new experiment: ecos_kernel_test

git-svn-id: https://www4.informatik.uni-erlangen.de/i4svn/danceos/trunk/devel/fail@1426 8c4709b5-6ec9-48aa-a5cd-a96041d1645a
This commit is contained in:
chb
2012-07-05 14:37:38 +00:00
parent 48a83137fa
commit 596f4c0644
9 changed files with 1050 additions and 0 deletions

View File

@ -0,0 +1,33 @@
set(EXPERIMENT_NAME ecos_kernel_test)
set(EXPERIMENT_TYPE EcosKernelTestExperiment)
configure_file(../instantiate-experiment.ah.in
${CMAKE_CURRENT_BINARY_DIR}/instantiate-${EXPERIMENT_NAME}.ah @ONLY
)
## Setup desired protobuf descriptions HERE ##
set(MY_PROTOS
ecos_kernel_test.proto
)
set(MY_CAMPAIGN_SRCS
experiment.hpp
experiment.cc
campaign.hpp
campaign.cc
)
#### PROTOBUFS ####
find_package(Protobuf REQUIRED)
include_directories(${PROTOBUF_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_BINARY_DIR})
PROTOBUF_GENERATE_CPP(PROTO_SRCS PROTO_HDRS ${MY_PROTOS})
## Build library
add_library(${EXPERIMENT_NAME} ${PROTO_SRCS} ${PROTO_HDRS} ${MY_CAMPAIGN_SRCS})
add_dependencies(${EXPERIMENT_NAME} tracing)
## This is the example's campaign server distributing experiment parameters
add_executable(${EXPERIMENT_NAME}-server main.cc)
target_link_libraries(${EXPERIMENT_NAME}-server ${EXPERIMENT_NAME} fail ${PROTOBUF_LIBRARY} ${Boost_THREAD_LIBRARY})
install(TARGETS ${EXPERIMENT_NAME}-server RUNTIME DESTINATION bin)

View File

@ -0,0 +1,430 @@
#include <iostream>
#include <fstream>
#include <vector>
#include <map>
#include <boost/timer.hpp>
#include "campaign.hpp"
#include "experimentInfo.hpp"
#include "cpn/CampaignManager.hpp"
#include "util/Logger.hpp"
#include "util/ProtoStream.hpp"
#include "util/MemoryMap.hpp"
#include "ecc_region.hpp"
#include "../plugins/tracing/TracingPlugin.hpp"
//#define PRUNING_DEBUG_OUTPUT
using namespace std;
using namespace fail;
char const * const trace_filename = "trace.tc";
char const * const results_filename = "ecos_kernel_test.csv";
// equivalence class type: addr, [i1, i2]
// addr: byte to inject a bit-flip into
// [i1, i2]: interval of instruction numbers, counted from experiment
// begin
struct equivalence_class {
address_t data_address;
int instr1, instr2;
address_t instr2_absolute; // FIXME we could record them all here
};
bool EcosKernelTestCampaign::run()
{
Logger log("EcosKernelTest Campaign");
// non-destructive: due to the CSV header we can always manually recover
// from an accident (append mode)
ofstream results(results_filename, ios::out | ios::app);
if (!results.is_open()) {
log << "failed to open " << results_filename << endl;
return false;
}
log << "startup" << endl;
boost::timer t;
// load trace
ifstream tracef(trace_filename);
if (tracef.fail()) {
log << "couldn't open " << trace_filename << endl;
return false;
}
ProtoIStream ps(&tracef);
// a map of addresses of ECC protected objects
MemoryMap mm;
for (unsigned i = 0; i < sizeof(memoryMap)/sizeof(*memoryMap); ++i) {
mm.add(memoryMap[i][0], memoryMap[i][1]);
}
// set of equivalence classes that need one (rather: eight, one for
// each bit in that byte) experiment to determine them all
vector<equivalence_class> ecs_need_experiment;
// set of equivalence classes that need no experiment, because we know
// they'd be identical to the golden run
vector<equivalence_class> ecs_no_effect;
#if 0
equivalence_class current_ec;
// map for efficient access when results come in
map<EcosKernelTestExperimentData *, unsigned> experiment_ecs;
// experiment count
int count = 0;
// XXX do it the other way around: iterate over trace, search addresses
// -> one "open" EC for every address
// for every injection address ...
for (MemoryMap::iterator it = mm.begin(); it != mm.end(); ++it) {
//cerr << ".";
address_t data_address = *it;
current_ec.instr1 = 0;
int instr = 0;
address_t instr_absolute = 0; // FIXME this one probably should also be recorded ...
Trace_Event ev;
ps.reset();
// for every section in the trace between subsequent memory
// accesses to that address ...
while (ps.getNext(&ev) && instr < OOSTUBS_NUMINSTR) {
// instruction events just get counted
if (!ev.has_memaddr()) {
// new instruction
instr++;
instr_absolute = ev.ip();
continue;
// skip accesses to other data
// FIXME again, do it the other way around, and use mm.isMatching()!
} else if (ev.memaddr() + ev.width() <= data_address
|| ev.memaddr() > data_address) {
continue;
// skip zero-sized intervals: these can
// occur when an instruction accesses a
// memory location more than once
// (e.g., INC, CMPXCHG)
} else if (current_ec.instr1 > instr) {
continue;
}
// we now have an interval-terminating R/W
// event to the memaddr we're currently looking
// at:
// complete the equivalence interval
current_ec.instr2 = instr;
current_ec.instr2_absolute = instr_absolute;
current_ec.data_address = data_address;
if (ev.accesstype() == ev.READ) {
// a sequence ending with READ: we need
// to do one experiment to cover it
// completely
ecs_need_experiment.push_back(current_ec);
#ifdef PRUNING_DEBUG_OUTPUT
cerr << dec << "EX " << current_ec.instr1 << " " << current_ec.instr2 << " " << current_ec.data_address << "\n";
#endif
// instantly enqueue job: that way the job clients can already
// start working in parallel
EcosKernelTestExperimentData *d = new EcosKernelTestExperimentData;
// we pick the rightmost instruction in that interval
d->msg.set_instr_offset(current_ec.instr2);
d->msg.set_instr_address(current_ec.instr2_absolute);
d->msg.set_mem_addr(current_ec.data_address);
// store index into ecs_need_experiment
experiment_ecs[d] = ecs_need_experiment.size() - 1;
campaignmanager.addParam(d);
++count;
} else if (ev.accesstype() == ev.WRITE) {
// a sequence ending with WRITE: an
// injection anywhere here would have
// no effect.
ecs_no_effect.push_back(current_ec);
#ifdef PRUNING_DEBUG_OUTPUT
cerr << dec << "NE " << current_ec.instr1 << " " << current_ec.instr2 << " " << current_ec.data_address << "\n";
#endif
} else {
log << "WAT" << endl;
}
// next interval must start at next
// instruction; the aforementioned
// skipping mechanism wouldn't work
// otherwise
current_ec.instr1 = instr + 1;
}
// close the last interval:
// Why -1? In most cases it does not make sense to inject before the
// very last instruction, as we won't execute it anymore. This *only*
// makes sense if we also inject into parts of the result vector. This
// is not the case in this experiment, and with -1 we'll get a
// result comparable to the non-pruned campaign.
// XXX still true for checksum-oostubs?
current_ec.instr2 = instr - 1;
current_ec.instr2_absolute = 0; // unknown
current_ec.data_address = data_address;
// zero-sized? skip.
if (current_ec.instr1 > current_ec.instr2) {
continue;
}
// as the experiment ends, this byte is a "don't care":
ecs_no_effect.push_back(current_ec);
#ifdef PRUNING_DEBUG_OUTPUT
cerr << dec << "NE " << current_ec.instr1 << " " << current_ec.instr2 << " " << current_ec.data_address << "\n";
#endif
}
#else
// map for efficient access when results come in
map<EcosKernelTestExperimentData *, unsigned> experiment_ecs;
// map for keeping one "open" EC for every address
map<address_t, equivalence_class> open_ecs;
// experiment count
int count = 0;
// instruction counter within trace
int instr = 0;
// fill open_ecs with one EC for every address
for (MemoryMap::iterator it = mm.begin(); it != mm.end(); ++it) {
open_ecs[*it].instr1 = instr;
}
// absolute address of current trace instruction
address_t instr_absolute = 0; // FIXME this one probably should also be recorded ...
Trace_Event ev;
// for every event in the trace ...
while (ps.getNext(&ev) && instr < ECOS_NUMINSTR) {
// instruction events just get counted
if (!ev.has_memaddr()) {
// new instruction
instr++;
instr_absolute = ev.ip();
continue;
}
// for each single byte in this memory access ...
for (address_t data_address = ev.memaddr(); data_address < ev.memaddr() + ev.width();
++data_address) {
// skip accesses to data outside our map of interesting addresses
map<address_t, equivalence_class>::iterator current_ec_it;
if ((current_ec_it = open_ecs.find(data_address)) == open_ecs.end()) {
continue;
}
equivalence_class& current_ec = current_ec_it->second;
// skip zero-sized intervals: these can occur when an instruction
// accesses a memory location more than once (e.g., INC, CMPXCHG)
if (current_ec.instr1 > instr) {
continue;
}
// we now have an interval-terminating R/W event to the memaddr
// we're currently looking at:
// complete the equivalence interval
current_ec.instr2 = instr;
current_ec.instr2_absolute = instr_absolute;
current_ec.data_address = data_address;
if (ev.accesstype() == ev.READ) {
// a sequence ending with READ: we need to do one experiment to
// cover it completely
ecs_need_experiment.push_back(current_ec);
#ifdef PRUNING_DEBUG_OUTPUT
cerr << dec << "EX " << current_ec.instr1 << " " << current_ec.instr2 << " " << current_ec.data_address << "\n";
#endif
// instantly enqueue job: that way the job clients can already
// start working in parallel
EcosKernelTestExperimentData *d = new EcosKernelTestExperimentData;
// we pick the rightmost instruction in that interval
d->msg.set_instr_offset(current_ec.instr2);
d->msg.set_instr_address(current_ec.instr2_absolute);
d->msg.set_mem_addr(current_ec.data_address);
// store index into ecs_need_experiment
experiment_ecs[d] = ecs_need_experiment.size() - 1;
campaignmanager.addParam(d);
++count;
} else if (ev.accesstype() == ev.WRITE) {
// a sequence ending with WRITE: an injection anywhere here
// would have no effect.
ecs_no_effect.push_back(current_ec);
#ifdef PRUNING_DEBUG_OUTPUT
cerr << dec << "NE " << current_ec.instr1 << " " << current_ec.instr2 << " " << current_ec.data_address << "\n";
#endif
} else {
log << "WAT" << endl;
}
// next interval must start at next instruction; the aforementioned
// skipping mechanism wouldn't work otherwise
current_ec.instr1 = instr + 1;
}
}
// close all open intervals (right end of the fault-space)
for (map<address_t, equivalence_class>::iterator current_ec_it = open_ecs.begin();
current_ec_it != open_ecs.end(); ++current_ec_it) {
address_t data_address = current_ec_it->first;
equivalence_class& current_ec = current_ec_it->second;
// Why -1? In most cases it does not make sense to inject before the
// very last instruction, as we won't execute it anymore. This *only*
// makes sense if we also inject into parts of the result vector. This
// is not the case in this experiment, and with -1 we'll get a result
// comparable to the non-pruned campaign.
// XXX still true for checksum-oostubs?
current_ec.instr2 = instr - 1;
current_ec.instr2_absolute = 0; // unknown
current_ec.data_address = data_address;
// zero-sized? skip.
if (current_ec.instr1 > current_ec.instr2) {
continue;
}
#if 0
// the run continues after the FI window, so do this experiment
// XXX this creates at least one experiment for *every* bit!
// fix: full trace, limited FI window
ecs_need_experiment.push_back(current_ec);
#ifdef PRUNING_DEBUG_OUTPUT
cerr << dec << "EX " << current_ec.instr1 << " " << current_ec.instr2 << " " << current_ec.data_address << "\n";
#endif
// FIXME copy/paste, encapsulate this:
// instantly enqueue job: that way the job clients can already start
// working in parallel
EcosKernelTestExperimentData *d = new EcosKernelTestExperimentData;
// we pick the rightmost instruction in that interval
d->msg.set_instr_offset(current_ec.instr2);
//d->msg.set_instr_address(current_ec.instr2_absolute); // unknown!
d->msg.set_mem_addr(current_ec.data_address);
// store index into ecs_need_experiment
experiment_ecs[d] = ecs_need_experiment.size() - 1;
campaignmanager.addParam(d);
++count;
#else
// as the experiment ends, this byte is a "don't care":
ecs_no_effect.push_back(current_ec);
#ifdef PRUNING_DEBUG_OUTPUT
cerr << dec << "NE " << current_ec.instr1 << " " << current_ec.instr2 << " " << current_ec.data_address << "\n";
#endif
#endif
}
// conserve some memory
open_ecs.clear();
#endif
campaignmanager.noMoreParameters();
log << "done enqueueing parameter sets (" << count << ")." << endl;
log << "equivalence classes generated:"
<< " need_experiment = " << ecs_need_experiment.size()
<< " no_effect = " << ecs_no_effect.size() << endl;
// statistics
unsigned long num_dumb_experiments = 0;
for (vector<equivalence_class>::const_iterator it = ecs_need_experiment.begin();
it != ecs_need_experiment.end(); ++it) {
num_dumb_experiments += (*it).instr2 - (*it).instr1 + 1;
}
for (vector<equivalence_class>::const_iterator it = ecs_no_effect.begin();
it != ecs_no_effect.end(); ++it) {
num_dumb_experiments += (*it).instr2 - (*it).instr1 + 1;
}
log << "pruning: reduced " << num_dumb_experiments * 8 <<
" experiments to " << ecs_need_experiment.size() * 8 << endl;
// CSV header
results << "ec_instr1\tec_instr2\tec_instr2_absolute\tec_data_address\tbitnr\tbit_width\tresulttype\tecos_test_result\tfinish_reached\tlatest_ip\terror_corrected\tdetails" << endl;
// store no-effect "experiment" results
for (vector<equivalence_class>::const_iterator it = ecs_no_effect.begin();
it != ecs_no_effect.end(); ++it) {
results
<< (*it).instr1 << "\t"
<< (*it).instr2 << "\t"
<< (*it).instr2_absolute << "\t" // incorrect in all but one case!
<< (*it).data_address << "\t"
<< "0\t" // this entry starts at bit 0 ...
<< "8\t" // ... and is 8 bits wide
<< "1\t"
<< "1\t" // dummy value (PASS): we didn't do any real experiments
<< "1\t"
<< "99\t" // dummy value: we didn't do any real experiments
<< "0\t\n";
}
// collect results
EcosKernelTestExperimentData *res;
int rescount = 0;
while ((res = static_cast<EcosKernelTestExperimentData *>(campaignmanager.getDone()))) {
rescount++;
map<EcosKernelTestExperimentData *, unsigned>::iterator it =
experiment_ecs.find(res);
if (it == experiment_ecs.end()) {
results << "WTF, didn't find res!" << endl;
log << "WTF, didn't find res!" << endl;
continue;
}
equivalence_class &ec = ecs_need_experiment[it->second];
// sanity check
if (ec.instr2 != res->msg.instr_offset()) {
results << "ec.instr2 != instr_offset" << endl;
log << "ec.instr2 != instr_offset" << endl;
}
if (res->msg.result_size() != 8) {
results << "result_size " << res->msg.result_size()
<< " instr2 " << ec.instr2
<< " data_address " << ec.data_address << endl;
log << "result_size " << res->msg.result_size() << endl;
}
// one job contains 8 experiments
for (int idx = 0; idx < res->msg.result_size(); ++idx) {
results
// repeated for all single experiments:
<< ec.instr1 << "\t"
<< ec.instr2 << "\t"
<< ec.instr2_absolute << "\t"
<< ec.data_address << "\t"
// individual results:
<< res->msg.result(idx).bit_offset() << "\t"
<< "1\t" // 1 bit wide
<< res->msg.result(idx).resulttype() << "\t"
<< res->msg.result(idx).ecos_test_result() << "\t"
<< res->msg.result(idx).finish_reached() << "\t"
<< res->msg.result(idx).latest_ip() << "\t"
<< res->msg.result(idx).error_corrected() << "\t"
<< res->msg.result(idx).details() << "\n";
}
//delete res; // currently racy if jobs are reassigned
}
results.close();
log << "done. sent " << count << " received " << rescount << endl;
log << "elapsed: " << t.elapsed() << "s" << endl;
return true;
}

View File

@ -0,0 +1,17 @@
#pragma once
#include "cpn/Campaign.hpp"
#include "comm/ExperimentData.hpp"
#include "ecos_kernel_test.pb.h"
class EcosKernelTestExperimentData : public fail::ExperimentData {
public:
EcosKernelTestProtoMsg msg;
EcosKernelTestExperimentData() : fail::ExperimentData(&msg) {}
};
class EcosKernelTestCampaign : public fail::Campaign {
public:
virtual bool run();
};

View File

@ -0,0 +1,82 @@
// generated from STEP 0 output with region2array.sh
static const unsigned memoryMap[][2] = {
{0x9bec, 4},
{0xade0, 4},
{0xade4, 4},
{0xade8, 4},
{0xadf0, 4},
{0xadf4, 4},
{0xadf8, 4},
{0xadfc, 4},
{0xae00, 4},
{0xae04, 4},
{0xae08, 4},
{0xae0c, 4},
{0xae10, 4},
{0xae14, 2},
{0xae44, 4},
{0xae48, 4},
{0xae4c, 24},
{0xae64, 4},
{0xae68, 4},
{0xae6c, 4},
{0xae70, 4},
{0xae74, 4},
{0xae7c, 4},
{0xae80, 4},
{0xae84, 4},
{0xae88, 4},
{0xae8c, 4},
{0xae90, 4},
{0xae94, 4},
{0xae98, 4},
{0xae9c, 4},
{0xaea0, 2},
{0xaed0, 4},
{0xaed4, 4},
{0xaed8, 24},
{0xaef0, 4},
{0xaef4, 4},
{0xca48, 4},
{0xca60, 4},
{0xca64, 4},
{0xca68, 4},
{0xca70, 4},
{0xca74, 4},
{0xca78, 4},
{0xca7c, 4},
{0xca80, 4},
{0xca84, 4},
{0xca88, 4},
{0xca8c, 4},
{0xca90, 4},
{0xca94, 2},
{0xcac4, 4},
{0xcac8, 4},
{0xcacc, 24},
{0xcae4, 4},
{0xcae8, 4},
{0xd314, 4},
{0xd318, 4},
{0xd320, 4},
{0xd324, 128},
{0xd3a4, 4},
{0xd3c0, 4},
{0xd3c4, 4},
{0xd3c8, 4},
{0xd3d0, 4},
{0xd3d4, 4},
{0xd3d8, 4},
{0xd3dc, 4},
{0xd3e0, 4},
{0xd3e4, 4},
{0xd3e8, 4},
{0xd3ec, 4},
{0xd3f0, 4},
{0xd3f4, 2},
{0xd424, 4},
{0xd428, 4},
{0xd42c, 24},
{0xd444, 4},
{0xd448, 4},
};

View File

@ -0,0 +1,57 @@
message EcosKernelTestProtoMsg {
// Input: experiment parameters
// (client executes 8 experiments, one for each bit at mem_addr)
// FI at #instructions from experiment start
required int32 instr_offset = 1;
// the exact IP value at this point in time (from golden run)
optional int32 instr_address = 2; // for sanity checks
// address of the byte to inject bit-flips
required int32 mem_addr = 3;
// ----------------------------------------------------
// Output: experiment results
// IP where we did the injection: for debugging purposes, must be identical
// to instr_address
optional int32 injection_ip = 4;
repeated group Result = 5 {
// single experiment bit offset
required int32 bit_offset = 1;
// result type:
// FINISHED = planned number of instructions were executed
// TRAP = premature guest "crash"
// OUTSIDE = IP left text segment
enum ResultType {
FINISHED = 1;
TRAP = 2;
OUTSIDE = 3;
DETECTED = 4;
TIMEOUT = 5;
UNKNOWN = 6;
}
required ResultType resulttype = 2;
// especially interesting for TRAP/UNKNOWN: latest IP
required uint32 latest_ip = 3;
// test results
enum EcosTestResultType {
PASS = 1;
FAIL = 2;
}
required EcosTestResultType ecos_test_result = 4;
// was finish() ever reached?
optional bool finish_reached = 5;
// did ECC correct the fault?
optional int32 error_corrected = 6;
// optional textual description of what happened
optional string details = 7;
}
}

View File

@ -0,0 +1,364 @@
#include <iostream>
#include <fstream>
// getpid
#include <sys/types.h>
#include <unistd.h>
#include "util/Logger.hpp"
#include "experiment.hpp"
#include "experimentInfo.hpp"
#include "campaign.hpp"
#include "sal/SALConfig.hpp"
#include "sal/SALInst.hpp"
#include "sal/Memory.hpp"
#include "sal/bochs/BochsRegister.hpp"
#include "sal/bochs/BochsEvents.hpp"
#include "sal/Event.hpp"
// You need to have the tracing plugin enabled for this
#include "../plugins/tracing/TracingPlugin.hpp"
#include "ecc_region.hpp"
#define LOCAL 0
using namespace std;
using namespace fail;
// Check if configuration dependencies are satisfied:
#if !defined(CONFIG_EVENT_BREAKPOINTS) || !defined(CONFIG_SR_RESTORE) || \
!defined(CONFIG_SR_SAVE) || !defined(CONFIG_EVENT_TRAP)
#error This experiment needs: breakpoints, traps, save, and restore. Enable these in the configuration.
#endif
bool EcosKernelTestExperiment::run()
{
char const *statename = "ecos_kernel_test.state";
Logger log("eCos Kernel Test", false);
BPSingleEvent bp;
log << "startup" << endl;
#if 0
// STEP 0: record memory map with addresses of "interesting" objects
GuestEvent g;
while (true) {
simulator.addEventAndWait(&g);
cout << g.getData() << flush;
}
#elif 0
// STEP 1: run until interesting function starts, and save state
bp.setWatchInstructionPointer(ECOS_FUNC_ENTRY);
simulator.addEventAndWait(&bp);
log << "test function entry reached, saving state" << endl;
log << "EIP = " << hex << bp.getTriggerInstructionPointer() << endl;
//log << "error_corrected = " << dec << ((int)simulator.getMemoryManager().getByte(OOSTUBS_ERROR_CORRECTED)) << endl;
simulator.save(statename);
assert(bp.getTriggerInstructionPointer() == ECOS_FUNC_ENTRY);
assert(simulator.getRegisterManager().getInstructionPointer() == ECOS_FUNC_ENTRY);
#elif 0
// STEP 2: record trace for fault-space pruning
log << "restoring state" << endl;
simulator.restore(statename);
log << "EIP = " << hex << simulator.getRegisterManager().getInstructionPointer() << endl;
assert(simulator.getRegisterManager().getInstructionPointer() == ECOS_FUNC_ENTRY);
log << "enabling tracing" << endl;
TracingPlugin tp;
// restrict memory access logging to injection target
MemoryMap mm;
for (unsigned i = 0; i < sizeof(memoryMap)/sizeof(*memoryMap); ++i) {
mm.add(memoryMap[i][0], memoryMap[i][1]);
}
tp.restrictMemoryAddresses(&mm);
// record trace
char const *tracefile = "trace.tc";
ofstream of(tracefile);
tp.setTraceFile(&of);
// this must be done *after* configuring the plugin:
simulator.addFlow(&tp);
#if 1
// trace WEATHER_NUMITER_TRACING measurement loop iterations
// -> calibration
bp.setWatchInstructionPointer(ECOS_FUNC_FINISH);
//bp.setCounter(WEATHER_NUMITER_TRACING); // single event, only
#else
// FIXME this doesn't work properly: trace is one instruction too short as
// tp is removed before all events were delivered
// trace WEATHER_NUMINSTR_TRACING instructions
// -> campaign-ready traces with identical lengths
bp.setWatchInstructionPointer(ANY_ADDR);
bp.setCounter(OOSTUBS_NUMINSTR);
#endif
simulator.addEvent(&bp);
BPSingleEvent ev_count(ANY_ADDR);
simulator.addEvent(&ev_count);
// count instructions
// FIXME add SAL functionality for this?
int instr_counter = 0;
while (simulator.waitAny() == &ev_count) {
++instr_counter;
simulator.addEvent(&ev_count);
}
log << dec << "tracing finished after " << instr_counter << " instructions" << endl;
simulator.removeFlow(&tp);
// serialize trace to file
if (of.fail()) {
log << "failed to write " << tracefile << endl;
simulator.clearEvents(this);
return false;
}
of.close();
log << "trace written to " << tracefile << endl;
#elif 1
// STEP 3: The actual experiment.
#if !LOCAL
for (int i = 0; i < 400; ++i) { // more than 400 will be very slow (500 is max)
#endif
// get an experiment parameter set
log << "asking job server for experiment parameters" << endl;
EcosKernelTestExperimentData param;
#if !LOCAL
if (!m_jc.getParam(param)) {
log << "Dying." << endl;
// communicate that we were told to die
simulator.terminate(1);
}
#else
// XXX debug
param.msg.set_instr_offset(7462);
//param.msg.set_instr_address(12345);
param.msg.set_mem_addr(44540);
#endif
int id = param.getWorkloadID();
int instr_offset = param.msg.instr_offset();
int mem_addr = param.msg.mem_addr();
// for each job we're actually doing *8* experiments (one for each bit)
for (int bit_offset = 0; bit_offset < 8; ++bit_offset) {
// 8 results in one job
EcosKernelTestProtoMsg_Result *result = param.msg.add_result();
result->set_bit_offset(bit_offset);
log << dec << "job " << id << " instr " << instr_offset
<< " mem " << mem_addr << "+" << bit_offset << endl;
log << "restoring state" << endl;
simulator.restore(statename);
// XXX debug
/*
stringstream fname;
fname << "job." << ::getpid();
ofstream job(fname.str().c_str());
job << "job " << id << " instr " << instr_offset << " (" << param.msg.instr_address() << ") mem " << mem_addr << "+" << bit_offset << endl;
job.close();
*/
// reaching finish() could happen before OR after FI
BPSingleEvent func_finish(ECOS_FUNC_FINISH);
simulator.addEvent(&func_finish);
bool finish_reached = false;
// no need to wait if offset is 0
if (instr_offset > 0) {
// XXX could be improved with intermediate states (reducing runtime until injection)
bp.setWatchInstructionPointer(ANY_ADDR);
bp.setCounter(instr_offset);
simulator.addEvent(&bp);
// finish() before FI?
if (simulator.waitAny() == &func_finish) {
finish_reached = true;
log << "experiment reached finish() before FI" << endl;
// wait for bp
simulator.waitAny();
//TODO: why wait here? it seems that something went completely wrong?
}
}
// --- fault injection ---
MemoryManager& mm = simulator.getMemoryManager();
byte_t data = mm.getByte(mem_addr);
byte_t newdata = data ^ (1 << bit_offset);
mm.setByte(mem_addr, newdata);
// note at what IP we did it
int32_t injection_ip = simulator.getRegisterManager().getInstructionPointer();
param.msg.set_injection_ip(injection_ip);
log << "fault injected @ ip " << injection_ip
<< " 0x" << hex << ((int)data) << " -> 0x" << ((int)newdata) << endl;
// sanity check
if (param.msg.has_instr_address() &&
injection_ip != param.msg.instr_address()) {
stringstream ss;
ss << "SANITY CHECK FAILED: " << injection_ip
<< " != " << param.msg.instr_address();
log << ss.str() << endl;
result->set_resulttype(result->UNKNOWN);
result->set_latest_ip(injection_ip);
result->set_details(ss.str());
simulator.clearEvents();
continue;
}
// --- aftermath ---
// possible outcomes:
// - trap, "crash"
// - jump outside text segment
// - (XXX unaligned jump inside text segment)
// - (XXX weird instructions?)
// - (XXX results displayed?)
// - reaches THE END
// - error detected, stop
// additional info:
// - #loop iterations before/after FI
// - (XXX "sane" display?)
// catch traps as "extraordinary" ending
TrapEvent ev_trap(ANY_TRAP);
simulator.addEvent(&ev_trap);
// jump outside text segment
BPRangeEvent ev_below_text(ANY_ADDR, ECOS_TEXT_START - 1);
BPRangeEvent ev_beyond_text(ECOS_TEXT_END + 1, ANY_ADDR);
simulator.addEvent(&ev_below_text);
simulator.addEvent(&ev_beyond_text);
// timeout (e.g., stuck in a HLT instruction)
// 10000us = 500000 instructions
TimerEvent ev_timeout(500000);
simulator.addEvent(&ev_timeout);
// remaining instructions until "normal" ending
BPSingleEvent ev_end(ANY_ADDR);
ev_end.setCounter(ECOS_NUMINSTR + ECOS_RECOVERYINSTR - instr_offset);
simulator.addEvent(&ev_end);
// eCos' test output function, which will show if the test PASSed or FAILed
BPSingleEvent func_test_output(ECOS_FUNC_TEST_OUTPUT);
simulator.addEvent(&func_test_output);
#if LOCAL && 0
// XXX debug
log << "enabling tracing" << endl;
TracingPlugin tp;
tp.setLogIPOnly(true);
tp.setOstream(&cout);
// this must be done *after* configuring the plugin:
simulator.addFlow(&tp);
#endif
BaseEvent* ev = simulator.waitAny();
bool ecos_test_passed = false;
bool ecos_test_failed = false;
while ( (ev == &func_test_output) || (ev == &func_finish) ) {
// Do we reach finish() while waiting for ev_trap/ev_done?
if (ev == &func_finish) {
finish_reached = true;
log << "experiment reached finish()" << endl;
}
else if(ev == &func_test_output) {
// 1st argument of cyg_test_output shows what has happened (FAIL or PASS)
address_t stack_ptr = simulator.getRegisterManager().getStackPointer(); // esp
int32_t cyg_test_output_argument = simulator.getMemoryManager().getByte(stack_ptr + 4); // 1st argument is at esp+4
log << "cyg_test_output_argument (#1): " << cyg_test_output_argument << endl;
/*
typedef enum {
CYGNUM_TEST_FAIL,
CYGNUM_TEST_PASS,
CYGNUM_TEST_EXIT,
CYGNUM_TEST_INFO,
CYGNUM_TEST_GDBCMD,
CYGNUM_TEST_NA
} Cyg_test_code;
*/
if (cyg_test_output_argument == 0) {
ecos_test_failed = true;
} else if (cyg_test_output_argument == 1) {
ecos_test_passed = true;
}
}
// wait for ev_trap/ev_done
ev = simulator.waitAny();
}
// record latest IP regardless of result
result->set_latest_ip(simulator.getRegisterManager().getInstructionPointer());
// record finish_reached and error_corrected regardless of result
result->set_finish_reached(finish_reached);
int32_t error_corrected = simulator.getMemoryManager().getByte(ECOS_ERROR_CORRECTED);
result->set_error_corrected(error_corrected);
// record ecos_test_result
if (ecos_test_failed) {
result->set_ecos_test_result(result->FAIL);
} else if (ecos_test_passed) {
result->set_ecos_test_result(result->PASS);
} else {
result->set_ecos_test_result(result->FAIL);
}
if (ev == &ev_end) {
log << dec << "Result FINISHED" << endl;
result->set_resulttype(result->FINISHED);
} else if (ev == &ev_timeout) {
log << "Result TIMEOUT" << endl;
result->set_resulttype(result->TIMEOUT);
} else if (ev == &ev_below_text || ev == &ev_beyond_text) {
log << "Result OUTSIDE" << endl;
result->set_resulttype(result->OUTSIDE);
} else if (ev == &ev_trap) {
log << dec << "Result TRAP #" << ev_trap.getTriggerNumber() << endl;
result->set_resulttype(result->TRAP);
stringstream ss;
ss << ev_trap.getTriggerNumber();
result->set_details(ss.str());
} else {
log << "Result WTF?" << endl;
result->set_resulttype(result->UNKNOWN);
stringstream ss;
ss << "eventid " << ev->getId() << " EIP " << simulator.getRegisterManager().getInstructionPointer();
result->set_details(ss.str());
}
// explicitly remove all events before we leave their scope
// FIXME event destructors should remove them from the queues
simulator.clearEvents();
}
// sanity check: do we have exactly 8 results?
if (param.msg.result_size() != 8) {
log << "WTF? param.msg.result_size() != 8" << endl;
} else {
#if !LOCAL
m_jc.sendResult(param);
#endif
}
#if !LOCAL
}
#endif
#endif
// Explicitly terminate, or the simulator will continue to run.
simulator.terminate();
}

View File

@ -0,0 +1,12 @@
#pragma once
#include "efw/ExperimentFlow.hpp"
#include "efw/JobClient.hpp"
class EcosKernelTestExperiment : public fail::ExperimentFlow {
fail::JobClient m_jc;
public:
EcosKernelTestExperiment() : m_jc("ios.cs.tu-dortmund.de") {}
bool run();
};

View File

@ -0,0 +1,40 @@
#pragma once
// FIXME autogenerate this
#if 1 // with ECC
// the task function's entry address:
// nm -C thread1 | fgrep cyg_start
#define ECOS_FUNC_ENTRY 0x00003cc0
// empty function that is called explicitly when the experiment finished
// nm -C thread1 | fgrep cyg_test_exit
#define ECOS_FUNC_FINISH 0x000058dc
// nm -C thread1 | fgrep "cyg_test_output"
#define ECOS_FUNC_TEST_OUTPUT 0x000058e4
// nm -C thread1 | grep "_[se]text"
#define ECOS_TEXT_START 0x00003000
#define ECOS_TEXT_END 0x000092ce
// number of instructions the target executes under non-error conditions from ENTRY to DONE:
// (result of experiment's step #2)
#define ECOS_NUMINSTR 12390
// number of instructions that are executed additionally for error corrections
// (this is a rough guess ... TODO)
#define ECOS_RECOVERYINSTR 0x2000
// the variable that's increased if ECC corrects an error:
// nm -C thread1|fgrep errors_corrected
#define ECOS_ERROR_CORRECTED 0x0010adec //FIXME TODO XXX
#else // without ECC
#define COOL_ECC_FUNC_ENTRY 0x00200a90
#define COOL_ECC_CALCDONE 0x00200ab7
#define COOL_ECC_NUMINSTR 97
#define COOL_ECC_OBJUNDERTEST 0x0021263c
#define COOL_ECC_OBJUNDERTEST_SIZE 10
#define COOL_ECC_ERROR_CORRECTED 0x002127b0 // dummy
#endif

View File

@ -0,0 +1,15 @@
#include <iostream>
#include <cstdlib>
#include "cpn/CampaignManager.hpp"
#include "campaign.hpp"
int main(int argc, char **argv)
{
EcosKernelTestCampaign c;
if (fail::campaignmanager.runCampaign(&c)) {
return 0;
} else {
return 1;
}
}