblingof(dbg, no_die, &cu_die, &err) == DW_DLV_ERROR)
die("Error getting sibling of CU\n");
/* Expect the CU DIE to have children */
if (dwarf_child(cu_die, &child_die, &err) == DW_DLV_ERROR)
die("Error getting child of CU DIE\n");
/* Now go over all children DIEs */
while (1) {
int rc;
list_func_in_die(dbg, child_die);
rc = dwarf_siblingof(dbg, child_die, &child_die, &err);
if (rc == DW_DLV_ERROR)
die("Error getting sibling of DIE\n");
else if (rc == DW_DLV_NO_ENTRY)
break; /* done */
}
}
}
int main(int argc, char** argv)
{
Dwarf_Debug dbg = 0;
Dwarf_Error err;
const char* progname;
int fd = -1;
if (argc < 2) {
fprintf(stderr, "Expected a program name as argument\n");
return 1;
}
progname = argv[1];
if ((fd = open(progname, O_RDONLY)) < 0) {
perror("open");
return 1;
}
if (dwarf_init(fd, DW_DLC_READ, 0, 0, &dbg, &err) != DW_DLV_OK) {
fprintf(stderr, "Failed DWARF initialization\n");
return 1;
}
list_funcs_in_file(dbg);
if (dwarf_finish(dbg, &err) != DW_DLV_OK) {
fprintf(stderr, "Failed DWARF finalization\n");
return 1;
}
close(fd);
return 0;
}

Binary file not shown.

View File

@ -1,62 +0,0 @@
#include "jobserver/JobServer.hpp"
#include <iostream>
#include "experiments/AnExperiment.hpp"
#include <boost/thread.hpp>
fail::JobServer js;
using namespace std;
static const int nums = 30;
void exec_js(){
js.waitForConnections();
cout << "That's it.." << endl;
}
int main(int argc, char**argv){
cout << "Testing Jobserver" << endl;
boost::thread th(exec_js);
AnExperimentData* datas[nums];
for(int i = 1; i <= nums; i++){
datas[i] = new AnExperimentData;
datas[i]->setInput(i);
js.addExperiment(datas[i]);
usleep(100 * 1000); // 100 ms
}
js.setNoMoreExperiments();
// test results.
int f;
int res = 0;
int res2 = 0;
AnExperimentData * exp;
for(int i = 1; i <= nums; i++){
exp = static_cast<AnExperimentData*>( js.m_doneJobs.Dequeue() );
f = exp->getOutput();
// cout << ">>>>>>>>>>>>>>> Output: " << i << "^2 = " << f << endl;
res += f;
res2 += (i*i);
delete exp;
}
if (res == res2) {
cout << "TEST SUCCESSFUL FINISHED! " << "[" << res << "==" << res2 << "]" << endl;
}else{
cout << "TEST FAILED!" << " [" << res << "!=" << res2 << "]" << endl;
}
cout << "thats all, waiting for server thread. " << endl;
js.done();
th.join();
return 0;
}

View File

@ -1,42 +0,0 @@
#include <iostream>
#include "jobserver/JobClient.hpp"
#include "experiments/AnExperiment.hpp"
using namespace std;
using namespace fail;
int main(int argc, char** argv){
int portno;
JobClient* jc;
cout << "JobClient" << endl;
if(argc == 1){
jc = new JobClient();
}else if(argc == 3){
portno = atoi(argv[2]);
jc = new JobClient(argv[1], portno);
}else{
cerr << "usage: " << argv[0] << " hostname port" << endl;
return 1;
}
AnExperimentData exp;
while(1){
if(jc->getExperimentData(exp)){
/// Do some work.
cout << "Got data: " << exp.getInput() << endl;
int result = exp.getInput() * exp.getInput();
usleep(500 * 1000); // 500 ms
/// Send back.
exp.setOutput(result);
jc->sendResult(exp);
}else{
cout << "No (more) data for me :(" << endl;
break;
}
}
delete jc;
}

View File

@ -1,24 +0,0 @@
#include "ExperimentDataQueue.hpp"
#include <assert.h>
// FIXME: This is deprecated stuff. Remove it.
namespace fi
{
void ExperimentDataQueue::addData(ExperimentData* exp)
{
assert(exp != 0);
m_queue.push_front(exp);
}
ExperimentData* ExperimentDataQueue::getData()
{
ExperimentData* ret = m_queue.back();
m_queue.pop_back();
return ret;
}
}

View File

@ -1,55 +0,0 @@
/**
* \brief A queue for experiment data.
*
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
// FIXME: This is deprecated stuff. Remove it.
#ifndef __EXPERIMENT_DATA_QUEUE_H__
#define __EXPERIMENT_DATA_QUEUE_H__
#include <deque>
#include "ExperimentData.hpp"
namespace fi{
/**
* \class ExperimentDataQueue
* Class which manage ExperimentData in a queue.
*/
class ExperimentDataQueue
{
protected:
std::deque<ExperimentData*> m_queue;
public:
ExperimentDataQueue() {}
~ExperimentDataQueue() {}
/**
* Adds ExperimentData to the queue.
* @param exp ExperimentData that is to be added to the queue.
*/
void addData(ExperimentData* exp);
/**
* Returns an item from the queue
* @return the next element of the queue
*/
ExperimentData* getData();
/**
* Returns the number of elements in the queue
* @return the size of teh queue
*/
size_t size() const { return m_queue.size(); };
};
};
#endif //__EXPERIMENT_DATA_QUEUE_H__

View File

@ -1,16 +0,0 @@
// Author: Adrian Böckenkamp
// Date: 15.06.2011
// FIXME: This is deprecated stuff. Delete it.
#include "Signal.hpp"
namespace fi
{
std::auto_ptr<Signal> Signal::m_This;
Mutex Signal::m_InstanceMutex;
} // end-of-namespace: fi

View File

@ -1,135 +0,0 @@
#ifndef __SIGNAL_HPP__
#define __SIGNAL_HPP__
// FIXME: This is deprecated stuff. Delete it.
#include <cassert>
#include <memory>
#include <iostream>
#ifndef __puma
#include <boost/thread.hpp>
#include <boost/interprocess/sync/named_semaphore.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/mutex.hpp>
#endif
namespace fi
{
#ifndef __puma
typedef boost::mutex Mutex; // lock/unlock
typedef boost::mutex::scoped_lock ScopeLock; // use RAII with lock/unlock mechanism
typedef boost::condition_variable ConditionVariable; // wait/notify_one
#else
typedef int Mutex;
typedef int ScopeLock;
typedef int ConditionVariable;
#endif
// Simulate a "private" semaphore using boost-mechanisms:
class Semaphore
{
private:
Mutex m_Mutex;
ConditionVariable m_CondVar;
unsigned long m_Value;
public:
// Create a semaphore object based on a mutex and a condition variable
// and initialize it to value "init".
Semaphore(unsigned long init = 0) : m_Value(init) { }
void post()
{
ScopeLock lock(m_Mutex);
++m_Value; // increase semaphore value:
#ifndef __puma
m_CondVar.notify_one(); // wake up other thread, currently waiting on condition var.
#endif
}
void wait()
{
ScopeLock lock(m_Mutex);
#ifndef __puma
while(!m_Value) // "wait-if-zero"
m_CondVar.wait(lock);
#endif
--m_Value; // decrease semaphore value
}
};
class Signal
{
private:
static Mutex m_InstanceMutex; // used to sync calls to getInst()
static std::auto_ptr<Signal> m_This; // the one and only instance
Semaphore m_semBochs;
Semaphore m_semContr;
Semaphore m_semSimCtrl;
bool m_Locked; // prevent misuse of thread-sync
// Singleton class (forbid creation, copying and assignment):
Signal()
: m_semBochs(0), m_semContr(0),
m_semSimCtrl(0), m_Locked(false) { }
Signal(Signal const& s)
: m_semBochs(), m_semContr(),
m_semSimCtrl(), m_Locked(false) { } // never called.
Signal& operator=(Signal const&) { return *this; } // dito.
~Signal() { }
friend class std::auto_ptr<Signal>;
public:
static Signal& getInst()
{
ScopeLock lock(m_InstanceMutex); // lock/unlock handled by RAII principle
if(!m_This.get())
m_This.reset(new Signal());
return (*m_This);
}
// Called from Experiment-Controller class ("beyond Bochs"):
void lockExperiment()
{
assert(!m_Locked &&
"[Signal::lockExperiment]: lockExperiment called twice without calling unlockExperiment() in between.");
m_Locked = true;
m_semContr.wait(); // suspend experiment process
}
// Called from Experiment-Controller class ("beyond Bochs"):
void unlockExperiment()
{
assert(m_Locked &&
"[Signal::unlockExperiment]: unlockExperiment called twice without calling lockExperiment() in between.");
m_Locked = false;
m_semBochs.post(); // resume experiment (continue bochs simulation)
}
// Called from Advice-Code ("within Bochs") to trigger event occurrence:
void signalEvent()
{
m_semContr.post(); // Signal event (to Experiment-Controller)
m_semBochs.wait(); // Wait upon handling to finish
}
// Called from Experiment-Controller to allow simulation start:
void startSimulation()
{
m_semSimCtrl.post();
}
// Called from Bochs, directly after thread creation for Experiment-Controller:
// (This ensures that Bochs waits until the experiment has been set up in the
// Experiment-Controller.)
void waitForStartup()
{
m_semSimCtrl.wait();
}
};
} // end-of-namespace: fi
#endif /* __SIGNAL_HPP__ */

View File

@ -1,25 +0,0 @@
#include "SynchronizedExperimentDataQueue.hpp"
// FIXME: This file is not used. Delete it either.
namespace fi {
void SynchronizedExperimentDataQueue::addData(ExperimentData* exp){
//
m_sema_full.wait();
ExperimentDataQueue::addData(exp);
m_sema_empty.post();
//
}
ExperimentData* SynchronizedExperimentDataQueue::getData(){
//
m_sema_empty.wait();
return ExperimentDataQueue::getData();
m_sema_full.post();
//
}
};

View File

@ -1,57 +0,0 @@
/**
* \brief A queue for experiment data.
*
*
* \author Martin Hoffmann, Richard Hellwig
*
*/
// FIXME: This file is not used. Delete it.
#ifndef __SYNC_EXPERIMENT_DATA_QUEUE_H__
#define __SYNC_EXPERIMENT_DATA_QUEUE_H__
#include "ExperimentDataQueue.hpp"
#include "Signal.hpp"
namespace fi{
/**
* \class SynchronizedExperimentDataQueue
* Class which manage ExperimentData in a queue.
* Thread safe using semphores.
*/
class SynchronizedExperimentDataQueue : public ExperimentDataQueue
{
private:
/// There are maxSize elements in at a time
/// Or do we allow a really possibly huge queue?
Semaphore m_sema_full;
Semaphore m_sema_empty;
public:
SynchronizedExperimentDataQueue(int maxSize = 1024) : m_sema_full(maxSize), m_sema_empty(0) {}
~SynchronizedExperimentDataQueue() {}
/**
* Adds ExperimentData to the queue.
* @param exp ExperimentData that is to be added to the queue.
*/
void addData(ExperimentData* exp);
/**
* Returns an item from the queue
* @return the next element of the queue
*/
ExperimentData* getData();
/**
* Returns the number of elements in the queue
* @return the size of the queue
*/
size_t size() const { return m_queue.size(); };
};
};
#endif //__EXPERIMENT_DATA_QUEUE_H__