Fail* directories reorganized, Code-cleanup (-> coding-style), Typos+comments fixed.

git-svn-id: https://www4.informatik.uni-erlangen.de/i4svn/danceos/trunk/devel/fail@1321 8c4709b5-6ec9-48aa-a5cd-a96041d1645a
This commit is contained in:
adrian
2012-06-08 20:09:43 +00:00
parent d474a5b952
commit 2575604b41
866 changed files with 1848 additions and 1879 deletions

View File

@ -0,0 +1,25 @@
/**
* \brief Type definitions and configuration settings for
* the Bochs simulator.
*/
#ifndef __BOCHS_CONFIG_HPP__
#define __BOCHS_CONFIG_HPP__
#include "bochs.h"
#include "config.h"
namespace fail {
typedef bx_address guest_address_t; //!< the guest memory address type
typedef Bit8u* host_address_t; //!< the host memory address type
#if BX_SUPPORT_X86_64
typedef Bit64u register_data_t; //!< register data type (64 bit)
#else
typedef Bit32u register_data_t; //!< register data type (32 bit)
#endif
typedef int timer_t; //!< type of timer IDs
} // end-of-namespace: fail
#endif // __BOCHS_CONFIG_HPP__

View File

@ -0,0 +1,322 @@
#include <sstream>
#include "BochsController.hpp"
#include "BochsMemory.hpp"
#include "BochsRegister.hpp"
#include "../Register.hpp"
#include "../SALInst.hpp"
namespace fail {
#ifdef DANCEOS_RESTORE
bx_bool restore_bochs_request = false;
bx_bool save_bochs_request = false;
std::string sr_path = "";
#endif
bx_bool reboot_bochs_request = false;
bx_bool interrupt_injection_request = false;
int interrupt_to_fire = -1;
BochsController::BochsController()
: SimulatorController(new BochsRegisterManager(), new BochsMemoryManager())
{
// -------------------------------------
// Add the general purpose register:
#if BX_SUPPORT_X86_64
// -- 64 bit register --
const std::string names[] = { "RAX", "RCX", "RDX", "RBX", "RSP", "RBP", "RSI",
"RDI", "R8", "R9", "R10", "R11", "R12", "R13",
"R14", "R15" };
for(unsigned short i = 0; i < 16; i++)
{
BxGPReg* pReg = new BxGPReg(i, 64, &(BX_CPU(0)->gen_reg[i].rrx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#else
// -- 32 bit register --
const std::string names[] = { "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI",
"EDI" };
for(unsigned short i = 0; i < 8; i++)
{
BxGPReg* pReg = new BxGPReg(i, 32, &(BX_CPU(0)->gen_reg[i].dword.erx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#endif // BX_SUPPORT_X86_64
#ifdef DEBUG
m_Regularity = 0; // disabled
m_Counter = 0;
m_pDest = NULL;
#endif
// -------------------------------------
// Add the Program counter register:
#if BX_SUPPORT_X86_64
BxPCReg* pPCReg = new BxPCReg(RID_PC, 64, &(BX_CPU(0)->gen_reg[BX_64BIT_REG_RIP].rrx));
pPCReg->setName("RIP");
#else
BxPCReg* pPCReg = new BxPCReg(RID_PC, 32, &(BX_CPU(0)->gen_reg[BX_32BIT_REG_EIP].dword.erx));
pPCReg->setName("EIP");
#endif // BX_SUPPORT_X86_64
// -------------------------------------
// Add the Status register (x86 cpu FLAGS):
BxFlagsReg* pFlagReg = new BxFlagsReg(RID_FLAGS, reinterpret_cast<regdata_t*>(&(BX_CPU(0)->eflags)));
// Note: "eflags" is (always) of type Bit32u which matches the regdata_t only in
// case of the 32 bit version (id est !BX_SUPPORT_X86_64). Therefor we need
// to ensure to assign only 32 bit to the Bochs internal register variable
// (see SAL/bochs/BochsRegister.hpp, setData) if we are in 64 bit mode.
pFlagReg->setName("FLAGS");
m_Regs->add(pFlagReg);
m_Regs->add(pPCReg);
}
BochsController::~BochsController()
{
for(RegisterManager::iterator it = m_Regs->begin(); it != m_Regs->end(); it++)
delete (*it); // free the memory, allocated in the constructor
m_Regs->clear();
delete m_Regs;
delete m_Mem;
}
#ifdef DEBUG
void BochsController::dbgEnableInstrPtrOutput(unsigned regularity, std::ostream* dest)
{
m_Regularity = regularity;
m_pDest = dest;
m_Counter = 0;
}
#endif // DEBUG
void BochsController::onInstrPtrChanged(address_t instrPtr, address_t address_space)
{
#if 0
//the original code - performs magnitudes worse than
//the code below and is responsible for most (~87 per cent)
//of the slowdown of FailBochs
#ifdef DEBUG
if(m_Regularity != 0 && ++m_Counter % m_Regularity == 0)
(*m_pDest) << "0x" << std::hex << instrPtr;
#endif
// Check for active breakpoint-events:
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Maybe we need to improve the performance of this check.
BPEvent* pEvBreakpt = dynamic_cast<BPEvent*>(*it);
if(pEvBreakpt && pEvBreakpt->isMatching(instrPtr, address_space))
{
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
it++;
}
m_EvList.fireActiveEvents();
#endif
//this code is highly optimised for the average case, so it me appear a bit ugly
bool do_fire = false;
unsigned i = 0;
BufferCache<BPEvent*> *buffer_cache = m_EvList.getBPBuffer();
while(i < buffer_cache->getCount()) {
BPEvent *pEvBreakpt = buffer_cache->get(i);
if(pEvBreakpt->isMatching(instrPtr, address_space)) {
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
//transition to STL: find the element we are working on in the Event List
EventList::iterator it = std::find(m_EvList.begin(), m_EvList.end(), pEvBreakpt);
it = m_EvList.makeActive(it);
//find out how much elements need to be skipped to get in sync again
//(should be one or none, the loop is just to make sure)
for(unsigned j = i; j < buffer_cache->getCount(); j++) {
if(buffer_cache->get(j) == (*it)) {
i = j;
break;
}
}
// we now know we need to fire the active events - usually we do not have to
do_fire = true;
// "i" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip loop increment
}
i++;
}
if(do_fire)
m_EvList.fireActiveEvents();
// Note: SimulatorController::onBreakpointEvent will not be invoked in this
// implementation.
}
void BochsController::onIOPortEvent(unsigned char data, unsigned port, bool out) {
// Check for active breakpoint-events:
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Maybe we need to improve the performance of this check.
IOPortEvent* pIOPt = dynamic_cast<IOPortEvent*>(*it);
if(pIOPt && pIOPt->isMatching(port, out))
{
pIOPt->setData(data);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
it++;
}
m_EvList.fireActiveEvents();
// Note: SimulatorController::onBreakpointEvent will not be invoked in this
// implementation.
}
void BochsController::save(const std::string& path)
{
int stat;
stat = mkdir(path.c_str(), 0777);
if(!(stat == 0 || errno == EEXIST))
std::cout << "[FAIL] Can not create target-directory to save!" << std::endl;
// TODO: (Non-)Verbose-Mode? Log-level? Maybe better: use return value to indicate failure?
save_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::saveDone()
{
save_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::restore(const std::string& path)
{
clearEvents();
restore_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::restoreDone()
{
restore_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::reboot()
{
clearEvents();
reboot_bochs_request = true;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::rebootDone()
{
reboot_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::fireInterrupt(unsigned irq)
{
interrupt_injection_request = true;
interrupt_to_fire = irq;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::fireInterruptDone()
{
interrupt_injection_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::m_onTimerTrigger(void* thisPtr)
{
// FIXME: The timer logic can be modified to use only one timer in Bochs.
// (For now, this suffices.)
TimerEvent* pTmEv = static_cast<TimerEvent*>(thisPtr);
// Check for a matching TimerEvent. (In fact, we are only
// interessted in the iterator pointing at pTmEv.):
EventList::iterator it = std::find(simulator.m_EvList.begin(),
simulator.m_EvList.end(), pTmEv);
// TODO: This has O(|m_EvList|) time complexity. We can further improve this
// by creating a method such that makeActive(pTmEv) works as well,
// reducing the time complexity to O(1).
simulator.m_EvList.makeActive(it);
simulator.m_EvList.fireActiveEvents();
}
timer_id_t BochsController::m_registerTimer(TimerEvent* pev)
{
assert(pev != NULL);
return static_cast<timer_id_t>(
bx_pc_system.register_timer(pev, m_onTimerTrigger, pev->getTimeout(), !pev->getOnceFlag(),
1/*start immediately*/, "Fail*: BochsController"/*name*/));
}
bool BochsController::m_unregisterTimer(TimerEvent* pev)
{
assert(pev != NULL);
bx_pc_system.deactivate_timer(static_cast<unsigned>(pev->getId()));
return bx_pc_system.unregisterTimer(static_cast<unsigned>(pev->getId()));
}
bool BochsController::onEventAddition(BaseEvent* pev)
{
TimerEvent* tmev;
// Register the timer event in the Bochs simulator:
if ((tmev = dynamic_cast<TimerEvent*>(pev)) != NULL) {
tmev->setId(m_registerTimer(tmev));
if(tmev->getId() == -1)
return false; // unable to register the timer (error in Bochs' function call)
}
// Note: Maybe more stuff to do here for other event types.
return true;
}
void BochsController::onEventDeletion(BaseEvent* pev)
{
TimerEvent* tmev;
// Unregister the time event:
if ((tmev = dynamic_cast<TimerEvent*>(pev)) != NULL) {
m_unregisterTimer(tmev);
}
// Note: Maybe more stuff to do here for other event types.
}
void BochsController::onEventTrigger(BaseEvent* pev)
{
TimerEvent* tmev;
// Unregister the time event, if once-flag is true:
if ((tmev = dynamic_cast<TimerEvent*>(pev)) != NULL) {
if (tmev->getOnceFlag()) // deregister the timer (timer = single timeout)
m_unregisterTimer(tmev);
else // re-add the event (repetitive timer), tunneling the onEventAddition-handler
m_EvList.add(tmev, tmev->getParent());
}
// Note: Maybe more stuff to do here for other event types.
}
const std::string& BochsController::getMnemonic() const
{
static std::string str;
bxICacheEntry_c* pEntry = BX_CPU(0)->getICacheEntry();
assert(pEntry != NULL && "FATAL ERROR: Bochs internal function returned NULL (not expected)!");
bxInstruction_c* pInstr = pEntry->i;
assert(pInstr != NULL && "FATAL ERROR: Bochs internal member was NULL (not expected)!");
const char* pszName = get_bx_opcode_name(pInstr->getIaOpcode());
if (pszName != NULL)
str = pszName;
else
str.clear();
return str;
}
} // end-of-namespace: fail

View File

@ -0,0 +1,181 @@
#ifndef __BOCHS_CONTROLLER_HPP__
#define __BOCHS_CONTROLLER_HPP__
#include <string>
#include <cassert>
#include <iostream>
#include <iomanip>
#include <string.h>
#include "FailBochsGlobals.hpp"
#include "../SimulatorController.hpp"
#include "../Event.hpp"
#include "bochs.h"
#include "cpu/cpu.h"
#include "config.h"
#include "iodev/iodev.h"
#include "pc_system.h"
namespace fail {
class ExperimentFlow;
/**
* \class BochsController
* Bochs-specific implementation of a SimulatorController.
*/
class BochsController : public SimulatorController {
private:
ExperimentFlow* m_CurrFlow; //!< Stores the current flow for save/restore-operations
#ifdef DEBUG
unsigned m_Regularity; //! regularity of instruction ptr output
unsigned m_Counter; //! current instr-ptr counter
std::ostream* m_pDest; //! debug output object (defaults to \c std::cout)
#endif
/**
* Static internal event handler for TimerEvents. This static function is
* called when a previously registered (Bochs) timer triggers. This function
* searches for the provided TimerEvent object within the EventList and
* fires such an event by calling \c fireActiveEvents().
* @param thisPtr a pointer to the TimerEvent-object triggered
*
* FIXME: Due to Bochs internal timer and ips-configuration related stuff,
* the simulator sometimes panics with "keyboard error:21" (see line
* 1777 in bios/rombios.c, function keyboard_init()) if a TimerEvent
* is added *before* the bios has been loaded and initialized. To
* reproduce this error, try adding a TimerEvent as the initial step
* in your experiment code and wait for it (addEventAndWait()).
*/
static void m_onTimerTrigger(void *thisPtr);
/**
* Registers a timer in the Bochs simulator. This timer fires \a TimerEvents
* to inform the corresponding experiment-flow. Note that the number of timers
* (in Bochs) is limited to \c BX_MAX_TIMERS (defaults to 64 in v2.4.6).
* @param pev a pointer to the (experiment flow-) allocated TimerEvent object,
* providing all required information to start the time, e.g. the
* timeout value.
* @return \c The unique id of the timer recently created. This id is carried
* along with the TimerEvent, @see getId(). On error, -1 is returned
* (e.g. because a timer with the same id is already existing)
*/
timer_id_t m_registerTimer(TimerEvent* pev);
/**
* Deletes a timer. No further events will be triggered by the timer.
* @param pev a pointer to the TimerEvent-object to be removed
* @return \c true if the timer with \a pev->getId() has been removed
* successfully, \c false otherwise
*/
bool m_unregisterTimer(TimerEvent* pev);
public:
// Initialize the controller.
BochsController();
~BochsController();
/* ********************************************************************
* Standard Event Handler API:
* ********************************************************************/
/**
* Instruction pointer modification handler. This method is called (from
* the Breakpoints aspect) every time when the Bochs-internal IP changes.
* @param instrPtr the new instruction pointer
* @param address_space the address space the CPU is currently in
*/
void onInstrPtrChanged(address_t instrPtr, address_t address_space);
/**
* I/O port communication handler. This method is called (from
* the IOPortCom aspect) every time when Bochs performs a port I/O operation.
* @param data the data transmitted
* @param port the port it was transmitted on
* @param out true if the I/O traffic has been outbound, false otherwise
*/
void onIOPortEvent(unsigned char data, unsigned port, bool out);
/**
* This method is called when an experiment flow adds a new event by
* calling \c simulator.addEvent(pev) or \c simulator.addEventAndWait(pev).
* More specifically, the event will be added to the event-list first
* (buffer-list, to be precise) and then this event handler is called.
* @param pev the event which has been added
* @return You should return \c true to continue and \c false to prevent
* the addition of the event \a pev.
*/
bool onEventAddition(BaseEvent* pev);
/**
* This method is called when an experiment flow removes an event from
* the event-management by calling \c removeEvent(prev), \c clearEvents()
* or by deleting a complete flow (\c removeFlow). More specifically,
* this event handler will be called *before* the event is actually deleted.
* @param pev the event to be deleted when returning from the event handler
*/
void onEventDeletion(BaseEvent* pev);
/**
* This method is called when an previously added event is about to be
* triggered by the simulator-backend. More specifically, this event handler
* will be called *before* the event is actually triggered, i.e. before the
* corresponding coroutine is toggled.
* @param pev the event to be triggered when returning from the event handler
*/
void onEventTrigger(BaseEvent* pev);
/* ********************************************************************
* Simulator Controller & Access API:
* ********************************************************************/
/**
* Save simulator state.
* @param path Location to store state information
*/
void save(const std::string& path);
/**
* Save finished: Callback from Simulator
*/
void saveDone();
/**
* Restore simulator state. Clears all Events.
* @param path Location to previously saved state information
*/
void restore(const std::string& path);
/**
* Restore finished: Callback from Simulator
*/
void restoreDone();
/**
* Reboot simulator. Clears all Events.
*/
void reboot();
/**
* Reboot finished: Callback from Simulator
*/
void rebootDone();
/**
* Fire an interrupt.
* @param irq Interrupt to be fired
*/
void fireInterrupt(unsigned irq);
/**
* Fire done: Callback from Simulator
*/
void fireInterruptDone();
/* ********************************************************************
* BochsController-specific (not implemented in SimulatorController!):
* ********************************************************************/
#ifdef DEBUG
/**
* Enables instruction pointer debugging output.
* @param regularity the output regularity; 1 to display every
* instruction pointer, 0 to disable
* @param dest specifies the output destition; defaults to \c std::cout
*/
void dbgEnableInstrPtrOutput(unsigned regularity, std::ostream* dest = &std::cout);
#endif
/**
* Retrieves the textual description (mnemonic) for the current
* instruction. The format of the returned string is Bochs-specific.
* @return the mnemonic of the current instruction whose address
* is given by \c Register::getInstructionPointer(). On errors,
* the returned string is empty
*/
const std::string& getMnemonic() const;
};
} // end-of-namespace: fail
#endif // __BOCHS_CONTROLLER_HPP__

View File

@ -0,0 +1,15 @@
#ifndef __BOCHS_HELPERS_HPP__
#define __BOCHS_HELPERS_HPP__
#include "cpu/cpu.h"
static inline BX_CPU_C *getCPU(BX_CPU_C *that)
{
#if BX_USE_CPU_SMF == 0
return that;
#else
return BX_CPU_THIS;
#endif
}
#endif // __BOCHS_HELPERS_HPP__

View File

@ -0,0 +1,110 @@
#ifndef __BOCHS_MEMORY_HPP__
#define __BOCHS_MEMORY_HPP__
#include "../Memory.hpp"
namespace fail {
/**
* \class BochsMemoryManager
* Represents a concrete implemenation of the abstract
* MemoryManager to provide access to Bochs' memory pool.
*/
class BochsMemoryManager : public MemoryManager {
public:
/**
* Constructs a new MemoryManager object and initializes
* it's attributes appropriately.
*/
BochsMemoryManager() : MemoryManager() { }
/**
* Retrieves the size of the available simulated memory.
* @return the size of the memory pool in bytes
*/
size_t getPoolSize() const { return static_cast<size_t>(BX_MEM(0)->get_memory_len()); }
/**
* Retrieves the starting address of the host memory. This is the
* first valid address in memory.
* @return the starting address
*/
host_address_t getStartAddr() const { return 0; }
/**
* Retrieves the byte at address \a addr in the memory.
* @param addr The guest address where the byte is located.
* The address is expected to be valid.
* @return the byte at \a addr
*/
byte_t getByte(guest_address_t addr)
{
host_address_t haddr = guestToHost(addr);
assert(haddr != (host_address_t)ADDR_INV && "FATAL ERROR: Invalid guest address provided!");
return static_cast<byte_t>(*reinterpret_cast<Bit8u*>(haddr));
}
/**
* Retrieves \a cnt bytes at address \a addr from the memory.
* @param addr The guest address where the bytes are located.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param dest Pointer to destination buffer to copy the data to.
*/
void getBytes(guest_address_t addr, size_t cnt, void *dest)
{
char *d = static_cast<char *>(dest);
for (size_t i = 0; i < cnt; ++i)
d[i] = getByte(addr + i);
}
/**
* Writes the byte \a data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new byte to write
*/
void setByte(guest_address_t addr, byte_t data)
{
host_address_t haddr = guestToHost(addr);
assert(haddr != (host_address_t)ADDR_INV &&
"FATAL ERROR: Invalid guest address provided!");
*reinterpret_cast<Bit8u*>(haddr) = data;
}
/**
* Copies data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param src Pointer to data to be copied.
*/
void setBytes(guest_address_t addr, size_t cnt, void const *src)
{
char const *s = static_cast<char const *>(src);
for (size_t i = 0; i < cnt; ++i)
setByte(addr + i, s[i]);
}
/**
* Transforms the guest address \a addr to a host address.
* @param addr The (logical) guest address to be transformed
* @return the transformed (host) address or \c ADDR_INV on errors
*/
host_address_t guestToHost(guest_address_t addr)
{
const unsigned SEGMENT_SELECTOR_IDX = 2; // always the code segment
const bx_address logicalAddr = static_cast<bx_address>(addr); // offset within the segment
// Get the linear address:
Bit32u linearAddr = BX_CPU(0)->get_laddr32(SEGMENT_SELECTOR_IDX/*seg*/, logicalAddr/*offset*/);
// Map the linear address to the physical address:
bx_phy_address physicalAddr;
bx_bool fValid = BX_CPU(0)->dbg_xlate_linear2phy(linearAddr, (bx_phy_address*)&physicalAddr);
// Determine the *host* address of the physical address:
Bit8u* hostAddr = BX_MEM(0)->getHostMemAddr(BX_CPU(0), physicalAddr, BX_READ);
// Now, hostAddr contains the "final" address
if (!fValid)
return ((host_address_t)ADDR_INV); // error
else
return (reinterpret_cast<host_address_t>(hostAddr)); // okay
}
};
} // end-of-namespace: fail
#endif // __BOCHS_MEMORY_HPP__

View File

@ -0,0 +1,53 @@
#ifndef __BOCHS_NON_VERBOSE_AH__
#define __BOCHS_NON_VERBOSE_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_BOCHS_NON_VERBOSE
#include "bochs.h"
/*
// Doesn't work because AspectC++ doesn't deal properly with variadic parameter
// lists:
aspect BochsNonVerbose {
// Needed to suppress Bochs output *before* a state restore finished
// FIXME: ac++ segfaults if we use call() instead of execution().
advice execution("% logfunctions::debug(...)")
|| execution("% logfunctions::info(...)")
|| execution("% logfunctions::pass(...)")
|| execution("% logfunctions::error(...)")
: around () { }
};
*/
aspect BochsNonVerbose {
// needed to suppress Bochs output *before* a state restore finished
advice call("int logfunctions::get_default_action(int)")
: around ()
{
int action;
switch (*(tjp->arg<0>())) {
case LOGLEV_DEBUG:
case LOGLEV_PASS:
case LOGLEV_INFO:
action = ACT_IGNORE;
break;
case LOGLEV_ERROR:
action = ACT_REPORT;
break;
case LOGLEV_PANIC:
default:
action = ACT_FATAL;
}
*(tjp->result()) = action;
}
// No credits header
advice call("void bx_print_header()")
: around () { }
};
#endif // CONFIG_BOCHS_NON_VERBOSE
#endif // __BOCHS_NON_VERBOSE_AH__

View File

@ -0,0 +1,238 @@
#ifndef __BOCHS_REGISTER_HPP__
#define __BOCHS_REGISTER_HPP__
#include "../Register.hpp"
#include "bochs.h"
#include <iostream>
#include <cassert>
namespace fail {
/**
* \class BochsRegister
* Bochs-specific implementation of x86 registers.
*/
class BochsRegister : public Register {
protected:
regdata_t* m_pData;
public:
/**
* Constructs a new register object.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs interal register memory
* @param t type of the register
*/
BochsRegister(unsigned int id, regwidth_t width, regdata_t* link, RegisterType t)
: Register(id, t, width), m_pData(link) { }
/**
* Retrieves the data of the register.
* @return the current register data
*/
regdata_t getData() { return (*m_pData); }
/**
* Sets the content of the register.
* @param data the new register data to be written
*/
void setData(regdata_t data) { *m_pData = data; }
};
/**
* \class BxGPReg
* Bochs-specific implementation of x86 general purpose (GP) registers.
*/
class BxGPReg : public BochsRegister {
public:
/**
* Constructs a new general purpose register.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs interal register memory
*/
BxGPReg(unsigned int id, regwidth_t width, regdata_t* link)
: BochsRegister(id, width, link, RT_GP) { }
};
/**
* \enum GPRegisterId
* Symbolic identifier to access Bochs' general purpose register
* (within the corresponding GP set), e.g.
* \code
* // Print %eax register data:
* BochsController bc(...);
* cout << bc.getRegisterManager().getSetOfType(RT_GP)
* .getRegister(RID_EAX)->getData();
* \endcode
*/
enum GPRegisterId {
#if BX_SUPPORT_X86_64 // 64 bit register id's:
RID_RAX = 0, RID_RCX, RID_RDX, RID_RBX, RID_RSP, RID_RBP, RID_RSI, RID_RDI,
RID_R8, RID_R9, RID_R10, RID_R11, RID_R12, RID_R13, RID_R14, RID_R15,
#else // 32 bit register id's:
RID_EAX = 0, RID_ECX, RID_EDX, RID_EBX, RID_ESP, RID_EBP, RID_ESI, RID_EDI,
#endif
RID_CAX = 0, RID_CCX, RID_CDX, RID_CBX, RID_CSP, RID_CBP, RID_CSI, RID_CDI,
RID_LAST_GP_ID
};
/**
* \enum PCRegisterId
* Symbolic identifier to access Bochs' program counter register.
*/
enum PCRegisterId { RID_PC = RID_LAST_GP_ID, RID_LAST_PC_ID };
/**
* \enum FlagsRegisterId
* Symbolic identifier to access Bochs' flags register.
*/
enum FlagsRegisterId { RID_FLAGS = RID_LAST_PC_ID };
/**
* \class BxPCReg
* Bochs-specific implementation of the x86 program counter register.
*/
class BxPCReg : public BochsRegister {
public:
/**
* Constructs a new program counter register.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs internal register memory
*/
BxPCReg(unsigned int id, regwidth_t width, regdata_t* link)
: BochsRegister(id, width, link, RT_PC) { }
};
/**
* \class BxFlagsReg
* Bochs-specific implementation of the FLAGS status register.
*/
class BxFlagsReg : public BochsRegister {
public:
/**
* Constructs a new FLAGS status register. The refenced FLAGS are
* allocated as follows:
* --------------------------------------------------
* 31|30|29|28| 27|26|25|24| 23|22|21|20| 19|18|17|16
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP| VF|AC|VM|RF
*
* 15|14|13|12| 11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0|NT| IOPL| OF|DF|IF|TF| SF|ZF| 0|AF| 0|PF| 1|CF
* --------------------------------------------------
* @param id the global unique id
* @param link pointer to bochs internal register memory
*/
BxFlagsReg(unsigned int id, regdata_t* link)
: BochsRegister(id, 32, link, RT_ST) { }
/**
* Returns \c true if the corresponding flag is set, or \c false
* otherwise.
*/
bool getCarryFlag() const { return (BX_CPU(0)->get_CF()); }
bool getParityFlag() const { return (BX_CPU(0)->get_PF()); }
bool getZeroFlag() const { return (BX_CPU(0)->get_ZF()); }
bool getSignFlag() const { return (BX_CPU(0)->get_SF()); }
bool getOverflowFlag() const { return (BX_CPU(0)->get_OF()); }
bool getTrapFlag() const { return (BX_CPU(0)->get_TF()); }
bool getInterruptFlag() const { return (BX_CPU(0)->get_IF()); }
bool getDirectionFlag() const { return (BX_CPU(0)->get_DF()); }
unsigned getIOPrivilegeLevel() const { return (BX_CPU(0)->get_IOPL()); }
bool getNestedTaskFlag() const { return (BX_CPU(0)->get_NT()); }
bool getResumeFlag() const { return (BX_CPU(0)->get_RF()); }
bool getVMFlag() const { return (BX_CPU(0)->get_VM()); }
bool getAlignmentCheckFlag() const { return (BX_CPU(0)->get_AC()); }
bool getVInterruptFlag() const { return (BX_CPU(0)->get_VIF()); }
bool getVInterruptPendingFlag() const { return (BX_CPU(0)->get_VIP()); }
bool getIdentificationFlag() const { return (BX_CPU(0)->get_ID()); }
/**
* Sets/resets various status FLAGS.
*/
void setCarryFlag(bool bit) { BX_CPU(0)->set_CF(bit); }
void setParityFlag(bool bit) { BX_CPU(0)->set_PF(bit); }
void setZeroFlag(bool bit) { BX_CPU(0)->set_ZF(bit); }
void setSignFlag(bool bit) { BX_CPU(0)->set_SF(bit); }
void setOverflowFlag(bool bit) { BX_CPU(0)->set_OF(bit); }
void setTrapFlag(bool bit) { BX_CPU(0)->set_TF(bit); }
void setInterruptFlag(bool bit) { BX_CPU(0)->set_IF(bit); }
void setDirectionFlag(bool bit) { BX_CPU(0)->set_DF(bit); }
void setIOPrivilegeLevel(unsigned lvl) { BX_CPU(0)->set_IOPL(lvl); }
void setNestedTaskFlag(bool bit) { BX_CPU(0)->set_NT(bit); }
void setResumeFlag(bool bit) { BX_CPU(0)->set_RF(bit); }
void setVMFlag(bool bit) { BX_CPU(0)->set_VM(bit); }
void setAlignmentCheckFlag(bool bit) { BX_CPU(0)->set_AC(bit); }
void setVInterruptFlag(bool bit) { BX_CPU(0)->set_VIF(bit); }
void setVInterruptPendingFlag(bool bit) { BX_CPU(0)->set_VIP(bit); }
void setIdentificationFlag(bool bit) { BX_CPU(0)->set_ID(bit); }
/**
* Sets the content of the status register.
* @param data the new register data to be written; note that only the
* 32 lower bits are used (bits 32-63 are ignored in 64 bit mode)
*/
void setData(regdata_t data)
{
#ifdef BX_SUPPORT_X86_64
// We are in 64 bit mode: Just assign the lower 32 bits!
(*m_pData) = ((*m_pData) & 0xFFFFFFFF00000000ULL) |
(data & 0xFFFFFFFFULL);
#else
*m_pData = data;
#endif
}
};
/**
* \class BochsRegister
* Bochs-specific implementation of the RegisterManager.
*/
class BochsRegisterManager : public RegisterManager {
public:
/**
* Returns the current instruction pointer.
* @return the current eip
*/
address_t getInstructionPointer()
{
return (static_cast<address_t>(getSetOfType(RT_PC)->first()->getData()));
}
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
address_t getStackPointer()
{
#if BX_SUPPORT_X86_64
return (static_cast<address_t>(getRegister(RID_RSP)->getData()));
#else
return (static_cast<address_t>(getRegister(RID_ESP)->getData()));
#endif
}
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
address_t getBasePointer()
{
#if BX_SUPPORT_X86_64
return (static_cast<address_t>(getRegister(RID_RBP)->getData()));
#else
return (static_cast<address_t>(getRegister(RID_EBP)->getData()));
#endif
}
};
} // end-of-namespace: fail
#endif // __BOCHS_REGISTER_HPP__

View File

@ -0,0 +1,32 @@
#ifndef __BREAKPOINTS_AH__
#define __BREAKPOINTS_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_BREAKPOINTS
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect Breakpoints {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
advice execution (cpuLoop()) : after () // Event source: "instruction pointer"
{
// Points to the cpu class: "this" if BX_USE_CPU_SMF == 0,
// BX_CPU(0) otherwise
BX_CPU_C* pThis = *(tjp->arg<0>());
// Points to the *current* bxInstruction-object
//bxInstruction_c* pInstr = *(tjp->arg<1>());
// report this event to the Bochs controller:
fail::simulator.onInstrPtrChanged(pThis->get_instruction_pointer(), pThis->cr3);
// Note: get_bx_opcode_name(pInstr->getIaOpcode()) retrieves the mnemonics.
}
};
#endif // CONFIG_EVENT_BREAKPOINTS
#endif // __BREAKPOINTS_AH__

View File

@ -0,0 +1,29 @@
#ifndef __CREDITS_AH__
#define __CREDITS_AH__
#include <string.h>
#include <stdio.h>
aspect Credits {
bool first;
Credits() : first(true) {}
advice call ("% bx_center_print(...)")
&& within ("void bx_print_header()")
&& args(file, line, maxwidth)
: around (FILE *file, const char *line, unsigned maxwidth)
{
if (!first) {
tjp->proceed();
return;
}
// FIXME take version from global configuration
char buf[256] = "FailBochs 0.0.1, based on the ";
strncat(buf, line, 128);
first = false;
*(tjp->arg<1>()) = buf;
tjp->proceed();
}
};
#endif // __CREDITS_AH__

View File

@ -0,0 +1,26 @@
#ifndef __DISABLE_KEYBOARD_INTERRUPT_AH__
#define __DISABLE_KEYBOARD_INTERRUPT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_DISABLE_KEYB_INTERRUPTS
#include "iodev/iodev.h"
#include "iodev/keyboard.h"
aspect DisableKeyboardInterrupt {
pointcut heyboard_interrupt() =
"void bx_keyb_c::timer_handler(...)";
advice execution (heyboard_interrupt()) : around ()
{
bx_keyb_c *class_ptr = (bx_keyb_c*)tjp->arg<0>();
unsigned retval;
retval = class_ptr->periodic(1);
}
};
#endif // CONFIG_DISABLE_KEYB_INTERRUPTS
#endif // __DISABLE_KEYBOARD_INTERRUPT_AH__

View File

@ -0,0 +1,19 @@
#ifndef __DISABLE_ADD_REMOVE_LOGFN_AH__
#define __DISABLE_ADD_REMOVE_LOGFN_AH__
/* Hack to prevent Bochs' logfunctions list (bochs.h) to overflow if the
* experiment restores simulator state more than ~1000 times.
*
* The "proper" fix would be to completely unregister all log functions before
* restore, i.e. to destroy all objects deriving from class logfunctions. We
* decided to simply ignore this tiny memory leak and to hack around the
* problem by disabling iofunctions::add/remove_logfn().
*/
aspect DisableLogFunctions {
pointcut add_remove_logfn() =
"void iofunctions::add_logfn(...)" ||
"void iofunctions::remove_logfn(...)";
advice execution (add_remove_logfn()) : around () { }
};
#endif // __DISABLE_ADD_REMOVE_LOGFN_AH__

View File

@ -0,0 +1,22 @@
#ifndef __FAIL_BOCHS_GLOBALS_HPP__
#define __FAIL_BOCHS_GLOBALS_HPP__
#include <string>
#include "config.h"
namespace fail {
#ifdef DANCEOS_RESTORE
extern bx_bool restore_bochs_request;
extern bx_bool save_bochs_request;
extern std::string sr_path;
#endif
extern bx_bool reboot_bochs_request;
extern bx_bool interrupt_injection_request;
extern int interrupt_to_fire;
} // end-of-namespace: fail
#endif // __FAIL_BOCHS_GLOBALS_HPP__

View File

@ -0,0 +1,13 @@
#ifndef __FAIL_BOCHS_INIT_AH__
#define __FAIL_BOCHS_INIT_AH__
#include "../SALInst.hpp"
aspect FailBochsInit {
advice call("int bxmain()") : before ()
{
fail::simulator.startup();
}
};
#endif // __FAIL_BOCHS_INIT_AH__

View File

@ -0,0 +1,45 @@
#ifndef __FIREINTERRUPT_AH__
#define __FIREINTERRUPT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_FIRE_INTERRUPTS
#include "bochs.h"
#include "cpu/cpu.h"
#include "iodev/iodev.h"
#include "../SALInst.hpp"
aspect FireInterrupt {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
advice execution (cpuLoop()) : before ()
{
if (!fail::interrupt_injection_request) {
return;
} else {
BX_SET_INTR(fail::interrupt_to_fire);
DEV_pic_raise_irq(fail::interrupt_to_fire);
}
}
};
aspect InterruptDone {
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)";
advice execution (interrupt_method()) : before ()
{
if (!fail::interrupt_injection_request) {
return;
} else {
if (*(tjp->arg<0>()) == 32 + fail::interrupt_to_fire) {
DEV_pic_lower_irq(fail::interrupt_to_fire);
fail::simulator.fireInterruptDone();
}
}
}
};
#endif // CONFIG_FIRE_INTERRUPTS
#endif // __FIREINTERRUPT_AH__

View File

@ -0,0 +1,33 @@
#ifndef __GUEST_SYS_COM_AH__
#define __GUEST_SYS_COM_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_GUESTSYS
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
#include "BochsHelpers.hpp"
// Fixed "port number" for "Guest system >> Bochs" communication
#define BOCHS_COM_PORT 0x378
// FIXME: This #define should be located in a config or passed within the event object...
aspect GuestSysCom {
pointcut outInstructions() = "% ...::bx_cpu_c::OUT_DX%(...)";
advice execution (outInstructions()) : after () // Event source: "guest system"
{
unsigned rDX = getCPU(tjp->that())->gen_reg[2].word.rx; // port number
unsigned rAL = getCPU(tjp->that())->gen_reg[0].word.byte.rl; // data
if (rDX == BOCHS_COM_PORT)
fail::simulator.onGuestSystemEvent((char)rAL, rDX);
}
};
#endif // CONFIG_EVENT_GUESTSYS
#endif // __GUEST_SYS_COM_AH__

View File

@ -0,0 +1,39 @@
#ifndef __IOPORT_COM_AH__
#define __IOPORT_COM_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_IOPORT
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
#include "BochsHelpers.hpp"
// TODO: ATM only capturing bytewise output (most common, I suppose)
aspect IOPortCom {
pointcut outInstruction() = "% ...::bx_cpu_c::OUT_DXAL(...)";
advice execution (outInstruction()) : after ()
{
unsigned rDX = getCPU(tjp->that())->gen_reg[2].word.rx; // port number
unsigned char rAL = getCPU(tjp->that())->gen_reg[0].word.byte.rl; // data
fail::simulator.onIOPortEvent(rAL, rDX, true);
}
pointcut inInstruction() = "% ...::bx_cpu_c::IN_ALDX(...)";
advice execution (inInstruction()) : after ()
{
unsigned rDX = getCPU(tjp->that())->gen_reg[2].word.rx; // port number
unsigned char rAL = getCPU(tjp->that())->gen_reg[0].word.byte.rl; // data
fail::simulator.onIOPortEvent(rAL, rDX, false);
}
};
#endif // CONFIG_EVENT_IOPORT
#endif // __IOPORT_COM_AH__

View File

@ -0,0 +1,39 @@
#ifndef __INTERRUPT_AH__
#define __INTERRUPT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_INTERRUPT
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect Interrupt {
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)"; // cpu/exception.cc
advice execution (interrupt_method()) : before ()
{
// There are six different type-arguments for the interrupt-method
// in cpu.h (lines 3867-3872):
// - BX_EXTERNAL_INTERRUPT = 0,
// - BX_NMI = 2,
// - BX_HARDWARE_EXCEPTION = 3,
// - BX_SOFTWARE_INTERRUPT = 4,
// - BX_PRIVILEGED_SOFTWARE_INTERRUPT = 5,
// - BX_SOFTWARE_EXCEPTION = 6
// Only the first and the second types are relevant for this aspect.
unsigned vector = *(tjp->arg<0>());
unsigned type = *(tjp->arg<1>());
if (type == BX_EXTERNAL_INTERRUPT)
fail::simulator.onInterruptEvent(vector, false);
else if (type == BX_NMI)
fail::simulator.onInterruptEvent(vector, true);
}
};
#endif // CONFIG_EVENT_INTERRUPT
#endif // __INTERRUPT_AH__

View File

@ -0,0 +1,27 @@
#ifndef __INTERRUPT_SUPPRESSION_AH__
#define __INTERRUPT_SUPPRESSION_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SUPPRESS_INTERRUPTS
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect InterruptSuppression {
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)";
advice execution (interrupt_method()) : around ()
{
unsigned vector = *(tjp->arg<0>());
if (!fail::simulator.isSuppressedInterrupt(vector)) {
tjp->proceed();
}
}
};
#endif // CONFIG_SUPPRESS_INTERRUPTS
#endif // __INTERRUPT_SUPPRESSION_AH__

140
src/core/sal/bochs/Jump.ah Normal file
View File

@ -0,0 +1,140 @@
#ifndef __JUMP_AH__
#define __JUMP_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_JUMP
#include <iostream>
#include <cstdlib>
#include <string>
#include <ctime>
#include "bochs.h"
#include "../SALInst.hpp"
// FIXME: This seems (partial) deprecated/incomplete as well...
aspect Jump {
// Note: Have a look at the Bochs-Code (cpu/cpu.h) and the Intel
// Architecture Software Developer's Manual - Instruction Set Reference
// p. 3-329 (PDF p. 369) for further information:
// http://www.intel.com/design/intarch/manuals/243191.htm
// Default conditional-jump instructions: they are evaluating the FLAGS,
// defined in ctrl_xfer[16 | 32 | 64].cc, Postfix: 16-Bit: w, 32-Bit: d, 64-Bit: q
pointcut defJumpInstructions() =
"% ...::bx_cpu_c::JO_J%(...)" ||
"% ...::bx_cpu_c::JNO_J%(...)" ||
"% ...::bx_cpu_c::JB_J%(...)" ||
"% ...::bx_cpu_c::JNB_J%(...)" ||
"% ...::bx_cpu_c::JZ_J%(...)" ||
"% ...::bx_cpu_c::JNZ_J%(...)" ||
"% ...::bx_cpu_c::JBE_J%(...)" ||
"% ...::bx_cpu_c::JNBE_J%(...)" ||
"% ...::bx_cpu_c::JS_J%(...)" ||
"% ...::bx_cpu_c::JNS_J%(...)" ||
"% ...::bx_cpu_c::JP_J%(...)" ||
"% ...::bx_cpu_c::JNP_J%(...)" ||
"% ...::bx_cpu_c::JL_J%(...)" ||
"% ...::bx_cpu_c::JNL_J%(...)" ||
"% ...::bx_cpu_c::JLE_J%(...)" ||
"% ...::bx_cpu_c::JNLE_J%(...)";
// Special cases: they are evaluating the content of the CX-/ECX-/RCX-registers
// (NOT the FLAGS):
pointcut regJumpInstructions() =
"% ...::bx_cpu_c::JCXZ_Jb(...)" || // ctrl_xfer16.cc
"% ...::bx_cpu_c::JECXZ_Jb(...)" || // ctrl_xfer32.cc
"% ...::bx_cpu_c::JRCXZ_Jb(...)"; // ctrl_xfer64.cc
/* TODO: Loop-Instructions needed? Example: "LOOPNE16_Jb"
pointcut loopInstructions() = ...;
*/
/* TODO: Conditional-Data-Moves needed? Example: "CMOVZ_GwEwR"
pointcut dataMoveInstructions() = ...;
*/
advice execution (defJumpInstructions()) : around()
{
bxInstruction_c* pInstr = *(tjp->arg<0>()); // bxInstruction_c-object
fail::simulator.onJumpEvent(true, pInstr->getIaOpcode());
/*
JoinPoint::That* pThis = tjp->that();
if(pThis == NULL)
pThis = BX_CPU(0);
assert(pThis != NULL && "FATAL ERROR: tjp->that() returned null ptr! (Maybe called on a static instance?)");
// According to the Intel-Spec (p. 3-329f), the following flags are relevant:
bool fZeroFlag = pThis->get_ZF();
bool fCarryFlag = pThis->get_CF();
bool fSignFlag = pThis->get_SF();
bool fOverflowFlag = pThis->get_OF();
bool fParityFlag = pThis->get_PF();
//
// Step-1: Modify one or more of the fxxxFlag according to the error you want to inject
// (using pThis->set_XX(new_val))
// Step-2: Call tjp->proceed();
// Step-3: Eventually, unwind the changes of Step-1
//
// Example:
if(g_fEnableInjection) // event fired?
{
g_fEnableInjection = false;
// Obviously, this advice matches *all* jump-instructions so that it is not clear
// which flag have to be modified in order to invert the jump. For simplification,
// we will invert *all* flags. This avoids a few case differentiations.
cout << ">>> Manipulating jump-destination (inverted)... \"" << tjp->signature() << "\" ";
pThis->set_ZF(!fZeroFlag);
pThis->set_SF(!fSignFlag);
pThis->set_CF(!fCarryFlag);
pThis->set_OF(!fOverflowFlag);
pThis->set_PF(!fParityFlag);
tjp->proceed();
pThis->set_ZF(fZeroFlag);
pThis->set_SF(fSignFlag);
pThis->set_CF(fCarryFlag);
pThis->set_OF(fOverflowFlag);
pThis->set_PF(fParityFlag);
cout << "finished (jump taken)!" << endl;
}
else
*/
tjp->proceed();
}
advice execution (regJumpInstructions()) : around ()
{
bxInstruction_c* pInstr = *(tjp->arg<0>()); // bxInstruction_c-object
fail::simulator.onJumpEvent(false, pInstr->getIaOpcode());
/*
JoinPoint::That* pThis = tjp->that();
assert(pThis != NULL && "Unexpected: tjp->that() returned null ptr! (Maybe called on a static instance?)");
// Note: Direct access to the registers using the bochs-macros (defined in
// bochs.h) is not possibly due to the fact that they are using the this-ptr.
Bit16u CX = (Bit16u)(pThis->gen_reg[1].word.rx);
Bit32u ECX = (Bit32u)(pThis->gen_reg[1].dword.erx);
#if BX_SUPPORT_X86_64
Bit64u RCX = (Bit64u)(pThis->gen_reg[1].rrx);
#endif
//
// Step-1: Modify CX, ECX or RCX according to the error you want to inject
// Step-2: Call tjp->proceed();
// Step-3: Eventually, unwind the changes of Step-1
//
*/
tjp->proceed();
}
};
#endif // CONFIG_EVENT_JUMP
#endif // __JUMP_AH__

View File

@ -0,0 +1,158 @@
#ifndef __MEM_ACCESS_AH__
#define __MEM_ACCESS_AH__
#include "config/FailConfig.hpp"
#if defined(CONFIG_EVENT_MEMREAD) || defined(CONFIG_EVENT_MEMWRITE)
#include <iostream>
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
#include "BochsHelpers.hpp"
// FIXME: We currently assume a "flat" memory model and ignore the segment
// parameter of all memory accesses.
// TODO: Instruction fetch?
// TODO: Warn on uncovered memory accesses.
aspect MemAccess {
fail::address_t rmw_address;
pointcut write_methods() =
"% ...::bx_cpu_c::write_virtual_%(...)" && // -> access32/64.cc
// not an actual memory access:
!"% ...::bx_cpu_c::write_virtual_checks(...)";
pointcut write_methods_RMW() =
"% ...::bx_cpu_c::write_RMW_virtual_%(...)";
pointcut write_methods_new_stack() =
"% ...::bx_cpu_c::write_new_stack_%(...)" && // -> access32.cc
!"% ...::bx_cpu_c::write_new_stack_%_64(...)";
pointcut write_methods_new_stack_64() =
"% ...::bx_cpu_c::write_new_stack_%_64(...)"; // -> access64.cc
pointcut write_methods_system() =
"% ...::bx_cpu_c::system_write_%(...)"; // -> access.cc
// FIXME not covered:
/* "% ...::bx_cpu_c::v2h_write_byte(...)"; // -> access.cc */
pointcut read_methods() =
"% ...::bx_cpu_c::read_virtual_%(...)" &&
// sizeof() doesn't work here (see next pointcut)
!"% ...::bx_cpu_c::read_virtual_dqword_%(...)" && // -> access32/64.cc
// not an actual memory access:
!"% ...::bx_cpu_c::read_virtual_checks(...)";
pointcut read_methods_dqword() =
"% ...::bx_cpu_c::read_virtual_dqword_%(...)"; // -> access32/64.cc
pointcut read_methods_RMW() =
"% ...::bx_cpu_c::read_RMW_virtual_%(...)";
pointcut read_methods_system() =
"% ...::bx_cpu_c::system_read_%(...)"; // -> access.cc
// FIXME not covered:
/* "% ...::bx_cpu_c::v2h_read_byte(...)"; // -> access.cc */
//
// Fire a memory-write-event each time the guest system requests
// to write data to RAM:
//
// Event source: "memory write access"
//
#ifdef CONFIG_EVENT_MEMWRITE
advice execution (write_methods()) : after ()
{
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->arg<2>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_RMW()) : after ()
{
fail::simulator.onMemoryAccessEvent(
rmw_address, sizeof(*(tjp->arg<0>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_new_stack()) : after ()
{
std::cerr << "WOOOOOT write_methods_new_stack" << std::endl;
// TODO: Log-level?
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->arg<3>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_new_stack_64()) : after ()
{
std::cerr << "WOOOOOT write_methods_new_stack_64" << std::endl;
// TODO: Log-level?
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->arg<2>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_system()) : after ()
{
// We don't do anything here for now: This type of memory
// access is used when the hardware itself needs to access
// memory (e.g., to read vectors from the interrupt vector
// table).
/*
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->arg<1>())), true,
getCPU(tjp->that())->prev_rip);
*/
}
#endif
//
// Fire a memory-read-event each time the guest system requests
// to read data in RAM:
//
// Event source: "memory read access"
//
#ifdef CONFIG_EVENT_MEMREAD
advice execution (read_methods()) : before ()
{
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
}
advice execution (read_methods_dqword()) : before ()
{
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), 16, false,
getCPU(tjp->that())->prev_rip);
}
#endif
advice execution (read_methods_RMW()) : before ()
{
rmw_address = *(tjp->arg<1>());
#ifdef CONFIG_EVENT_MEMREAD
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
#endif
}
#ifdef CONFIG_EVENT_MEMREAD
advice execution (read_methods_system()) : before ()
{
// We don't do anything here for now: This type of memory
// access is used when the hardware itself needs to access
// memory (e.g., to read vectors from the interrupt vector
// table).
/*
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
*/
}
#endif
};
#endif // CONFIG_EVENT_MEMACCESS
#endif // __MEM_ACCESS_AH__

View File

@ -0,0 +1,29 @@
#ifndef __REBOOT_AH__
#define __REBOOT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SR_REBOOT
#include "bochs.h"
#include "../SALInst.hpp"
aspect Reboot {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
advice execution (cpuLoop()) : after ()
{
if (!fail::reboot_bochs_request) {
return;
}
bx_gui_c::reset_handler();
std::cout << "[FAIL] Reboot finished" << std::endl;
// TODO: Log-level?
fail::simulator.rebootDone();
}
};
#endif // CONFIG_SR_REBOOT
#endif // __REBOOT_AH__

View File

@ -0,0 +1,27 @@
#ifndef __RESTORE_STATE_AH__
#define __RESTORE_STATE_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SR_RESTORE
#include <iostream>
#include "bochs.h"
#include "../SALInst.hpp"
aspect RestoreState {
pointcut restoreState() = "void bx_sr_after_restore_state()";
advice execution (restoreState()) : after ()
{
std::cout << "[FAIL] Restore finished" << std::endl;
// TODO: Log-Level?
fail::simulator.restoreDone();
}
};
#endif // CONFIG_SR_RESTORE
#endif // __RESTORE_STATE_AH__

View File

@ -0,0 +1,33 @@
#ifndef _SAVE_STATE_AH__
#define _SAVE_STATE_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SR_SAVE
#include "bochs.h"
#include "../SALInst.hpp"
aspect SaveState {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
// make sure the "SaveState" aspect comes *after* the breakpoint stuff: In
// an "after" advice this means it must get a *higher* precedence,
// therefore it's first in the order list.
advice execution (cpuLoop()) : order ("SaveState", "Breakpoints");
advice execution (cpuLoop()) : after () {
if (!fail::save_bochs_request)
return;
assert(fail::sr_path.size() > 0 && "FATAL ERROR: tried to save state without valid path");
SIM->save_state(fail::sr_path.c_str());
std::cout << "[FAIL] Save finished" << std::endl;
// TODO: Log-Level?
fail::simulator.saveDone();
}
};
#endif // CONFIG_SR_SAVE
#endif // _SAVE_STATE_AH__

View File

@ -0,0 +1,26 @@
#ifndef __TRAP_AH__
#define __TRAP_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_TRAP
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect Trap {
pointcut exception_method() = "void bx_cpu_c::exception(...)";
advice execution (exception_method()) : before ()
{
fail::simulator.onTrapEvent(*(tjp->arg<0>()));
// TODO: There are some different types of exceptions at cpu.h (line 265-281)
// Which kind of a trap are these types?
}
};
#endif // CONFIG_EVENT_TRAP
#endif // __TRAP_AH__