Fail* directories reorganized, Code-cleanup (-> coding-style), Typos+comments fixed.

git-svn-id: https://www4.informatik.uni-erlangen.de/i4svn/danceos/trunk/devel/fail@1321 8c4709b5-6ec9-48aa-a5cd-a96041d1645a
This commit is contained in:
adrian
2012-06-08 20:09:43 +00:00
parent d474a5b952
commit 2575604b41
866 changed files with 1848 additions and 1879 deletions

View File

@ -0,0 +1,83 @@
#include "BufferCache.hpp"
#include "Event.hpp"
namespace fail {
template<class T>
int BufferCache<T>::add(T val)
{
size_t new_size = getCount() + 1;
size_t new_last_index = getCount();
int res = reallocate_buffer(new_size);
if (res == 0) {
set(new_last_index, val);
}
return res;
}
template<class T>
int BufferCache<T>::remove(T val)
{
bool do_remove = false;
for (size_t i = 0; i < getCount(); i++) {
if (get(i) == val) {
do_remove = true;
}
if (do_remove) {
if (i > getCount() - 1) {
set(i, get(i + 1));
}
}
}
int res = 0;
if (do_remove) {
size_t new_size = getCount() - 1;
res = reallocate_buffer(new_size);
}
return res;
}
template<class T>
void BufferCache<T>::clear()
{
setCount(0);
free(m_Buffer);
m_Buffer = NULL;
}
template<class T>
int BufferCache<T>::erase(int idx)
{
for (size_t i = idx; i < getCount() - 1; i++) {
set(i, get(i + 1));
}
size_t new_size = getCount() - 1;
if (reallocate_buffer(new_size) != 0)
return -1;
return idx;
}
template<class T>
int BufferCache<T>::reallocate_buffer(size_t new_size)
{
if (new_size == 0) {
clear();
return 0;
}
void *new_buffer = realloc(m_Buffer, new_size * sizeof(T));
if (new_buffer == NULL)
return 10;
m_Buffer = static_cast<T*>(new_buffer);
setCount(new_size);
return 0;
}
// Declare whatever instances of the template you are going to use here:
template class BufferCache<BPEvent*>;
} // end-of-namespace: fail

View File

@ -0,0 +1,93 @@
#ifndef __BUFFER_CACHE_HPP__
#define __BUFFER_CACHE_HPP__
#include <stdlib.h>
// FIXME: (Maybe) This should be located in utils, because
// it's "Fail*-independend"...?
namespace fail {
/**
* \class BufferCache
*
* \brief A simple dynamic array
*
* This class is intended to serve as a kind of cache for the entirely STL-based,
* untyped and therefore quite slow event handling mechanism of Fail*.
* To keep the code easily readable, the buffer management methods
* are less performant than the could be (remove() and erase() have linear complexity).
*
* FIXME: This desription sounds like a contradiction...
* (-> "quite slow event handling" vs. "are less performant than the could be")
*
* FIXME: Why not using std::vector? ("A simple dynamic array")
*/
template<class T>
class BufferCache {
private:
// TODO: comments ("//!<") needed!
T *m_Buffer;
size_t m_BufferCount;
protected:
/**
* Changes the current length of the array. Should be inlined.
* @param new_count the new array length
*/
inline void setCount(size_t new_count) { m_BufferCount = new_count; }
/**
* Reallocates the buffer. This implementation is extremely primitive,
* but since the amount of entries is small,
* this will not be significant, hopefully. Should be inlined.
* @param new_size the new number of elements in the array
* @return 0 if successful, an error code otherwise (ATM only 10 if malloc() fails)
*/
inline int reallocate_buffer(size_t new_size);
public:
BufferCache()
: m_Buffer(NULL), m_BufferCount(0) {}
~BufferCache() {}
/**
* Add an element to the array. The object pointed to remains untouched.
* @param val the element to add
* @return 0 if successful, an error code otherwise (ATM only 10 if malloc() fails)
*/
int add(T val);
/**
* Remove an element from the array. The object pointed to remains untouched.
* @param val the element to remove
* @return 0 if successful, an error code otherwise (ATM only 10 if malloc() fails)
*/
int remove(T val);
/**
* Remove an element at a specific position. The object pointed to remains untouched.
* @param val the element to remove
* @return a pointer to the given element's successor if successful, -1 otherwise
*/
int erase(int i);
/**
* Clears the array, removing all elements. The objects pointed to remain untouched.
*/
void clear();
/**
* Retrieve an element from the array. Should be inlined.
* @param idx the position to retrieve the element from
* @return the element at the given position
*/
inline T get(size_t idx) { return m_Buffer[idx]; }
/**
* Set an element at a given position. Should be inlined.
* @param idx the position to change an element at
* @param val the new value of the given element
*/
inline void set(size_t idx, T val) { m_Buffer[idx] = val; }
/**
* Retrieves the current length of the array. Should be inlined.
* @return the array length
*/
inline size_t getCount() { return m_BufferCount; }
};
} // end-of-namespace: fail
#endif // __BUFFER_CACHE_HPP__

View File

@ -0,0 +1,25 @@
if(BUILD_BOCHS)
set(SRCS
BufferCache.cc
Event.cc
EventList.cc
Memory.cc
Register.cc
SimulatorController.cc
bochs/BochsController.cc
)
else()
set(SRCS
BufferCache.cc
Event.cc
EventList.cc
Memory.cc
Register.cc
SimulatorController.cc
${VARIANT}/OVPController.cc
)
endif(BUILD_BOCHS)
add_library(sal ${SRCS})
add_dependencies(sal efw)

87
src/core/sal/Event.cc Normal file
View File

@ -0,0 +1,87 @@
#include "Event.hpp"
#include "SALInst.hpp"
namespace fail {
EventId BaseEvent::m_Counter = 0;
bool TroubleEvent::isMatching(unsigned troubleNum) const
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNum ||
m_WatchNumbers[i] == ANY_TRAP)
return true;
}
return false;
}
bool TroubleEvent::removeWatchNumber(unsigned troubleNum)
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNum)
{
m_WatchNumbers.erase(m_WatchNumbers.begin()+i);
return true;
}
}
return false;
}
bool TroubleEvent::addWatchNumber(unsigned troubleNumber)
{
for(unsigned i = 0; i < m_WatchNumbers.size(); i++)
{
if(m_WatchNumbers[i] == troubleNumber)
return false;
}
m_WatchNumbers.push_back(troubleNumber);
return true;
}
bool MemAccessEvent::isMatching(address_t addr, accessType_t accesstype) const
{
if(!(m_WatchType & accesstype))
return (false);
else if(m_WatchAddr != addr &&
m_WatchAddr != ANY_ADDR)
return (false);
return (true);
}
bool BPEvent::aspaceIsMatching(address_t aspace) const
{
if (m_CR3 == ANY_ADDR || m_CR3 == aspace)
return true;
return false;
}
void BPRangeEvent::setWatchInstructionPointerRange(address_t start, address_t end)
{
m_WatchStartAddr = start;
m_WatchEndAddr = end;
}
bool BPRangeEvent::isMatching(address_t addr, address_t aspace) const
{
if (!aspaceIsMatching(aspace))
return false;
if ((m_WatchStartAddr != ANY_ADDR && addr < m_WatchStartAddr) ||
(m_WatchEndAddr != ANY_ADDR && addr > m_WatchEndAddr))
return false;
return true;
}
bool BPSingleEvent::isMatching(address_t addr, address_t aspace) const
{
if (aspaceIsMatching(aspace)) {
if (m_WatchInstrPtr == ANY_ADDR || m_WatchInstrPtr == addr) {
return true;
}
}
return false;
}
} // end-of-namespace: fail

622
src/core/sal/Event.hpp Normal file
View File

@ -0,0 +1,622 @@
#ifndef __EVENT_HPP__
#define __EVENT_HPP__
#include <ctime>
#include <string>
#include <cassert>
#include <vector>
#include <utility>
#include <iostream>
#include "SALConfig.hpp"
namespace fail {
class ExperimentFlow;
typedef unsigned long EventId; //!< type of event ids
//! invalid event id (used as a return indicator)
const EventId INVALID_EVENT = (EventId)-1;
//! address wildcard (e.g. for BPEvent's)
const address_t ANY_ADDR = static_cast<address_t>(-1);
//! instruction wildcard
const unsigned ANY_INSTR = static_cast<unsigned>(-1);
//! trap wildcard
const unsigned ANY_TRAP = static_cast<unsigned>(-1);
//! interrupt wildcard
const unsigned ANY_INTERRUPT = static_cast<unsigned>(-1);
/**
* \class BaseEvent
* This is the base class for all event types.
*/
class BaseEvent
{
private:
//! current class-scoped id counter to provide \a unique id's
static EventId m_Counter;
protected:
EventId m_Id; //!< unique id of this event
time_t m_tStamp; //!< time stamp of event
unsigned int m_OccCounter; //!< event fires when 0 is reached
unsigned int m_OccCounterInit; //!< initial value for m_OccCounter
ExperimentFlow* m_Parent; //!< this event belongs to experiment m_Parent
public:
BaseEvent() : m_Id(++m_Counter), m_OccCounter(1), m_OccCounterInit(1), m_Parent(NULL)
{ updateTime(); }
virtual ~BaseEvent() { }
/**
* Retrieves the unique event id for this event.
* @return the unique id
*/
EventId getId() const { return (m_Id); }
/**
* Retrieves the time stamp of this event. The time stamp is set when
* the event gets created, id est the constructor is called. The meaning
* of this value depends on the actual event type.
* @return the time stamp
*/
std::time_t getTime() const { return (m_tStamp); }
/**
* Decreases the event counter by one. When this counter reaches zero, the
* event will be triggered.
*/
void decreaseCounter() { --m_OccCounter; }
/**
* Sets the event counter to the specified value (default is one).
* @param val the new counter value
*/
void setCounter(unsigned int val = 1) { m_OccCounter = m_OccCounterInit = val; }
/**
* Returns the current counter value.
* @return the counter value
*/
unsigned int getCounter() const { return (m_OccCounter); }
/**
* Resets the event counter to its default value, or the last
* value that was set through setCounter().
*/
void resetCounter() { m_OccCounter = m_OccCounterInit; }
/**
* Sets the time stamp for this event to the current system time.
*/
void updateTime() { time(&m_tStamp); }
/**
* Returns the parent experiment of this event (context).
* If the event was created temporarily or wasn't linked to a context,
* the return value is \c NULL (unknown identity).
*/
ExperimentFlow* getParent() const { return (m_Parent); }
/**
* Sets the parent (context) of this event. The default context
* is \c NULL (unknown identity).
*/
void setParent(ExperimentFlow* pFlow) { m_Parent = pFlow; }
};
// ----------------------------------------------------------------------------
// Specialized events:
//
/**
* \class BEvent
* A Breakpoint event to observe instruction changes within a given address space.
*/
class BPEvent : virtual public BaseEvent
{
private:
address_t m_CR3;
address_t m_TriggerInstrPtr;
public:
/**
* Creates a new breakpoint event. The range information is specific to
* the subclasses.
* @param address_space the address space to be oberserved, given as the
* content of a CR3 register. The event will not be triggered unless
* \a ip is part of the given address space.
* ANY_ADDR can be used as a placeholder to allow debugging
* in a random address space.
*/
BPEvent(address_t address_space = ANY_ADDR)
: m_CR3(address_space), m_TriggerInstrPtr(ANY_ADDR)
{}
/**
* Returns the address space register of this event.
*/
address_t getCR3() const
{ return m_CR3; }
/**
* Sets the address space register for this event.
*/
void setCR3(address_t iptr)
{ m_CR3 = iptr; }
/**
* Checks whether a given address space is matching.
*/
bool aspaceIsMatching(address_t address_space = ANY_ADDR) const;
/**
* Checks whether a given address is matching.
*/
virtual bool isMatching(address_t addr = 0, address_t address_space = ANY_ADDR) const = 0;
/**
* Returns the instruction pointer that triggered this event.
*/
address_t getTriggerInstructionPointer() const
{ return m_TriggerInstrPtr; }
/**
* Sets the instruction pointer that triggered this event. Should not
* be used by experiment code.
*/
void setTriggerInstructionPointer(address_t iptr)
{ m_TriggerInstrPtr = iptr; }
};
/**
* \class BPSingleEvent
* A Breakpoint event to observe specific instruction pointers.
*/
class BPSingleEvent : virtual public BPEvent
{
private:
address_t m_WatchInstrPtr;
public:
/**
* Creates a new breakpoint event.
* @param ip the instruction pointer of the breakpoint. If the control
* flow reaches this address and its counter value is zero, the
* event will be triggered. \a eip can be set to the ANY_ADDR
* wildcard to allow arbitrary addresses.
* @param address_space the address space to be oberserved, given as the
* content of a CR3 register. The event will not be triggered unless
* \a ip is part of the given address space.
* Here, too, ANY_ADDR is a placeholder to allow debugging
* in a random address space.
*/
BPSingleEvent(address_t ip = 0, address_t address_space = ANY_ADDR)
: BPEvent(address_space), m_WatchInstrPtr(ip) { }
/**
* Returns the instruction pointer this event waits for.
*/
address_t getWatchInstructionPointer() const
{ return m_WatchInstrPtr; }
/**
* Sets the instruction pointer this event waits for.
*/
void setWatchInstructionPointer(address_t iptr)
{ m_WatchInstrPtr = iptr; }
/**
* Checks whether a given address is matching.
*/
bool isMatching(address_t addr, address_t address_space) const;
};
/**
* \class BPRangeEvent
* A event type to observe ranges of instruction pointers.
*/
class BPRangeEvent : virtual public BPEvent
{
private:
address_t m_WatchStartAddr;
address_t m_WatchEndAddr;
public:
/**
* Creates a new breakpoint-range event. The range's ends are both
* inclusive, i.e. an address matches if start <= addr <= end.
* ANY_ADDR denotes the lower respectively the upper end of the address
* space.
*/
BPRangeEvent(address_t start = 0, address_t end = 0, address_t address_space = ANY_ADDR)
: BPEvent(address_space), m_WatchStartAddr(start), m_WatchEndAddr(end)
{ }
/**
* Returns the instruction pointer watch range of this event.
*/
std::pair<address_t, address_t> getWatchInstructionPointerRange() const
{ return std::make_pair(m_WatchStartAddr, m_WatchEndAddr); }
/**
* Sets the instruction pointer watch range. Both ends of the range
* may be ANY_ADDR (cf. constructor).
*/
void setWatchInstructionPointerRange(address_t start,
address_t end);
/**
* Checks whether a given address is within the range.
*/
bool isMatching(address_t addr, address_t address_space) const;
};
/**
* \class MemAccessEvent
* Observes memory read/write accesses.
* FIXME? currently >8-bit accesses only match if their lowest address is being watched
* (e.g., a 32-bit write to 0x4 also accesses 0x7, but this cannot be matched)
*/
class MemAccessEvent : virtual public BaseEvent
{
public:
enum accessType_t
{
MEM_UNKNOWN = 0x0,
MEM_READ = 0x1,
MEM_WRITE = 0x2,
MEM_READWRITE = 0x3
};
private:
//! Specific guest system address to watch, or ANY_ADDR.
address_t m_WatchAddr;
/**
* Memory access type we want to watch
* (MEM_READ || MEM_WRITE || MEM_READWRITE).
*/
accessType_t m_WatchType;
//! Specific guest system address that actually triggered the event.
address_t m_TriggerAddr;
//! Width of the memory access (# bytes).
size_t m_TriggerWidth;
//! Address of the instruction that caused the memory access.
address_t m_TriggerIP;
//! Memory access type at m_TriggerAddr.
accessType_t m_AccessType;
public:
MemAccessEvent(accessType_t watchtype = MEM_READWRITE)
: m_WatchAddr(ANY_ADDR), m_WatchType(watchtype),
m_TriggerAddr(ANY_ADDR), m_TriggerIP(ANY_ADDR),
m_AccessType(MEM_UNKNOWN) { }
MemAccessEvent(address_t addr,
accessType_t watchtype = MEM_READWRITE)
: m_WatchAddr(addr), m_WatchType(watchtype),
m_TriggerAddr(ANY_ADDR), m_TriggerIP(ANY_ADDR),
m_AccessType(MEM_UNKNOWN) { }
/**
* Returns the memory address to be observed.
*/
address_t getWatchAddress() const { return m_WatchAddr; }
/**
* Sets the memory address to be observed. (Wildcard: ANY_ADDR)
*/
void setWatchAddress(address_t addr) { m_WatchAddr = addr; }
/**
* Checks whether a given address is matching.
*/
bool isMatching(address_t addr, accessType_t accesstype) const;
/**
* Returns the specific memory address that actually triggered the
* event.
*/
address_t getTriggerAddress() const { return (m_TriggerAddr); }
/**
* Sets the specific memory address that actually triggered the event.
* Should not be used by experiment code.
*/
void setTriggerAddress(address_t addr) { m_TriggerAddr = addr; }
/**
* Returns the specific memory address that actually triggered the
* event.
*/
size_t getTriggerWidth() const { return (m_TriggerWidth); }
/**
* Sets the specific memory address that actually triggered the event.
* Should not be used by experiment code.
*/
void setTriggerWidth(size_t width) { m_TriggerWidth = width; }
/**
* Returns the address of the instruction causing this memory
* access.
*/
address_t getTriggerInstructionPointer() const
{ return (m_TriggerIP); }
/**
* Sets the address of the instruction causing this memory
* access. Should not be used by experiment code.
*/
void setTriggerInstructionPointer(address_t addr)
{ m_TriggerIP = addr; }
/**
* Returns type (MEM_READ || MEM_WRITE) of the memory access that
* triggered this event.
*/
accessType_t getTriggerAccessType() const { return (m_AccessType); }
/**
* Sets type of the memory access that triggered this event. Should
* not be used by experiment code.
*/
void setTriggerAccessType(accessType_t type) { m_AccessType = type; }
/**
* Returns memory access types (MEM_READ || MEM_WRITE || MEM_READWRITE)
* this event watches. Should not be used by experiment code.
*/
accessType_t getWatchAccessType() const { return (m_WatchType); }
};
/**
* \class MemReadEvent
* Observes memory read accesses.
*/
class MemReadEvent : virtual public MemAccessEvent
{
public:
MemReadEvent()
: MemAccessEvent(MEM_READ) { }
MemReadEvent(address_t addr)
: MemAccessEvent(addr, MEM_READ) { }
};
/**
* \class MemWriteEvent
* Observes memory write accesses.
*/
class MemWriteEvent : virtual public MemAccessEvent
{
public:
MemWriteEvent()
: MemAccessEvent(MEM_READ) { }
MemWriteEvent(address_t addr)
: MemAccessEvent(addr, MEM_WRITE) { }
};
/**
* \class TroubleEvent
* Observes interrupt/trap activties.
*/
class TroubleEvent : virtual public BaseEvent
{
private:
/**
* Specific guest system interrupt/trap number that actually
* trigger the event.
*/
int m_TriggerNumber;
/**
* Specific guest system interrupt/trap numbers to watch,
* or ANY_INTERRUPT/ANY_TRAP.
*/
std::vector<unsigned> m_WatchNumbers;
public:
TroubleEvent() : m_TriggerNumber (-1) { }
TroubleEvent(unsigned troubleNumber)
: m_TriggerNumber(-1)
{ addWatchNumber(troubleNumber); }
/**
* Add an interrupt/trap-number which should be observed
* @param troubleNumber number of an interrupt or trap
* @return \c true if number is added to the list \c false if the number
* was already in the list
*/
bool addWatchNumber(unsigned troubleNumber);
/**
* Remove an interrupt/trap-number which is in the list of observed
* numbers
* @param troubleNumber number of an interrupt or trap
* @return \c true if the number was found and removed \c false if the
* number was not in the list
*/
bool removeWatchNumber(unsigned troubleNum);
/**
* Returns the list of observed numbers
* @return a copy of the list which contains all observed numbers
*/
std::vector<unsigned> getWatchNumbers() { return (m_WatchNumbers); }
/**
* Checks whether a given interrupt-/trap-number is matching.
*/
bool isMatching(unsigned troubleNum) const;
/**
* Sets the specific interrupt-/trap-number that actually triggered
* the event. Should not be used by experiment code.
*/
void setTriggerNumber(unsigned troubleNum)
{ m_TriggerNumber = troubleNum; }
/**
* Returns the specific interrupt-/trap-number that actually triggered
* the event.
*/
unsigned getTriggerNumber() { return (m_TriggerNumber); }
};
/**
* \class InterruptEvent
* Observes interrupts of the guest system.
*/
class InterruptEvent : virtual public TroubleEvent
{
private:
bool m_IsNMI; //!< non maskable interrupt flag
public:
InterruptEvent() : m_IsNMI(false) { }
InterruptEvent(unsigned interrupt) : m_IsNMI(false)
{ addWatchNumber(interrupt); }
/**
* Returns \c true if the interrupt is non maskable, \c false otherwise.
*/
bool isNMI() { return (m_IsNMI); }
/**
* Sets the interrupt type (non maskable or not).
*/
void setNMI(bool enabled) { m_IsNMI = enabled; }
};
/**
* \class TrapEvent
* Observes traps of the guest system.
*/
class TrapEvent : virtual public TroubleEvent
{
public:
TrapEvent() { }
TrapEvent(unsigned trap) { addWatchNumber(trap); }
};
/**
* \class GuestEvent
* Used to receive data from the guest system.
*/
class GuestEvent : virtual public BaseEvent
{
private:
char m_Data;
unsigned m_Port;
public:
GuestEvent() : m_Data(0), m_Port(0) { }
/**
* Returns the data, transmitted by the guest system.
*/
char getData() const { return (m_Data); }
/**
* Sets the data which had been transmitted by the guest system.
*/
void setData(char data) { m_Data = data; }
/**
* Returns the data length, transmitted by the guest system.
*/
unsigned getPort() const { return (m_Port); }
/**
* Sets the data length which had been transmitted by the guest system.
*/
void setPort(unsigned port) { m_Port = port; }
};
/**
* \class IOPortEvent
* Observes I/O access on architectures with a separate I/O access mechanism (e.g. IA-32)
*/
class IOPortEvent : virtual public BaseEvent
{
private:
unsigned char m_Data;
unsigned m_Port;
bool m_Out;
public:
/**
* Initialises an IOPortEvent
*
* @param port the port the event ist listening on
* @param out Defines the direction of the event.
* \arg \c true Output on the given port is captured.
* \arg \c false Input on the given port is captured.
*/
IOPortEvent(unsigned port, bool out) : m_Data(0), m_Port(port), m_Out(out) { }
/**
* Returns the data sent to the specified port
*/
unsigned char getData() const { return (m_Data); }
/**
* Sets the data which had been transmitted.
*/
void setData(unsigned char data) { m_Data = data; }
/**
* Retrieves the port which this event is bound to.
*/
unsigned getPort() const { return (m_Port); }
/**
* Sets the port which this event is bound to.
*/
void setPort(unsigned port) { m_Port = port; }
/**
* Checks whether a given port number is matching.
* @param p The port number an I/O event occured on
* @param out True if the communication was outbound, false otherwise
*/
bool isMatching(unsigned p, bool out) const { return ( out = isOutEvent() && p == getPort()); }
/**
* Tells you if this event is capturing outbound communication (inbound if false)
*/
bool isOutEvent() const { return m_Out; }
/**
* Change the event direction.
* \arg \c true Output on the given port is captured.
* \arg \c false Input on the given port is captured.
*/
void setOut(bool out) { m_Out = out; }
};
/**
* \class JumpEvent
* JumpEvents are used to observe conditional jumps (if...else if...else).
*/
class JumpEvent : virtual public BaseEvent
{
private:
unsigned m_Opcode;
bool m_FlagTriggered;
public:
/**
* Constructs a new event object.
* @param parent the parent object
* @param opcode the opcode of the jump-instruction to be observed
* or ANY_INSTR to match all jump-instructions
*/
JumpEvent(unsigned opcode = ANY_INSTR)
: m_Opcode(opcode), m_FlagTriggered(false) { }
/**
* Retrieves the opcode of the jump-instruction.
*/
unsigned getOpcode() const { return (m_Opcode); }
/**
* Returns \c true, of the event was triggered due to specific register
* content, \c false otherwise.
*/
bool isRegisterTriggered() { return (!m_FlagTriggered); }
/**
* Returns \c true, of the event was triggered due to specific FLAG
* state, \c false otherwise. This is the common case.
*/
bool isFlagTriggered() { return (m_FlagTriggered); }
/**
* Sets the requestet jump-instruction opcode.
*/
void setOpcode(unsigned oc) { oc = m_Opcode; }
/**
* Sets the trigger flag.
*/
void setFlagTriggered(bool flagTriggered)
{ m_FlagTriggered = flagTriggered; }
};
/**
* \class TimerEvent
* This event type is used to create timeouts/timers within in an experiment.
*/
class TimerEvent : public BaseEvent
{
private:
unsigned m_Timeout; //!< timeout interval in milliseconds
timer_id_t m_Id; //!< internal timer id (sim-specific)
bool m_Once; //!< true, if the timer should be triggered only once
public:
/**
* Creates a new timer event. This can be used to implement a timeout-
* mechanism in the experiment-flow. The timer starts automatically when
* added to the simulator backend (@see SimulatorController::addEvent)
* @param timeout the time intervall in milliseconds (ms)
* @param once \c true, if the TimerEvent should be triggered once,
* \c false if it should occur regularly
*/
TimerEvent(unsigned timeout, bool once)
: m_Timeout(timeout), m_Id(-1), m_Once(once) { }
~TimerEvent() { }
/**
* Retrieves the internal timer id. Maybe useful for debug output.
* @return the timer id
*/
timer_id_t getId() const { return m_Id; }
/**
* Sets the internal timer id. This should not be used by the experiment.
* @param id the new timer id, given by the underlying simulator-backend
*/
void setId(timer_id_t id) { m_Id = id; }
/**
* Retrieves the timer's timeout value.
* @return the timout in milliseconds
*/
unsigned getTimeout() const { return m_Timeout; }
/**
* Checks whether the timer occurs once or repetitive.
* @return \c true if timer triggers once, \c false if repetitive
*/
bool getOnceFlag() const { return m_Once; }
};
} // end-of-namespace: fail
#endif // __EVENT_HPP__

187
src/core/sal/EventList.cc Normal file
View File

@ -0,0 +1,187 @@
#include <set>
#include "EventList.hpp"
#include "SALInst.hpp"
namespace fail {
EventId EventList::add(BaseEvent* ev, ExperimentFlow* pExp)
{
assert(ev != NULL && "FATAL ERROR: Event (of base type BaseEvent*) cannot be NULL!");
// a zero counter does not make sense
assert(ev->getCounter() != 0);
ev->setParent(pExp); // event is linked to experiment flow
BPEvent *bp_ev;
if((bp_ev = dynamic_cast<BPEvent*>(ev)) != NULL)
m_Bp_cache.add(bp_ev);
m_BufferList.push_back(ev);
return (ev->getId());
}
void EventList::remove(BaseEvent* ev)
{
// possible cases:
// - ev == 0 -> remove all events
// * clear m_BufferList
// * copy m_FireList to m_DeleteList
if (ev == 0) {
for (bufferlist_t::iterator it = m_BufferList.begin(); it != m_BufferList.end(); it++)
simulator.onEventDeletion(*it);
for (firelist_t::iterator it = m_FireList.begin(); it != m_FireList.end(); it++)
simulator.onEventDeletion(*it);
m_Bp_cache.clear();
m_BufferList.clear();
// all remaining active events must not fire anymore
m_DeleteList.insert(m_DeleteList.end(), m_FireList.begin(), m_FireList.end());
// - ev != 0 -> remove single event
// * find/remove ev in m_BufferList
// * if ev in m_FireList, copy to m_DeleteList
} else {
simulator.onEventDeletion(ev);
BPEvent *bp_ev;
if((bp_ev = dynamic_cast<BPEvent*>(ev)) != NULL)
m_Bp_cache.remove(bp_ev);
m_BufferList.remove(ev);
firelist_t::const_iterator it =
std::find(m_FireList.begin(), m_FireList.end(), ev);
if (it != m_FireList.end()) {
m_DeleteList.push_back(ev);
}
}
}
EventList::iterator EventList::remove(iterator it)
{
return (m_remove(it, false));
}
EventList::iterator EventList::m_remove(iterator it, bool skip_deletelist)
{
if (!skip_deletelist) {
// If skip_deletelist = true, m_remove was called from makeActive. Accordingly, we
// are not going to delete an event, instead we are "moving" an event object (= *it)
// from the buffer list to the fire-list. Therefor we only need to call the simulator's
// event handler (m_onEventDeletion), if m_remove is called with the primary intention
// to *delete* (not "move") an event.
simulator.onEventDeletion(*it);
m_DeleteList.push_back(*it);
}
BPEvent *bp_ev;
if((bp_ev = dynamic_cast<BPEvent*>(*it)) != NULL)
m_Bp_cache.remove(bp_ev);
return (m_BufferList.erase(it));
}
void EventList::remove(ExperimentFlow* flow)
{
// WARNING: (*it) (= all elements in the lists) can be an invalid ptr because
// clearEvents will be called automatically when the allocating experiment (i.e.
// run()) has already ended. Accordingly, we cannot call
// simulator.onEventDeletion(*it)
// because a dynamic-cast of *it would cause a SEGFAULT. Therefor we require the
// experiment flow to remove all residual events by calling clearEvents() (with-
// in run()). As a consequence, we are now allowed to call the event-handler here.
// See ExperimentFlow.hpp for more details.
// all events?
if (flow == 0) {
for (bufferlist_t::iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
simulator.onEventDeletion(*it); // invoke event handler
m_Bp_cache.clear();
m_BufferList.clear();
} else { // remove all events corresponding to a specific experiment ("flow"):
for (bufferlist_t::iterator it = m_BufferList.begin();
it != m_BufferList.end(); ) {
if ((*it)->getParent() == flow) {
simulator.onEventDeletion(*it);
it = m_BufferList.erase(it);
} else {
++it;
}
}
}
// events that just fired / are about to fire ...
for (firelist_t::const_iterator it = m_FireList.begin();
it != m_FireList.end(); it++) {
if (std::find(m_DeleteList.begin(), m_DeleteList.end(), *it)
!= m_DeleteList.end()) {
continue; // (already in the delete-list? -> skip!)
}
// ... need to be pushed into m_DeleteList, as we're currently
// iterating over m_FireList in fireActiveEvents() and cannot modify it
if (flow == 0 || (*it)->getParent() == flow) {
simulator.onEventDeletion(*it);
m_DeleteList.push_back(*it);
}
}
}
EventList::~EventList()
{
// nothing to do here yet
}
BaseEvent* EventList::getEventFromId(EventId id)
{
// Loop through all events:
for(bufferlist_t::iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
if((*it)->getId() == id)
return (*it);
return (NULL); // Nothing found.
}
EventList::iterator EventList::makeActive(iterator it)
{
assert(it != m_BufferList.end() &&
"FATAL ERROR: Iterator has already reached the end!");
BaseEvent* ev = *it;
assert(ev && "FATAL ERROR: Event object pointer cannot be NULL!");
ev->decreaseCounter();
if (ev->getCounter() > 0) {
return ++it;
}
ev->resetCounter();
// Note: This is the one and only situation in which remove() should NOT
// store the removed item in the delete-list.
iterator it_next = m_remove(it, true); // remove event from buffer-list
m_FireList.push_back(ev);
return (it_next);
}
void EventList::fireActiveEvents()
{
for (firelist_t::iterator it = m_FireList.begin();
it != m_FireList.end(); it++) {
if (std::find(m_DeleteList.begin(), m_DeleteList.end(), *it)
== m_DeleteList.end()) { // not found in delete-list?
m_pFired = *it;
// Inform (call) the simulator's (internal) event handler that we are about
// to trigger an event (*before* we actually toggle the experiment flow):
simulator.onEventTrigger(m_pFired);
ExperimentFlow* pFlow = m_pFired->getParent();
assert(pFlow && "FATAL ERROR: The event has no parent experiment (owner)!");
simulator.m_Flows.toggle(pFlow);
}
}
m_FireList.clear();
m_DeleteList.clear();
// Note: Do NOT call any event handlers here!
}
size_t EventList::getContextCount() const
{
std::set<ExperimentFlow*> uniqueFlows; // count unique ExperimentFlow-ptr
for(bufferlist_t::const_iterator it = m_BufferList.begin();
it != m_BufferList.end(); it++)
uniqueFlows.insert((*it)->getParent());
return uniqueFlows.size();
}
} // end-of-namespace: fail

193
src/core/sal/EventList.hpp Normal file
View File

@ -0,0 +1,193 @@
#ifndef __EVENT_LIST_HPP__
#define __EVENT_LIST_HPP__
#include <cassert>
#include <list>
#include <vector>
#include <algorithm>
#include "Event.hpp"
#include "BufferCache.hpp"
namespace fail {
class ExperimentFlow;
/**
* Buffer-list for a specific experiment; acts as a simple storage container
* for events to watch for:
*/
typedef std::list<BaseEvent*> bufferlist_t;
/**
* List of events that match the current simulator event; these events will
* be triggered next (the list is used temporarily).
*/
typedef std::vector<BaseEvent*> firelist_t;
/**
* List of events that have been deleted during a toggled experiment flow while
* triggering the events in the fire-list. This list is used to skip already
* deleted events (therefore it is used temporarily either).
*/
typedef std::vector<BaseEvent*> deletelist_t;
/**
* \class EventList
*
* \brief This class manages the events of the Fail* implementation.
*
* If a event is triggered, the internal data structure will be updated (id est,
* the event will be removed from the so called buffer-list and added to the
* fire-list). Additionaly, if an experiment-flow deletes an "active" event
* which is currently stored in the fire-list, the event (to be removed) will
* be added to a -so called- delete-list. This ensures to prevent triggering
* "active" events which have already been deleted by a previous experiment
* flow. (See makeActive() and fireActiveEvent() for implementation specific
* details.) EventList is part of the SimulatorController and "outsources"
* it's event management.
*/
class EventList
{
private:
// TODO: List separation of "critical types"? Hashing/sorted lists? (-> performance!)
bufferlist_t m_BufferList; //!< the storage for events added by exp.
firelist_t m_FireList; //!< the active events (used temporarily)
deletelist_t m_DeleteList; //!< the deleted events (used temporarily)
BaseEvent* m_pFired; //!< the recently fired Event-object
BufferCache<BPEvent*> m_Bp_cache;
public:
/**
* The iterator of this class used to loop through the list of
* added events. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef bufferlist_t::iterator iterator;
EventList() : m_pFired(NULL) { }
~EventList();
/**
* Adds the specified event object for the given ExperimentFlow to the
* list of events to be watched for.
* @param ev pointer to the event object to be added (cannot be \c NULL)
* @param pExp the event context (a pointer to the experiment object
* which is interested in such events, cannot be \c NULL)
* @return the id of the added event object, that is ev->getId()
*/
EventId add(BaseEvent* ev, ExperimentFlow* pExp);
/**
* Removes the event based upon the specified \a ev pointer (requires
* to loop through the whole buffer-list).
* @param ev the pointer of the event to be removed; if ev is set to
* \c NULL, all events (for \a all experiments) will be
* removed
*/
void remove(BaseEvent* ev);
/**
* Behaves like remove(BaseEvent) and additionally updates the provided
* iteration.
* @return the updated iterator which will point to the next element
*/
iterator remove(iterator it);
private:
/**
* Internal implementation of remove(iterator it) that allows
* to skip the delete-list.
* @return the updated iterator which will point to the next element
*/
iterator m_remove(iterator it, bool skip_deletelist);
public:
/**
* Returns an iterator to the beginning of the internal data structure.
* Don't forget to update the returned iterator when calling one of the
* modifying methods like makeActive() or remove(). Therefore you need
* to call the iterator-based variants of makeActive() and remove().
* \code
* [X|1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_BufferList.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* Don't forget to update the returned iterator when calling one of the
* modifying methods like makeActive() or remove(). Therefore you need
* to call the iterator-based variants of makeActive() and remove().
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_BufferList.end()); }
/**
* Retrieves the event object for the given \a id. The internal data
* remains unchanged.
* @param id of event to be retrieved.
* @return pointer to event or \c NULL of \a id could not be found
*/
BaseEvent* getEventFromId(EventId id);
/**
* Removes all events for the specified experiment.
* @param flow pointer to experiment context (0 = all experiments)
*/
void remove(ExperimentFlow* flow);
/**
* Retrieves the number of experiments which currently have active
* events. This number is trivially equal to the (current) total
* number of ExperimentFlow-objects.
* @return number of experiments having active events
*/
size_t getContextCount() const;
/**
* Retrieves the total number of buffered events. This doesn't include
* the events in the fire- or delete-list.
* @return the total event count (for all flows)
*/
size_t getEventCount() const { return m_BufferList.size(); }
/**
* Retrieves the recently triggered event object. To map this object to
* it's context (id est, the related ExerimentFlow), use
* \c getLastFiredDest().
* @return a pointer to the recent event or \c NULL if nothing has been
* triggered so far
*/
BaseEvent* getLastFired() { return (m_pFired); }
/**
* Retrieves the ExperimentFlow-object for the given BaseEvent (it's
* \a context).
* @param pEv the event object to be looked up
* @return a pointer to the context of \a pEv or \c NULL if the
* corresponding context could not be found
*/
ExperimentFlow* getExperimentOf(BaseEvent* pEv);
/**
* Moves the events from the (internal) buffer-list to the fire-list.
* To actually fire the events, call fireActiveEvents().
* Returns an updated iterator which points to the next element.
* @param ev the event to trigger
* @return returns the updated iteration, pointing to the next element
* after makeActive returns, "it" is invalid, so the returned
* iterator should be used to continue the iteration
*
* TODO: Improve naming (instead of "makeActive")?
*/
iterator makeActive(iterator it);
/**
* Triggers the active events. Each event is triggered if it has not
* recently been removed (id est: is not found in the delete-list). See
* makeActive() for more details. The recently triggered event can be
* retrieved by calling \a getLastFired(). After all events have been
* triggered, the (internal) fire- and delete-list will be cleared.
*
* TODO: Improve naming (instead of "fireActiveEvents")?
*/
void fireActiveEvents();
/**
* Retrieves the BPEvent buffer cache.
* @returns the buffer cache
*/
inline BufferCache<BPEvent*> *getBPBuffer() { return &m_Bp_cache; }
};
} // end-of-namespace: fail
#endif // __EVENT_LIST_HPP__

9
src/core/sal/Memory.cc Normal file
View File

@ -0,0 +1,9 @@
#include <cstdlib>
#include "Memory.hpp"
namespace fail {
const guest_address_t ADDR_INV = 0;
}

74
src/core/sal/Memory.hpp Normal file
View File

@ -0,0 +1,74 @@
#ifndef __MEMORY_HPP__
#define __MEMORY_HPP__
#include <vector>
#include <stdint.h>
#include <cstring> // Added for size_t support
#include "SALConfig.hpp"
namespace fail {
/**
* \class MemoryManager
* Defines an abstract interface to access the simulated memory pool
* and query meta information, e.g. the memory size.
*/
class MemoryManager
{
public:
virtual ~MemoryManager() { }
/**
* Retrieves the size of the available simulated memory.
* @return the size of the memory pool in bytes
*/
virtual size_t getPoolSize() const = 0;
/**
* Retrieves the starting address of the host memory. This is the
* first valid address in memory.
* @return the starting address
*/
virtual host_address_t getStartAddr() const = 0;
/**
* Retrieves the byte at address \a addr in the memory.
* @param addr The guest address where the byte is located.
* The address is expected to be valid.
* @return the byte at \a addr
*/
virtual byte_t getByte(guest_address_t addr) = 0;
/**
* Retrieves \a cnt bytes at address \a addr from the memory.
* @param addr The guest address where the bytes are located.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param dest Pointer to destination buffer to copy the data to.
*/
virtual void getBytes(guest_address_t addr, size_t cnt, void *dest) = 0;
/**
* Writes the byte \a data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new byte to write
*/
virtual void setByte(guest_address_t addr, byte_t data) = 0;
/**
* Copies data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param src Pointer to data to be copied.
*/
virtual void setBytes(guest_address_t addr, size_t cnt, void const *src) = 0;
/**
* Transforms the guest address \a addr to a host address.
* @param addr The guest address to be transformed
* @return the transformed (host) address or \c ADDR_INV on errors
*/
virtual host_address_t guestToHost(guest_address_t addr) = 0;
};
} // end-of-namespace: fail
#endif // __MEMORY_HPP__

69
src/core/sal/Register.cc Normal file
View File

@ -0,0 +1,69 @@
#include "Register.hpp"
namespace fail {
Register* UniformRegisterSet::getRegister(size_t i)
{
assert(i < m_Regs.size() && "FATAL ERROR: Invalid index provided!");
return (m_Regs[i]);
}
Register* RegisterManager::getRegister(size_t i)
{
assert(i < m_Registers.size() && "FATAL ERROR: Invalid index provided!");
return (m_Registers[i]);
}
void RegisterManager::add(Register* reg)
{
assert(!reg->isAssigned() && "FATAL ERROR: The register is already assigned!");
m_Registers.push_back(reg);
UniformRegisterSet* urs = getSetOfType(reg->getType());
if(urs == NULL) {
urs = new UniformRegisterSet(reg->getType());
m_Subsets.push_back(urs);
}
urs->m_add(reg);
}
void UniformRegisterSet::m_add(Register* preg)
{
assert(!preg->m_Assigned &&
"FATAL ERROR: The register has already been assigned.");
m_Regs.push_back(preg);
preg->m_Assigned = true;
preg->m_Index = m_Regs.size()-1; // the index within the vector (set)
}
size_t RegisterManager::count() const
{
return (m_Registers.size());
}
UniformRegisterSet& RegisterManager::getSet(size_t i)
{
assert(i < m_Subsets.size() && "FATAL ERROR: Invalid index provided!");
return (*m_Subsets[i]);
}
UniformRegisterSet* RegisterManager::getSetOfType(RegisterType t)
{
for(std::vector< UniformRegisterSet* >::iterator it = m_Subsets.begin();
it != m_Subsets.end(); it++)
{
if((*it)->getType() == t)
return (*it);
}
return (NULL);
}
void RegisterManager::clear()
{
for(std::vector< UniformRegisterSet* >::iterator it = m_Subsets.begin();
it != m_Subsets.end(); it++)
delete (*it);
m_Subsets.clear();
}
} // end-of-namespace: fail

278
src/core/sal/Register.hpp Normal file
View File

@ -0,0 +1,278 @@
#ifndef __REGISTER_HPP__
#define __REGISTER_HPP__
#include <vector>
#include <cstdlib>
#include <cassert>
#include <string>
#include <stdint.h>
#include "SALConfig.hpp"
namespace fail {
/**
* \enum RegisterType
*
* Lists the different register types. You need to expand this enumeration
* to provide more detailed types for your concrete derived register classes
* specific to a simulator.
*/
enum RegisterType
{
RT_GP, //!< general purpose
RT_PC, //!< program counter / instruction pointer
RT_ST //!< status register
};
/**
* \class Register
*
* Represents the basic generic register class. A set of registers is composed
* of classes which had been derived from this class.
*/
class Register
{
protected:
RegisterType m_Type; //!< the type of this register
regwidth_t m_Width; //!< the register width
unsigned int m_Id; //!< the unique id of this register
//! \c true if register has already been assigned, \c false otherwise
bool m_Assigned;
//! The index in it's register set if assigned (\c -1 otherwise)
size_t m_Index;
std::string m_Name; //!< The (optional) name, maybe empty
friend class UniformRegisterSet;
public:
/**
* Creates a new register.
* @param id the unique id of this register (simulator specific)
* @param t the type of the register to be constructed
* @param w the width of the register in bits
*/
Register(unsigned int id, RegisterType t, regwidth_t w)
: m_Type(t), m_Width(w), m_Id(id), m_Assigned(false),
m_Index(static_cast<size_t>(-1)) { }
/**
* Returns the (fixed) type of this register.
* @return the type of this register
*/
RegisterType getType() const { return (m_Type); }
/**
* Returns the (fixed) width of this register.
* @return the width in bits
*/
regwidth_t getWidth() const { return (m_Width); }
/**
* Returns the data referenced by this register. In a concrete
* derived class this method has to be defined appropriately.
* @return the current data
*/
virtual regdata_t getData() /*!const*/ = 0;
/**
* Sets new data to be stored in this register.
* @param data the data to be written to the register
*/
virtual void setData(regdata_t data) = 0;
/**
* Sets the (optional) name of this register.
* @param name the textual register name, e.g. "EAX"
*/
void setName(const std::string& name) { m_Name = name; }
/**
* Retrieves the register name.
* @return the textual register description
*/
const std::string& getName() const { return (m_Name); }
/**
* Retrieves the unique index within it's assigned register set.
* If the register has not been assigned, \c (size_t)-1 will be
* returned.
* @return the register index or -1 if not assigned
* @see isAssigned()
*/
size_t getIndex() const { return (m_Index); }
/**
* Checks whether this register has already been assigned. On
* creation the register isn't initially assigned.
* @return \c true if assigned, \c false otherwise
*/
bool isAssigned() const { return (m_Assigned); }
/**
* Returns the unique id of this register.
* @return the unique id
*/
unsigned int getId() const { return (m_Id); }
};
/**
* \class UniformRegisterSet
*
* Represents a (type-uniform) set of registers, e.g. all general purpose
* registers. The granularity of the register type is determined by the
* enumeration \c RegisterType. (All registers within this set must be of the
* same register type.) The capacity of the set is managed automatically.
*/
class UniformRegisterSet
{
private:
std::vector< Register* > m_Regs; //!< the unique set of registers
RegisterType m_Type; //!< the overall type of this container (set)
void m_add(Register* preg);
friend class RegisterManager;
public:
/**
* The iterator of this class used to loop through the list of
* added registers. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef std::vector< Register* >::iterator iterator;
/**
* Returns an iterator to the beginning of the internal data structure.
* \code
* [1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_Regs.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_Regs.end()); }
/**
* Constructs a new register set with type \a containerType.
* @param containerType the type of registers which should be stored
* in this set
*/
UniformRegisterSet(RegisterType containerType)
: m_Type(containerType) { }
/**
* Returns the type of this set.
* @return the type
*/
RegisterType getType() const { return (m_Type); }
/**
* Gets the number of registers of this set.
* @return the number of registers
*/
size_t count() const { return (m_Regs.size()); }
/**
* Retrieves the \a i-th register within this set.
* @return a pointer to the \a i-th register; if \a i is invalid, an
* assertion is thrown
*/
Register* getRegister(size_t i);
/**
* Retrieves the first register within this set (syntactical sugar).
* @return a pointer to the first register (if existing -- otherwise an
* assertion is thrown)
*/
virtual Register* first() { return (getRegister(0)); }
};
/**
* \class RegisterManager
* Represents a complete set of (inhomogeneous) registers specific to a concrete
* architecture, e.g. x86 or ARM.
*/
class RegisterManager
{
protected:
std::vector< Register* > m_Registers;
//!< the managed set of homogeneous sets
std::vector< UniformRegisterSet* > m_Subsets;
public:
/**
* The iterator of this class used to loop through the list of
* added registers. To retrieve an iterator to the first element, call
* begin(). end() returns the iterator, pointing after the last element.
* (This behaviour equals the STL iterator in C++.)
*/
typedef std::vector< Register* >::iterator iterator;
/**
* Returns an iterator to the beginning of the internal data structure.
* \code
* [1|2| ... |n]
* ^
* \endcode
*/
iterator begin() { return (m_Registers.begin()); }
/**
* Returns an iterator to the end of the interal data structure.
* \code
* [1|2| ... |n]X
* ^
* \endcode
*/
iterator end() { return (m_Registers.end()); }
RegisterManager() { }
~RegisterManager() { clear(); }
/**
* Retrieves the total number of registers over all homogeneous sets.
* @return the total register count
*/
virtual size_t count() const;
/**
* Retrieves the number of managed homogeneous register sets.
* @return the number of sets
*/
virtual size_t subsetCount() const { return (m_Subsets.size()); }
/**
* Gets the \a i-th register set.
* @param i the index of the set to be returned
* @return a reference to the uniform register set
* @see subsetCount()
*/
virtual UniformRegisterSet& getSet(size_t i);
/**
* Returns the set with register type \a t. The set can be used to
* loop over all registers of type \a t.
* @param t the type to check for
* @return a pointer to the retrieved register set (if found), NULL
* otherwise
*/
virtual UniformRegisterSet* getSetOfType(RegisterType t);
/**
* Adds a new register to this set. The register object needs to be
* typed (see Register::getType).
* @param reg a pointer to the register object to be added
* @see getType()
*/
void add(Register* reg);
/**
* Retrieves the \a i-th register.
* @return a pointer to the \a i-th register; if \a i is invalid, an
* assertion is thrown
*/
Register* getRegister(size_t i);
/**
* Removes all registers and sets from the RegisterManager.
*/
virtual void clear();
/**
* Returns the current instruction pointer.
* @return the current eip
*/
virtual address_t getInstructionPointer() = 0;
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
virtual address_t getStackPointer() = 0;
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
virtual address_t getBasePointer() = 0;
};
} // end-of-namespace: fail
#endif // __REGISTER_HPP__

View File

@ -0,0 +1,29 @@
#ifndef __SAL_CONFIG_HPP__
#define __SAL_CONFIG_HPP__
#include <stdint.h>
#include "config/VariantConfig.hpp"
// Type-config depends on the current selected simulator:
#if defined BUILD_BOCHS
#include "bochs/BochsConfig.hpp"
#elif defined BUILD_OVP
#include "ovp/OVPConfig.hpp"
#else
#error SAL Config Target not defined
#endif
namespace fail {
typedef guest_address_t address_t; //!< common address type to be used in experiment flows
typedef uint8_t byte_t; //!< 8 bit type for memory access (read or write)
typedef uint32_t regwidth_t; //!< type of register width [bits]
typedef register_data_t regdata_t; //!< type of register data
typedef timer_t timer_id_t; //!< type of timer IDs
extern const address_t ADDR_INV; //!< invalid address flag (defined in Memory.cc)
} // end-of-namespace: fail
#endif // __SAL_CONFIG_HPP__

33
src/core/sal/SALInst.hpp Normal file
View File

@ -0,0 +1,33 @@
#ifndef __SAL_INSTANCE_HPP__
#define __SAL_INSTANCE_HPP__
#include "SALConfig.hpp"
#include "config/VariantConfig.hpp"
#ifdef BUILD_BOCHS
#include "bochs/BochsController.hpp"
namespace fail {
typedef BochsController ConcreteSimulatorController; //!< concrete simulator (type)
extern ConcreteSimulatorController simulator; //!< the global simulator-controller instance
}
#elif defined BUILD_OVP
#include "ovp/OVPController.hpp"
namespace fail {
typedef OVPController ConcreteSimulatorController; //!< concrete simulator (type)
extern ConcreteSimulatorController simulator; //!< the global simulator-controller instance
}
#else
#error SAL Instance not defined
#endif
#endif // __SAL_INSTANCE_HPP__

View File

@ -0,0 +1,252 @@
#include "SimulatorController.hpp"
#include "SALInst.hpp"
namespace fail {
// External reference declared in SALInst.hpp
ConcreteSimulatorController simulator;
EventId SimulatorController::addEvent(BaseEvent* ev)
{
assert(ev != NULL && "FATAL ERROR: Argument (ptr) cannot be NULL!");
EventId ret = m_EvList.add(ev, m_Flows.getCurrent());
// Call the common postprocessing function:
if (!onEventAddition(ev)) { // If the return value signals "false"...,
m_EvList.remove(ev); // ...skip the addition
ret = INVALID_EVENT;
}
return ret;
}
BaseEvent* SimulatorController::waitAny(void)
{
m_Flows.resume();
assert(m_EvList.getLastFired() != NULL &&
"FATAL ERROR: getLastFired() expected to be non-NULL!");
return (m_EvList.getLastFired());
}
void SimulatorController::startup()
{
// Some greetings to the user:
std::cout << "[SimulatorController] Initializing..." << std::endl;
// TODO: Log-Level?
// Activate previously added experiments to allow initialization:
initExperiments();
}
void SimulatorController::initExperiments()
{
/* empty. */
}
void SimulatorController::onBreakpointEvent(address_t instrPtr, address_t address_space)
{
assert(false &&
"FIXME: SimulatorController::onBreakpointEvent() has not been tested before");
// FIXME: Improve performance
// Loop through all events of type BP*Event:
EventList::iterator it = m_EvList.begin();
while (it != m_EvList.end())
{
BaseEvent* pev = *it;
BPSingleEvent* pbp; BPRangeEvent* pbpr;
if((pbp = dynamic_cast<BPSingleEvent*>(pev)) && pbp->isMatching(instrPtr, address_space))
{
pbp->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
else if((pbpr = dynamic_cast<BPRangeEvent*>(pev)) &&
pbpr->isMatching(instrPtr, address_space))
{
pbpr->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
continue; // dito
}
++it;
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onMemoryAccessEvent(address_t addr, size_t len,
bool is_write, address_t instrPtr)
{
// FIXME: Improve performance
MemAccessEvent::accessType_t accesstype =
is_write ? MemAccessEvent::MEM_WRITE
: MemAccessEvent::MEM_READ;
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
BaseEvent* pev = *it;
MemAccessEvent* ev = dynamic_cast<MemAccessEvent*>(pev);
// Is this a MemAccessEvent? Correct access type?
if(!ev || !ev->isMatching(addr, accesstype))
{
++it;
continue; // skip event activation
}
ev->setTriggerAddress(addr);
ev->setTriggerWidth(len);
ev->setTriggerInstructionPointer(instrPtr);
ev->setTriggerAccessType(accesstype);
it = m_EvList.makeActive(it);
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onInterruptEvent(unsigned interruptNum, bool nmi)
{
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
BaseEvent* pev = *it;
InterruptEvent* pie = dynamic_cast<InterruptEvent*>(pev);
if(!pie || !pie->isMatching(interruptNum))
{
++it;
continue; // skip event activation
}
pie->setTriggerNumber(interruptNum);
pie->setNMI(nmi);
it = m_EvList.makeActive(it);
}
m_EvList.fireActiveEvents();
}
bool SimulatorController::isSuppressedInterrupt(unsigned interruptNum)
{
for(size_t i = 0; i < m_SuppressedInterrupts.size(); i++)
if((m_SuppressedInterrupts[i] == interruptNum ||
m_SuppressedInterrupts[i] == ANY_INTERRUPT) && interruptNum != (unsigned) interrupt_to_fire+32 ){
if((int)interruptNum == interrupt_to_fire+32){
interrupt_to_fire = -1;
return(true);
}
return (true);
}
return (false);
}
bool SimulatorController::addSuppressedInterrupt(unsigned interruptNum)
{
// Check if already existing:
if(isSuppressedInterrupt(interruptNum+32))
return (false); // already added: nothing to do here
if(interruptNum == ANY_INTERRUPT){
m_SuppressedInterrupts.push_back(interruptNum);
return (true);
}else{
m_SuppressedInterrupts.push_back(interruptNum+32);
return (true);
}
}
bool SimulatorController::removeSuppressedInterrupt(unsigned interruptNum)
{
for(size_t i = 0; i < m_SuppressedInterrupts.size(); i++)
{
if(m_SuppressedInterrupts[i] == interruptNum+32 || m_SuppressedInterrupts[i] == ANY_INTERRUPT)
{
m_SuppressedInterrupts.erase(m_SuppressedInterrupts.begin() + i);
return (true);
}
}
return (false);
}
void SimulatorController::onTrapEvent(unsigned trapNum)
{
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
BaseEvent* pev = *it;
TrapEvent* pte = dynamic_cast<TrapEvent*>(pev);
if(!pte || !pte->isMatching(trapNum))
{
++it;
continue; // skip event activation
}
pte->setTriggerNumber(trapNum);
it = m_EvList.makeActive(it);
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onGuestSystemEvent(char data, unsigned port)
{
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
BaseEvent* pev = *it;
GuestEvent* pge = dynamic_cast<GuestEvent*>(pev);
if(pge != NULL)
{
pge->setData(data);
pge->setPort(port);
it = m_EvList.makeActive(it);
continue; // dito.
}
++it;
}
m_EvList.fireActiveEvents();
}
void SimulatorController::onJumpEvent(bool flagTriggered, unsigned opcode)
{
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end()) // check for active events
{
JumpEvent* pje = dynamic_cast<JumpEvent*>(*it);
if(pje != NULL)
{
pje->setOpcode(opcode);
pje->setFlagTriggered(flagTriggered);
it = m_EvList.makeActive(it);
continue; // dito.
}
++it;
}
m_EvList.fireActiveEvents();
}
void SimulatorController::addFlow(ExperimentFlow* flow)
{
// Store the (flow,corohandle)-tuple internally and create its coroutine:
m_Flows.create(flow);
// let it run for the first time
m_Flows.toggle(flow);
}
void SimulatorController::removeFlow(ExperimentFlow* flow)
{
// remove all remaining events of this flow
clearEvents(flow);
// remove coroutine
m_Flows.remove(flow);
}
BaseEvent* SimulatorController::addEventAndWait(BaseEvent* ev)
{
addEvent(ev);
return (waitAny());
}
void SimulatorController::terminate(int exCode)
{
// Attention: This could cause problems, e.g., because of non-closed sockets
std::cout << "[FAIL] Exit called by experiment with exit code: " << exCode << std::endl;
// TODO: (Non-)Verbose-Mode? Log-Level?
exit(exCode);
}
} // end-of-namespace: fail

View File

@ -0,0 +1,271 @@
#ifndef __SIMULATOR_CONTROLLER_HPP__
#define __SIMULATOR_CONTROLLER_HPP__
#include <iostream>
#include <string>
#include <cassert>
#include <vector>
#include "efw/CoroutineManager.hpp"
#include "EventList.hpp"
#include "SALConfig.hpp"
#include "Event.hpp"
namespace fail {
// Incomplete types suffice here:
class ExperimentFlow;
class RegisterManager;
class MemoryManager;
/**
* \class SimulatorController
*
* \brief The abstract interface for controlling simulators and
* accessing experiment data/flows (as part of the "Simulator
* Abstraction Layer".
*
* This class manages (1..N) experiments and provides access to the underlying
* simulator/debugger system. Experiments can enlist arbritrary events
* (Breakpoint, Memory access, Traps, etc.). The SimulatorController then
* activates the specific experiment There are further methods to read/write
* registers and memory, and control the SUT (save/restore/reset).
*/
class SimulatorController
{
protected:
EventList m_EvList; //!< storage where events are being buffered
CoroutineManager m_Flows; //!< managed experiment flows
RegisterManager *m_Regs; //!< access to cpu register
MemoryManager *m_Mem; //!< access to memory pool
//! list of suppressed interrupts
std::vector<unsigned> m_SuppressedInterrupts;
friend class EventList; //!< "outsources" the event management
public:
SimulatorController()
: m_Regs(NULL), m_Mem(NULL) { }
SimulatorController(RegisterManager* regs, MemoryManager* mem)
: m_Regs(regs), m_Mem(mem) { }
virtual ~SimulatorController() { }
/**
* @brief Initialization function each implementation needs to call on
* startup
*
* This function needs to be invoked once the simulator starts, and
* allows the SimulatorController to instantiate all needed experiment
* components.
*/
void startup();
/**
* Experiments need to hook here.
*/
void initExperiments();
/* ********************************************************************
* Standard Event Handler API
* ********************************************************************/
/**
* Breakpoint event handler. This routine needs to be called in the
* simulator specific backend each time a breakpoint event occurs.
* @param instrPtr the instruction pointer of the breakpoint event
* @param address_space the address space it should occur in
*/
void onBreakpointEvent(address_t instrPtr, address_t address_space);
/**
* Memory access event handler (read/write).
* @param addr the accessed memory address
* @param len the length of the accessed memory
* @param is_write \c true if memory is written, \c false if read
* @param instrPtr the address of the instruction causing the memory
* access
*
* FIXME: should instrPtr be part of this interface?
*/
void onMemoryAccessEvent(address_t addr, size_t len,
bool is_write, address_t instrPtr);
/**
* Interrupt event handler.
* @param interruptNum the interrupt-type id
* @param nmi nmi-value from guest-system
*/
void onInterruptEvent(unsigned interruptNum, bool nmi);
/**
* Trap event handler.
* @param trapNum the trap-type id
*/
void onTrapEvent(unsigned trapNum);
/**
* Guest system communication handler.
* @param data the "message" from the guest system
* @param port the port of the event
*/
void onGuestSystemEvent(char data, unsigned port);
/**
* (Conditional) Jump-instruction handler.
* @param flagTriggered \c true if the jump was triggered due to a
* specific FLAG (zero/carry/sign/overflow/parity flag)
* @param opcode the opcode of the conrecete jump instruction
*/
void onJumpEvent(bool flagTriggered, unsigned opcode);
/**
* This method is called when an experiment flow adds a new event by
* calling \c simulator.addEvent(pev) or \c simulator.addEventAndWait(pev).
* More specifically, the event will be added to the event-list first
* (buffer-list, to be precise) and then this event handler is called.
* @param pev the event which has been added
* @return You should return \c true to continue and \c false to prevent
* the addition of the event \a pev, yielding an error in the
* experiment flow (i.e. -1 is returned).
*/
virtual bool onEventAddition(BaseEvent* pev) { return true; }
/**
* This method is called when an experiment flow removes an event from
* the event-management by calling \c removeEvent(prev), \c clearEvents()
* or by deleting a complete flow (\c removeFlow). More specifically, this
* event handler will be called *before* the event is actually deleted.
* @param pev the event to be deleted when returning from the event handler
*/
virtual void onEventDeletion(BaseEvent* pev) { }
/**
* This method is called when an previously added event is about to be
* triggered by the simulator-backend. More specifically, this event handler
* will be called *before* the event is actually triggered, i.e. before the
* corresponding coroutine is toggled.
* @param pev the event to be triggered when returning from the event handler
*/
virtual void onEventTrigger(BaseEvent* pev) { }
/* ********************************************************************
* Simulator Controller & Access API:
* ********************************************************************/
/**
* Save simulator state.
* @param path Location to store state information
*/
virtual void save(const std::string& path) = 0;
/**
* Restore simulator state. Implicitly discards all previously
* registered events.
* @param path Location to previously saved state information
*/
virtual void restore(const std::string& path) = 0;
/**
* Reboot simulator.
*/
virtual void reboot() = 0;
/**
* Terminate simulator
* @param exCode Individual exit code
*/
void terminate(int exCode = EXIT_SUCCESS) __attribute__ ((noreturn));
/**
* Check whether the interrupt should be suppressed.
* @param interruptNum the interrupt-type id
* @return \c true if the interrupt is suppressed, \c false oterwise
*/
bool isSuppressedInterrupt(unsigned interruptNum);
/**
* Add a Interrupt to the list of suppressed.
* @param interruptNum the interrupt-type id
* @return \c true if sucessfully added, \c false otherwise (already
* existing)
*/
bool addSuppressedInterrupt(unsigned interruptNum);
/**
* Remove a Interrupt from the list of suppressed.
* @param interruptNum the interrupt-type id
* @return \c true if sucessfully removed, \c false otherwise (not
* found)
*/
bool removeSuppressedInterrupt(unsigned interruptNum);
/**
* Returns the (constant) initialized register manager.
* @return a reference to the register manager
*/
RegisterManager& getRegisterManager() { return (*m_Regs); }
const RegisterManager& getRegisterManager() const { return (*m_Regs); }
/**
* Sets the register manager.
* @param pReg the new register manager (or a concrete derived class of
* RegisterManager)
*/
void setRegisterManager(RegisterManager* pReg) { m_Regs = pReg; }
/**
* Returns the (constant) initialized memory manager.
* @return a reference to the memory manager
*/
MemoryManager& getMemoryManager() { return (*m_Mem); }
const MemoryManager& getMemoryManager() const { return (*m_Mem); }
/**
* Sets the memory manager.
* @param pMem a new concrete memory manager
*/
void setMemoryManager(MemoryManager* pMem) { m_Mem = pMem; }
/* ********************************************************************
* Experiment-Flow & Event Management API:
* ********************************************************************/
/**
* Adds the specified experiment or plugin and creates a coroutine to
* run it in.
* @param flow the experiment flow object to be added
*/
void addFlow(ExperimentFlow* flow);
/**
* Removes the specified experiment or plugin and destroys its coroutine
* and all associated events.
* @param flow the experiment flow object to be removed
*/
void removeFlow(ExperimentFlow* flow);
/**
* Add event ev to the event management. This causes the event to be
* active.
* @param ev the event pointer to be added for the current flow
* @return the id of the event used to identify the object on occurrence;
* -1 is returned on errors
*/
EventId addEvent(BaseEvent* ev);
/**
* Removes the event with the specified id.
* @param ev the pointer of the event-object to be removed; if \a ev is
* equal to \c NULL all events (for all experiments) will be
* removed
*/
void removeEvent(BaseEvent* ev) { m_EvList.remove(ev); }
/**
* Removes all previously added events for all experiments. To
* restrict this to a specific experiment flow, pass a pointer to it.
*/
void clearEvents(ExperimentFlow *flow = 0) { m_EvList.remove(flow); }
/**
* Waits on any events which have been added to the event management. If
* one of those events occour, waitAny() will return the id of that event.
* @return the previously occurred event
*
* FIXME: Maybe this should return immediately if there are not events?
* (additional parameter flag?)
*/
BaseEvent* waitAny();
/**
* Add event \a ev to the global buffer and wait for it (combines
* \c addEvent() and \c waitAny()).
* @param ev the event pointer to be added
* @return the pointer of the occurred event (it is not guaranteed that
* this pointer will be equal to ev)
*
* FIXME: Rename to make clear this returns when *any* event occurs
*/
BaseEvent* addEventAndWait(BaseEvent* ev);
/**
* Checks whether any experiment flow has events in the event-list.
* @return \c true if there are still events, or \c false otherwise
*/
bool hasEvents() const { return getEventCount() > 0; }
/**
* Determines the number of (stored) events in the event-list which have
* not been triggered so far.
* @return the actual number of events
*/
unsigned getEventCount() const { return m_EvList.getEventCount(); }
};
} // end-of-namespace: fail
#endif // __SIMULATOR_CONTROLLER_HPP__

View File

@ -0,0 +1,25 @@
/**
* \brief Type definitions and configuration settings for
* the Bochs simulator.
*/
#ifndef __BOCHS_CONFIG_HPP__
#define __BOCHS_CONFIG_HPP__
#include "bochs.h"
#include "config.h"
namespace fail {
typedef bx_address guest_address_t; //!< the guest memory address type
typedef Bit8u* host_address_t; //!< the host memory address type
#if BX_SUPPORT_X86_64
typedef Bit64u register_data_t; //!< register data type (64 bit)
#else
typedef Bit32u register_data_t; //!< register data type (32 bit)
#endif
typedef int timer_t; //!< type of timer IDs
} // end-of-namespace: fail
#endif // __BOCHS_CONFIG_HPP__

View File

@ -0,0 +1,322 @@
#include <sstream>
#include "BochsController.hpp"
#include "BochsMemory.hpp"
#include "BochsRegister.hpp"
#include "../Register.hpp"
#include "../SALInst.hpp"
namespace fail {
#ifdef DANCEOS_RESTORE
bx_bool restore_bochs_request = false;
bx_bool save_bochs_request = false;
std::string sr_path = "";
#endif
bx_bool reboot_bochs_request = false;
bx_bool interrupt_injection_request = false;
int interrupt_to_fire = -1;
BochsController::BochsController()
: SimulatorController(new BochsRegisterManager(), new BochsMemoryManager())
{
// -------------------------------------
// Add the general purpose register:
#if BX_SUPPORT_X86_64
// -- 64 bit register --
const std::string names[] = { "RAX", "RCX", "RDX", "RBX", "RSP", "RBP", "RSI",
"RDI", "R8", "R9", "R10", "R11", "R12", "R13",
"R14", "R15" };
for(unsigned short i = 0; i < 16; i++)
{
BxGPReg* pReg = new BxGPReg(i, 64, &(BX_CPU(0)->gen_reg[i].rrx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#else
// -- 32 bit register --
const std::string names[] = { "EAX", "ECX", "EDX", "EBX", "ESP", "EBP", "ESI",
"EDI" };
for(unsigned short i = 0; i < 8; i++)
{
BxGPReg* pReg = new BxGPReg(i, 32, &(BX_CPU(0)->gen_reg[i].dword.erx));
pReg->setName(names[i]);
m_Regs->add(pReg);
}
#endif // BX_SUPPORT_X86_64
#ifdef DEBUG
m_Regularity = 0; // disabled
m_Counter = 0;
m_pDest = NULL;
#endif
// -------------------------------------
// Add the Program counter register:
#if BX_SUPPORT_X86_64
BxPCReg* pPCReg = new BxPCReg(RID_PC, 64, &(BX_CPU(0)->gen_reg[BX_64BIT_REG_RIP].rrx));
pPCReg->setName("RIP");
#else
BxPCReg* pPCReg = new BxPCReg(RID_PC, 32, &(BX_CPU(0)->gen_reg[BX_32BIT_REG_EIP].dword.erx));
pPCReg->setName("EIP");
#endif // BX_SUPPORT_X86_64
// -------------------------------------
// Add the Status register (x86 cpu FLAGS):
BxFlagsReg* pFlagReg = new BxFlagsReg(RID_FLAGS, reinterpret_cast<regdata_t*>(&(BX_CPU(0)->eflags)));
// Note: "eflags" is (always) of type Bit32u which matches the regdata_t only in
// case of the 32 bit version (id est !BX_SUPPORT_X86_64). Therefor we need
// to ensure to assign only 32 bit to the Bochs internal register variable
// (see SAL/bochs/BochsRegister.hpp, setData) if we are in 64 bit mode.
pFlagReg->setName("FLAGS");
m_Regs->add(pFlagReg);
m_Regs->add(pPCReg);
}
BochsController::~BochsController()
{
for(RegisterManager::iterator it = m_Regs->begin(); it != m_Regs->end(); it++)
delete (*it); // free the memory, allocated in the constructor
m_Regs->clear();
delete m_Regs;
delete m_Mem;
}
#ifdef DEBUG
void BochsController::dbgEnableInstrPtrOutput(unsigned regularity, std::ostream* dest)
{
m_Regularity = regularity;
m_pDest = dest;
m_Counter = 0;
}
#endif // DEBUG
void BochsController::onInstrPtrChanged(address_t instrPtr, address_t address_space)
{
#if 0
//the original code - performs magnitudes worse than
//the code below and is responsible for most (~87 per cent)
//of the slowdown of FailBochs
#ifdef DEBUG
if(m_Regularity != 0 && ++m_Counter % m_Regularity == 0)
(*m_pDest) << "0x" << std::hex << instrPtr;
#endif
// Check for active breakpoint-events:
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Maybe we need to improve the performance of this check.
BPEvent* pEvBreakpt = dynamic_cast<BPEvent*>(*it);
if(pEvBreakpt && pEvBreakpt->isMatching(instrPtr, address_space))
{
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
it++;
}
m_EvList.fireActiveEvents();
#endif
//this code is highly optimised for the average case, so it me appear a bit ugly
bool do_fire = false;
unsigned i = 0;
BufferCache<BPEvent*> *buffer_cache = m_EvList.getBPBuffer();
while(i < buffer_cache->getCount()) {
BPEvent *pEvBreakpt = buffer_cache->get(i);
if(pEvBreakpt->isMatching(instrPtr, address_space)) {
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
//transition to STL: find the element we are working on in the Event List
EventList::iterator it = std::find(m_EvList.begin(), m_EvList.end(), pEvBreakpt);
it = m_EvList.makeActive(it);
//find out how much elements need to be skipped to get in sync again
//(should be one or none, the loop is just to make sure)
for(unsigned j = i; j < buffer_cache->getCount(); j++) {
if(buffer_cache->get(j) == (*it)) {
i = j;
break;
}
}
// we now know we need to fire the active events - usually we do not have to
do_fire = true;
// "i" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip loop increment
}
i++;
}
if(do_fire)
m_EvList.fireActiveEvents();
// Note: SimulatorController::onBreakpointEvent will not be invoked in this
// implementation.
}
void BochsController::onIOPortEvent(unsigned char data, unsigned port, bool out) {
// Check for active breakpoint-events:
EventList::iterator it = m_EvList.begin();
while(it != m_EvList.end())
{
// FIXME: Maybe we need to improve the performance of this check.
IOPortEvent* pIOPt = dynamic_cast<IOPortEvent*>(*it);
if(pIOPt && pIOPt->isMatching(port, out))
{
pIOPt->setData(data);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
it++;
}
m_EvList.fireActiveEvents();
// Note: SimulatorController::onBreakpointEvent will not be invoked in this
// implementation.
}
void BochsController::save(const std::string& path)
{
int stat;
stat = mkdir(path.c_str(), 0777);
if(!(stat == 0 || errno == EEXIST))
std::cout << "[FAIL] Can not create target-directory to save!" << std::endl;
// TODO: (Non-)Verbose-Mode? Log-level? Maybe better: use return value to indicate failure?
save_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::saveDone()
{
save_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::restore(const std::string& path)
{
clearEvents();
restore_bochs_request = true;
sr_path = path;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::restoreDone()
{
restore_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::reboot()
{
clearEvents();
reboot_bochs_request = true;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::rebootDone()
{
reboot_bochs_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::fireInterrupt(unsigned irq)
{
interrupt_injection_request = true;
interrupt_to_fire = irq;
m_CurrFlow = m_Flows.getCurrent();
m_Flows.resume();
}
void BochsController::fireInterruptDone()
{
interrupt_injection_request = false;
m_Flows.toggle(m_CurrFlow);
}
void BochsController::m_onTimerTrigger(void* thisPtr)
{
// FIXME: The timer logic can be modified to use only one timer in Bochs.
// (For now, this suffices.)
TimerEvent* pTmEv = static_cast<TimerEvent*>(thisPtr);
// Check for a matching TimerEvent. (In fact, we are only
// interessted in the iterator pointing at pTmEv.):
EventList::iterator it = std::find(simulator.m_EvList.begin(),
simulator.m_EvList.end(), pTmEv);
// TODO: This has O(|m_EvList|) time complexity. We can further improve this
// by creating a method such that makeActive(pTmEv) works as well,
// reducing the time complexity to O(1).
simulator.m_EvList.makeActive(it);
simulator.m_EvList.fireActiveEvents();
}
timer_id_t BochsController::m_registerTimer(TimerEvent* pev)
{
assert(pev != NULL);
return static_cast<timer_id_t>(
bx_pc_system.register_timer(pev, m_onTimerTrigger, pev->getTimeout(), !pev->getOnceFlag(),
1/*start immediately*/, "Fail*: BochsController"/*name*/));
}
bool BochsController::m_unregisterTimer(TimerEvent* pev)
{
assert(pev != NULL);
bx_pc_system.deactivate_timer(static_cast<unsigned>(pev->getId()));
return bx_pc_system.unregisterTimer(static_cast<unsigned>(pev->getId()));
}
bool BochsController::onEventAddition(BaseEvent* pev)
{
TimerEvent* tmev;
// Register the timer event in the Bochs simulator:
if ((tmev = dynamic_cast<TimerEvent*>(pev)) != NULL) {
tmev->setId(m_registerTimer(tmev));
if(tmev->getId() == -1)
return false; // unable to register the timer (error in Bochs' function call)
}
// Note: Maybe more stuff to do here for other event types.
return true;
}
void BochsController::onEventDeletion(BaseEvent* pev)
{
TimerEvent* tmev;
// Unregister the time event:
if ((tmev = dynamic_cast<TimerEvent*>(pev)) != NULL) {
m_unregisterTimer(tmev);
}
// Note: Maybe more stuff to do here for other event types.
}
void BochsController::onEventTrigger(BaseEvent* pev)
{
TimerEvent* tmev;
// Unregister the time event, if once-flag is true:
if ((tmev = dynamic_cast<TimerEvent*>(pev)) != NULL) {
if (tmev->getOnceFlag()) // deregister the timer (timer = single timeout)
m_unregisterTimer(tmev);
else // re-add the event (repetitive timer), tunneling the onEventAddition-handler
m_EvList.add(tmev, tmev->getParent());
}
// Note: Maybe more stuff to do here for other event types.
}
const std::string& BochsController::getMnemonic() const
{
static std::string str;
bxICacheEntry_c* pEntry = BX_CPU(0)->getICacheEntry();
assert(pEntry != NULL && "FATAL ERROR: Bochs internal function returned NULL (not expected)!");
bxInstruction_c* pInstr = pEntry->i;
assert(pInstr != NULL && "FATAL ERROR: Bochs internal member was NULL (not expected)!");
const char* pszName = get_bx_opcode_name(pInstr->getIaOpcode());
if (pszName != NULL)
str = pszName;
else
str.clear();
return str;
}
} // end-of-namespace: fail

View File

@ -0,0 +1,181 @@
#ifndef __BOCHS_CONTROLLER_HPP__
#define __BOCHS_CONTROLLER_HPP__
#include <string>
#include <cassert>
#include <iostream>
#include <iomanip>
#include <string.h>
#include "FailBochsGlobals.hpp"
#include "../SimulatorController.hpp"
#include "../Event.hpp"
#include "bochs.h"
#include "cpu/cpu.h"
#include "config.h"
#include "iodev/iodev.h"
#include "pc_system.h"
namespace fail {
class ExperimentFlow;
/**
* \class BochsController
* Bochs-specific implementation of a SimulatorController.
*/
class BochsController : public SimulatorController {
private:
ExperimentFlow* m_CurrFlow; //!< Stores the current flow for save/restore-operations
#ifdef DEBUG
unsigned m_Regularity; //! regularity of instruction ptr output
unsigned m_Counter; //! current instr-ptr counter
std::ostream* m_pDest; //! debug output object (defaults to \c std::cout)
#endif
/**
* Static internal event handler for TimerEvents. This static function is
* called when a previously registered (Bochs) timer triggers. This function
* searches for the provided TimerEvent object within the EventList and
* fires such an event by calling \c fireActiveEvents().
* @param thisPtr a pointer to the TimerEvent-object triggered
*
* FIXME: Due to Bochs internal timer and ips-configuration related stuff,
* the simulator sometimes panics with "keyboard error:21" (see line
* 1777 in bios/rombios.c, function keyboard_init()) if a TimerEvent
* is added *before* the bios has been loaded and initialized. To
* reproduce this error, try adding a TimerEvent as the initial step
* in your experiment code and wait for it (addEventAndWait()).
*/
static void m_onTimerTrigger(void *thisPtr);
/**
* Registers a timer in the Bochs simulator. This timer fires \a TimerEvents
* to inform the corresponding experiment-flow. Note that the number of timers
* (in Bochs) is limited to \c BX_MAX_TIMERS (defaults to 64 in v2.4.6).
* @param pev a pointer to the (experiment flow-) allocated TimerEvent object,
* providing all required information to start the time, e.g. the
* timeout value.
* @return \c The unique id of the timer recently created. This id is carried
* along with the TimerEvent, @see getId(). On error, -1 is returned
* (e.g. because a timer with the same id is already existing)
*/
timer_id_t m_registerTimer(TimerEvent* pev);
/**
* Deletes a timer. No further events will be triggered by the timer.
* @param pev a pointer to the TimerEvent-object to be removed
* @return \c true if the timer with \a pev->getId() has been removed
* successfully, \c false otherwise
*/
bool m_unregisterTimer(TimerEvent* pev);
public:
// Initialize the controller.
BochsController();
~BochsController();
/* ********************************************************************
* Standard Event Handler API:
* ********************************************************************/
/**
* Instruction pointer modification handler. This method is called (from
* the Breakpoints aspect) every time when the Bochs-internal IP changes.
* @param instrPtr the new instruction pointer
* @param address_space the address space the CPU is currently in
*/
void onInstrPtrChanged(address_t instrPtr, address_t address_space);
/**
* I/O port communication handler. This method is called (from
* the IOPortCom aspect) every time when Bochs performs a port I/O operation.
* @param data the data transmitted
* @param port the port it was transmitted on
* @param out true if the I/O traffic has been outbound, false otherwise
*/
void onIOPortEvent(unsigned char data, unsigned port, bool out);
/**
* This method is called when an experiment flow adds a new event by
* calling \c simulator.addEvent(pev) or \c simulator.addEventAndWait(pev).
* More specifically, the event will be added to the event-list first
* (buffer-list, to be precise) and then this event handler is called.
* @param pev the event which has been added
* @return You should return \c true to continue and \c false to prevent
* the addition of the event \a pev.
*/
bool onEventAddition(BaseEvent* pev);
/**
* This method is called when an experiment flow removes an event from
* the event-management by calling \c removeEvent(prev), \c clearEvents()
* or by deleting a complete flow (\c removeFlow). More specifically,
* this event handler will be called *before* the event is actually deleted.
* @param pev the event to be deleted when returning from the event handler
*/
void onEventDeletion(BaseEvent* pev);
/**
* This method is called when an previously added event is about to be
* triggered by the simulator-backend. More specifically, this event handler
* will be called *before* the event is actually triggered, i.e. before the
* corresponding coroutine is toggled.
* @param pev the event to be triggered when returning from the event handler
*/
void onEventTrigger(BaseEvent* pev);
/* ********************************************************************
* Simulator Controller & Access API:
* ********************************************************************/
/**
* Save simulator state.
* @param path Location to store state information
*/
void save(const std::string& path);
/**
* Save finished: Callback from Simulator
*/
void saveDone();
/**
* Restore simulator state. Clears all Events.
* @param path Location to previously saved state information
*/
void restore(const std::string& path);
/**
* Restore finished: Callback from Simulator
*/
void restoreDone();
/**
* Reboot simulator. Clears all Events.
*/
void reboot();
/**
* Reboot finished: Callback from Simulator
*/
void rebootDone();
/**
* Fire an interrupt.
* @param irq Interrupt to be fired
*/
void fireInterrupt(unsigned irq);
/**
* Fire done: Callback from Simulator
*/
void fireInterruptDone();
/* ********************************************************************
* BochsController-specific (not implemented in SimulatorController!):
* ********************************************************************/
#ifdef DEBUG
/**
* Enables instruction pointer debugging output.
* @param regularity the output regularity; 1 to display every
* instruction pointer, 0 to disable
* @param dest specifies the output destition; defaults to \c std::cout
*/
void dbgEnableInstrPtrOutput(unsigned regularity, std::ostream* dest = &std::cout);
#endif
/**
* Retrieves the textual description (mnemonic) for the current
* instruction. The format of the returned string is Bochs-specific.
* @return the mnemonic of the current instruction whose address
* is given by \c Register::getInstructionPointer(). On errors,
* the returned string is empty
*/
const std::string& getMnemonic() const;
};
} // end-of-namespace: fail
#endif // __BOCHS_CONTROLLER_HPP__

View File

@ -0,0 +1,15 @@
#ifndef __BOCHS_HELPERS_HPP__
#define __BOCHS_HELPERS_HPP__
#include "cpu/cpu.h"
static inline BX_CPU_C *getCPU(BX_CPU_C *that)
{
#if BX_USE_CPU_SMF == 0
return that;
#else
return BX_CPU_THIS;
#endif
}
#endif // __BOCHS_HELPERS_HPP__

View File

@ -0,0 +1,110 @@
#ifndef __BOCHS_MEMORY_HPP__
#define __BOCHS_MEMORY_HPP__
#include "../Memory.hpp"
namespace fail {
/**
* \class BochsMemoryManager
* Represents a concrete implemenation of the abstract
* MemoryManager to provide access to Bochs' memory pool.
*/
class BochsMemoryManager : public MemoryManager {
public:
/**
* Constructs a new MemoryManager object and initializes
* it's attributes appropriately.
*/
BochsMemoryManager() : MemoryManager() { }
/**
* Retrieves the size of the available simulated memory.
* @return the size of the memory pool in bytes
*/
size_t getPoolSize() const { return static_cast<size_t>(BX_MEM(0)->get_memory_len()); }
/**
* Retrieves the starting address of the host memory. This is the
* first valid address in memory.
* @return the starting address
*/
host_address_t getStartAddr() const { return 0; }
/**
* Retrieves the byte at address \a addr in the memory.
* @param addr The guest address where the byte is located.
* The address is expected to be valid.
* @return the byte at \a addr
*/
byte_t getByte(guest_address_t addr)
{
host_address_t haddr = guestToHost(addr);
assert(haddr != (host_address_t)ADDR_INV && "FATAL ERROR: Invalid guest address provided!");
return static_cast<byte_t>(*reinterpret_cast<Bit8u*>(haddr));
}
/**
* Retrieves \a cnt bytes at address \a addr from the memory.
* @param addr The guest address where the bytes are located.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param dest Pointer to destination buffer to copy the data to.
*/
void getBytes(guest_address_t addr, size_t cnt, void *dest)
{
char *d = static_cast<char *>(dest);
for (size_t i = 0; i < cnt; ++i)
d[i] = getByte(addr + i);
}
/**
* Writes the byte \a data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new byte to write
*/
void setByte(guest_address_t addr, byte_t data)
{
host_address_t haddr = guestToHost(addr);
assert(haddr != (host_address_t)ADDR_INV &&
"FATAL ERROR: Invalid guest address provided!");
*reinterpret_cast<Bit8u*>(haddr) = data;
}
/**
* Copies data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param src Pointer to data to be copied.
*/
void setBytes(guest_address_t addr, size_t cnt, void const *src)
{
char const *s = static_cast<char const *>(src);
for (size_t i = 0; i < cnt; ++i)
setByte(addr + i, s[i]);
}
/**
* Transforms the guest address \a addr to a host address.
* @param addr The (logical) guest address to be transformed
* @return the transformed (host) address or \c ADDR_INV on errors
*/
host_address_t guestToHost(guest_address_t addr)
{
const unsigned SEGMENT_SELECTOR_IDX = 2; // always the code segment
const bx_address logicalAddr = static_cast<bx_address>(addr); // offset within the segment
// Get the linear address:
Bit32u linearAddr = BX_CPU(0)->get_laddr32(SEGMENT_SELECTOR_IDX/*seg*/, logicalAddr/*offset*/);
// Map the linear address to the physical address:
bx_phy_address physicalAddr;
bx_bool fValid = BX_CPU(0)->dbg_xlate_linear2phy(linearAddr, (bx_phy_address*)&physicalAddr);
// Determine the *host* address of the physical address:
Bit8u* hostAddr = BX_MEM(0)->getHostMemAddr(BX_CPU(0), physicalAddr, BX_READ);
// Now, hostAddr contains the "final" address
if (!fValid)
return ((host_address_t)ADDR_INV); // error
else
return (reinterpret_cast<host_address_t>(hostAddr)); // okay
}
};
} // end-of-namespace: fail
#endif // __BOCHS_MEMORY_HPP__

View File

@ -0,0 +1,53 @@
#ifndef __BOCHS_NON_VERBOSE_AH__
#define __BOCHS_NON_VERBOSE_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_BOCHS_NON_VERBOSE
#include "bochs.h"
/*
// Doesn't work because AspectC++ doesn't deal properly with variadic parameter
// lists:
aspect BochsNonVerbose {
// Needed to suppress Bochs output *before* a state restore finished
// FIXME: ac++ segfaults if we use call() instead of execution().
advice execution("% logfunctions::debug(...)")
|| execution("% logfunctions::info(...)")
|| execution("% logfunctions::pass(...)")
|| execution("% logfunctions::error(...)")
: around () { }
};
*/
aspect BochsNonVerbose {
// needed to suppress Bochs output *before* a state restore finished
advice call("int logfunctions::get_default_action(int)")
: around ()
{
int action;
switch (*(tjp->arg<0>())) {
case LOGLEV_DEBUG:
case LOGLEV_PASS:
case LOGLEV_INFO:
action = ACT_IGNORE;
break;
case LOGLEV_ERROR:
action = ACT_REPORT;
break;
case LOGLEV_PANIC:
default:
action = ACT_FATAL;
}
*(tjp->result()) = action;
}
// No credits header
advice call("void bx_print_header()")
: around () { }
};
#endif // CONFIG_BOCHS_NON_VERBOSE
#endif // __BOCHS_NON_VERBOSE_AH__

View File

@ -0,0 +1,238 @@
#ifndef __BOCHS_REGISTER_HPP__
#define __BOCHS_REGISTER_HPP__
#include "../Register.hpp"
#include "bochs.h"
#include <iostream>
#include <cassert>
namespace fail {
/**
* \class BochsRegister
* Bochs-specific implementation of x86 registers.
*/
class BochsRegister : public Register {
protected:
regdata_t* m_pData;
public:
/**
* Constructs a new register object.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs interal register memory
* @param t type of the register
*/
BochsRegister(unsigned int id, regwidth_t width, regdata_t* link, RegisterType t)
: Register(id, t, width), m_pData(link) { }
/**
* Retrieves the data of the register.
* @return the current register data
*/
regdata_t getData() { return (*m_pData); }
/**
* Sets the content of the register.
* @param data the new register data to be written
*/
void setData(regdata_t data) { *m_pData = data; }
};
/**
* \class BxGPReg
* Bochs-specific implementation of x86 general purpose (GP) registers.
*/
class BxGPReg : public BochsRegister {
public:
/**
* Constructs a new general purpose register.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs interal register memory
*/
BxGPReg(unsigned int id, regwidth_t width, regdata_t* link)
: BochsRegister(id, width, link, RT_GP) { }
};
/**
* \enum GPRegisterId
* Symbolic identifier to access Bochs' general purpose register
* (within the corresponding GP set), e.g.
* \code
* // Print %eax register data:
* BochsController bc(...);
* cout << bc.getRegisterManager().getSetOfType(RT_GP)
* .getRegister(RID_EAX)->getData();
* \endcode
*/
enum GPRegisterId {
#if BX_SUPPORT_X86_64 // 64 bit register id's:
RID_RAX = 0, RID_RCX, RID_RDX, RID_RBX, RID_RSP, RID_RBP, RID_RSI, RID_RDI,
RID_R8, RID_R9, RID_R10, RID_R11, RID_R12, RID_R13, RID_R14, RID_R15,
#else // 32 bit register id's:
RID_EAX = 0, RID_ECX, RID_EDX, RID_EBX, RID_ESP, RID_EBP, RID_ESI, RID_EDI,
#endif
RID_CAX = 0, RID_CCX, RID_CDX, RID_CBX, RID_CSP, RID_CBP, RID_CSI, RID_CDI,
RID_LAST_GP_ID
};
/**
* \enum PCRegisterId
* Symbolic identifier to access Bochs' program counter register.
*/
enum PCRegisterId { RID_PC = RID_LAST_GP_ID, RID_LAST_PC_ID };
/**
* \enum FlagsRegisterId
* Symbolic identifier to access Bochs' flags register.
*/
enum FlagsRegisterId { RID_FLAGS = RID_LAST_PC_ID };
/**
* \class BxPCReg
* Bochs-specific implementation of the x86 program counter register.
*/
class BxPCReg : public BochsRegister {
public:
/**
* Constructs a new program counter register.
* @param id the global unique id
* @param width width of the register (8, 16, 32 or 64 bit should
* suffice)
* @param link pointer to bochs internal register memory
*/
BxPCReg(unsigned int id, regwidth_t width, regdata_t* link)
: BochsRegister(id, width, link, RT_PC) { }
};
/**
* \class BxFlagsReg
* Bochs-specific implementation of the FLAGS status register.
*/
class BxFlagsReg : public BochsRegister {
public:
/**
* Constructs a new FLAGS status register. The refenced FLAGS are
* allocated as follows:
* --------------------------------------------------
* 31|30|29|28| 27|26|25|24| 23|22|21|20| 19|18|17|16
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP| VF|AC|VM|RF
*
* 15|14|13|12| 11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0|NT| IOPL| OF|DF|IF|TF| SF|ZF| 0|AF| 0|PF| 1|CF
* --------------------------------------------------
* @param id the global unique id
* @param link pointer to bochs internal register memory
*/
BxFlagsReg(unsigned int id, regdata_t* link)
: BochsRegister(id, 32, link, RT_ST) { }
/**
* Returns \c true if the corresponding flag is set, or \c false
* otherwise.
*/
bool getCarryFlag() const { return (BX_CPU(0)->get_CF()); }
bool getParityFlag() const { return (BX_CPU(0)->get_PF()); }
bool getZeroFlag() const { return (BX_CPU(0)->get_ZF()); }
bool getSignFlag() const { return (BX_CPU(0)->get_SF()); }
bool getOverflowFlag() const { return (BX_CPU(0)->get_OF()); }
bool getTrapFlag() const { return (BX_CPU(0)->get_TF()); }
bool getInterruptFlag() const { return (BX_CPU(0)->get_IF()); }
bool getDirectionFlag() const { return (BX_CPU(0)->get_DF()); }
unsigned getIOPrivilegeLevel() const { return (BX_CPU(0)->get_IOPL()); }
bool getNestedTaskFlag() const { return (BX_CPU(0)->get_NT()); }
bool getResumeFlag() const { return (BX_CPU(0)->get_RF()); }
bool getVMFlag() const { return (BX_CPU(0)->get_VM()); }
bool getAlignmentCheckFlag() const { return (BX_CPU(0)->get_AC()); }
bool getVInterruptFlag() const { return (BX_CPU(0)->get_VIF()); }
bool getVInterruptPendingFlag() const { return (BX_CPU(0)->get_VIP()); }
bool getIdentificationFlag() const { return (BX_CPU(0)->get_ID()); }
/**
* Sets/resets various status FLAGS.
*/
void setCarryFlag(bool bit) { BX_CPU(0)->set_CF(bit); }
void setParityFlag(bool bit) { BX_CPU(0)->set_PF(bit); }
void setZeroFlag(bool bit) { BX_CPU(0)->set_ZF(bit); }
void setSignFlag(bool bit) { BX_CPU(0)->set_SF(bit); }
void setOverflowFlag(bool bit) { BX_CPU(0)->set_OF(bit); }
void setTrapFlag(bool bit) { BX_CPU(0)->set_TF(bit); }
void setInterruptFlag(bool bit) { BX_CPU(0)->set_IF(bit); }
void setDirectionFlag(bool bit) { BX_CPU(0)->set_DF(bit); }
void setIOPrivilegeLevel(unsigned lvl) { BX_CPU(0)->set_IOPL(lvl); }
void setNestedTaskFlag(bool bit) { BX_CPU(0)->set_NT(bit); }
void setResumeFlag(bool bit) { BX_CPU(0)->set_RF(bit); }
void setVMFlag(bool bit) { BX_CPU(0)->set_VM(bit); }
void setAlignmentCheckFlag(bool bit) { BX_CPU(0)->set_AC(bit); }
void setVInterruptFlag(bool bit) { BX_CPU(0)->set_VIF(bit); }
void setVInterruptPendingFlag(bool bit) { BX_CPU(0)->set_VIP(bit); }
void setIdentificationFlag(bool bit) { BX_CPU(0)->set_ID(bit); }
/**
* Sets the content of the status register.
* @param data the new register data to be written; note that only the
* 32 lower bits are used (bits 32-63 are ignored in 64 bit mode)
*/
void setData(regdata_t data)
{
#ifdef BX_SUPPORT_X86_64
// We are in 64 bit mode: Just assign the lower 32 bits!
(*m_pData) = ((*m_pData) & 0xFFFFFFFF00000000ULL) |
(data & 0xFFFFFFFFULL);
#else
*m_pData = data;
#endif
}
};
/**
* \class BochsRegister
* Bochs-specific implementation of the RegisterManager.
*/
class BochsRegisterManager : public RegisterManager {
public:
/**
* Returns the current instruction pointer.
* @return the current eip
*/
address_t getInstructionPointer()
{
return (static_cast<address_t>(getSetOfType(RT_PC)->first()->getData()));
}
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
address_t getStackPointer()
{
#if BX_SUPPORT_X86_64
return (static_cast<address_t>(getRegister(RID_RSP)->getData()));
#else
return (static_cast<address_t>(getRegister(RID_ESP)->getData()));
#endif
}
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
address_t getBasePointer()
{
#if BX_SUPPORT_X86_64
return (static_cast<address_t>(getRegister(RID_RBP)->getData()));
#else
return (static_cast<address_t>(getRegister(RID_EBP)->getData()));
#endif
}
};
} // end-of-namespace: fail
#endif // __BOCHS_REGISTER_HPP__

View File

@ -0,0 +1,32 @@
#ifndef __BREAKPOINTS_AH__
#define __BREAKPOINTS_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_BREAKPOINTS
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect Breakpoints {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
advice execution (cpuLoop()) : after () // Event source: "instruction pointer"
{
// Points to the cpu class: "this" if BX_USE_CPU_SMF == 0,
// BX_CPU(0) otherwise
BX_CPU_C* pThis = *(tjp->arg<0>());
// Points to the *current* bxInstruction-object
//bxInstruction_c* pInstr = *(tjp->arg<1>());
// report this event to the Bochs controller:
fail::simulator.onInstrPtrChanged(pThis->get_instruction_pointer(), pThis->cr3);
// Note: get_bx_opcode_name(pInstr->getIaOpcode()) retrieves the mnemonics.
}
};
#endif // CONFIG_EVENT_BREAKPOINTS
#endif // __BREAKPOINTS_AH__

View File

@ -0,0 +1,29 @@
#ifndef __CREDITS_AH__
#define __CREDITS_AH__
#include <string.h>
#include <stdio.h>
aspect Credits {
bool first;
Credits() : first(true) {}
advice call ("% bx_center_print(...)")
&& within ("void bx_print_header()")
&& args(file, line, maxwidth)
: around (FILE *file, const char *line, unsigned maxwidth)
{
if (!first) {
tjp->proceed();
return;
}
// FIXME take version from global configuration
char buf[256] = "FailBochs 0.0.1, based on the ";
strncat(buf, line, 128);
first = false;
*(tjp->arg<1>()) = buf;
tjp->proceed();
}
};
#endif // __CREDITS_AH__

View File

@ -0,0 +1,26 @@
#ifndef __DISABLE_KEYBOARD_INTERRUPT_AH__
#define __DISABLE_KEYBOARD_INTERRUPT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_DISABLE_KEYB_INTERRUPTS
#include "iodev/iodev.h"
#include "iodev/keyboard.h"
aspect DisableKeyboardInterrupt {
pointcut heyboard_interrupt() =
"void bx_keyb_c::timer_handler(...)";
advice execution (heyboard_interrupt()) : around ()
{
bx_keyb_c *class_ptr = (bx_keyb_c*)tjp->arg<0>();
unsigned retval;
retval = class_ptr->periodic(1);
}
};
#endif // CONFIG_DISABLE_KEYB_INTERRUPTS
#endif // __DISABLE_KEYBOARD_INTERRUPT_AH__

View File

@ -0,0 +1,19 @@
#ifndef __DISABLE_ADD_REMOVE_LOGFN_AH__
#define __DISABLE_ADD_REMOVE_LOGFN_AH__
/* Hack to prevent Bochs' logfunctions list (bochs.h) to overflow if the
* experiment restores simulator state more than ~1000 times.
*
* The "proper" fix would be to completely unregister all log functions before
* restore, i.e. to destroy all objects deriving from class logfunctions. We
* decided to simply ignore this tiny memory leak and to hack around the
* problem by disabling iofunctions::add/remove_logfn().
*/
aspect DisableLogFunctions {
pointcut add_remove_logfn() =
"void iofunctions::add_logfn(...)" ||
"void iofunctions::remove_logfn(...)";
advice execution (add_remove_logfn()) : around () { }
};
#endif // __DISABLE_ADD_REMOVE_LOGFN_AH__

View File

@ -0,0 +1,22 @@
#ifndef __FAIL_BOCHS_GLOBALS_HPP__
#define __FAIL_BOCHS_GLOBALS_HPP__
#include <string>
#include "config.h"
namespace fail {
#ifdef DANCEOS_RESTORE
extern bx_bool restore_bochs_request;
extern bx_bool save_bochs_request;
extern std::string sr_path;
#endif
extern bx_bool reboot_bochs_request;
extern bx_bool interrupt_injection_request;
extern int interrupt_to_fire;
} // end-of-namespace: fail
#endif // __FAIL_BOCHS_GLOBALS_HPP__

View File

@ -0,0 +1,13 @@
#ifndef __FAIL_BOCHS_INIT_AH__
#define __FAIL_BOCHS_INIT_AH__
#include "../SALInst.hpp"
aspect FailBochsInit {
advice call("int bxmain()") : before ()
{
fail::simulator.startup();
}
};
#endif // __FAIL_BOCHS_INIT_AH__

View File

@ -0,0 +1,45 @@
#ifndef __FIREINTERRUPT_AH__
#define __FIREINTERRUPT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_FIRE_INTERRUPTS
#include "bochs.h"
#include "cpu/cpu.h"
#include "iodev/iodev.h"
#include "../SALInst.hpp"
aspect FireInterrupt {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
advice execution (cpuLoop()) : before ()
{
if (!fail::interrupt_injection_request) {
return;
} else {
BX_SET_INTR(fail::interrupt_to_fire);
DEV_pic_raise_irq(fail::interrupt_to_fire);
}
}
};
aspect InterruptDone {
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)";
advice execution (interrupt_method()) : before ()
{
if (!fail::interrupt_injection_request) {
return;
} else {
if (*(tjp->arg<0>()) == 32 + fail::interrupt_to_fire) {
DEV_pic_lower_irq(fail::interrupt_to_fire);
fail::simulator.fireInterruptDone();
}
}
}
};
#endif // CONFIG_FIRE_INTERRUPTS
#endif // __FIREINTERRUPT_AH__

View File

@ -0,0 +1,33 @@
#ifndef __GUEST_SYS_COM_AH__
#define __GUEST_SYS_COM_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_GUESTSYS
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
#include "BochsHelpers.hpp"
// Fixed "port number" for "Guest system >> Bochs" communication
#define BOCHS_COM_PORT 0x378
// FIXME: This #define should be located in a config or passed within the event object...
aspect GuestSysCom {
pointcut outInstructions() = "% ...::bx_cpu_c::OUT_DX%(...)";
advice execution (outInstructions()) : after () // Event source: "guest system"
{
unsigned rDX = getCPU(tjp->that())->gen_reg[2].word.rx; // port number
unsigned rAL = getCPU(tjp->that())->gen_reg[0].word.byte.rl; // data
if (rDX == BOCHS_COM_PORT)
fail::simulator.onGuestSystemEvent((char)rAL, rDX);
}
};
#endif // CONFIG_EVENT_GUESTSYS
#endif // __GUEST_SYS_COM_AH__

View File

@ -0,0 +1,39 @@
#ifndef __IOPORT_COM_AH__
#define __IOPORT_COM_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_IOPORT
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
#include "BochsHelpers.hpp"
// TODO: ATM only capturing bytewise output (most common, I suppose)
aspect IOPortCom {
pointcut outInstruction() = "% ...::bx_cpu_c::OUT_DXAL(...)";
advice execution (outInstruction()) : after ()
{
unsigned rDX = getCPU(tjp->that())->gen_reg[2].word.rx; // port number
unsigned char rAL = getCPU(tjp->that())->gen_reg[0].word.byte.rl; // data
fail::simulator.onIOPortEvent(rAL, rDX, true);
}
pointcut inInstruction() = "% ...::bx_cpu_c::IN_ALDX(...)";
advice execution (inInstruction()) : after ()
{
unsigned rDX = getCPU(tjp->that())->gen_reg[2].word.rx; // port number
unsigned char rAL = getCPU(tjp->that())->gen_reg[0].word.byte.rl; // data
fail::simulator.onIOPortEvent(rAL, rDX, false);
}
};
#endif // CONFIG_EVENT_IOPORT
#endif // __IOPORT_COM_AH__

View File

@ -0,0 +1,39 @@
#ifndef __INTERRUPT_AH__
#define __INTERRUPT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_INTERRUPT
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect Interrupt {
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)"; // cpu/exception.cc
advice execution (interrupt_method()) : before ()
{
// There are six different type-arguments for the interrupt-method
// in cpu.h (lines 3867-3872):
// - BX_EXTERNAL_INTERRUPT = 0,
// - BX_NMI = 2,
// - BX_HARDWARE_EXCEPTION = 3,
// - BX_SOFTWARE_INTERRUPT = 4,
// - BX_PRIVILEGED_SOFTWARE_INTERRUPT = 5,
// - BX_SOFTWARE_EXCEPTION = 6
// Only the first and the second types are relevant for this aspect.
unsigned vector = *(tjp->arg<0>());
unsigned type = *(tjp->arg<1>());
if (type == BX_EXTERNAL_INTERRUPT)
fail::simulator.onInterruptEvent(vector, false);
else if (type == BX_NMI)
fail::simulator.onInterruptEvent(vector, true);
}
};
#endif // CONFIG_EVENT_INTERRUPT
#endif // __INTERRUPT_AH__

View File

@ -0,0 +1,27 @@
#ifndef __INTERRUPT_SUPPRESSION_AH__
#define __INTERRUPT_SUPPRESSION_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SUPPRESS_INTERRUPTS
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect InterruptSuppression {
pointcut interrupt_method() = "void bx_cpu_c::interrupt(...)";
advice execution (interrupt_method()) : around ()
{
unsigned vector = *(tjp->arg<0>());
if (!fail::simulator.isSuppressedInterrupt(vector)) {
tjp->proceed();
}
}
};
#endif // CONFIG_SUPPRESS_INTERRUPTS
#endif // __INTERRUPT_SUPPRESSION_AH__

140
src/core/sal/bochs/Jump.ah Normal file
View File

@ -0,0 +1,140 @@
#ifndef __JUMP_AH__
#define __JUMP_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_JUMP
#include <iostream>
#include <cstdlib>
#include <string>
#include <ctime>
#include "bochs.h"
#include "../SALInst.hpp"
// FIXME: This seems (partial) deprecated/incomplete as well...
aspect Jump {
// Note: Have a look at the Bochs-Code (cpu/cpu.h) and the Intel
// Architecture Software Developer's Manual - Instruction Set Reference
// p. 3-329 (PDF p. 369) for further information:
// http://www.intel.com/design/intarch/manuals/243191.htm
// Default conditional-jump instructions: they are evaluating the FLAGS,
// defined in ctrl_xfer[16 | 32 | 64].cc, Postfix: 16-Bit: w, 32-Bit: d, 64-Bit: q
pointcut defJumpInstructions() =
"% ...::bx_cpu_c::JO_J%(...)" ||
"% ...::bx_cpu_c::JNO_J%(...)" ||
"% ...::bx_cpu_c::JB_J%(...)" ||
"% ...::bx_cpu_c::JNB_J%(...)" ||
"% ...::bx_cpu_c::JZ_J%(...)" ||
"% ...::bx_cpu_c::JNZ_J%(...)" ||
"% ...::bx_cpu_c::JBE_J%(...)" ||
"% ...::bx_cpu_c::JNBE_J%(...)" ||
"% ...::bx_cpu_c::JS_J%(...)" ||
"% ...::bx_cpu_c::JNS_J%(...)" ||
"% ...::bx_cpu_c::JP_J%(...)" ||
"% ...::bx_cpu_c::JNP_J%(...)" ||
"% ...::bx_cpu_c::JL_J%(...)" ||
"% ...::bx_cpu_c::JNL_J%(...)" ||
"% ...::bx_cpu_c::JLE_J%(...)" ||
"% ...::bx_cpu_c::JNLE_J%(...)";
// Special cases: they are evaluating the content of the CX-/ECX-/RCX-registers
// (NOT the FLAGS):
pointcut regJumpInstructions() =
"% ...::bx_cpu_c::JCXZ_Jb(...)" || // ctrl_xfer16.cc
"% ...::bx_cpu_c::JECXZ_Jb(...)" || // ctrl_xfer32.cc
"% ...::bx_cpu_c::JRCXZ_Jb(...)"; // ctrl_xfer64.cc
/* TODO: Loop-Instructions needed? Example: "LOOPNE16_Jb"
pointcut loopInstructions() = ...;
*/
/* TODO: Conditional-Data-Moves needed? Example: "CMOVZ_GwEwR"
pointcut dataMoveInstructions() = ...;
*/
advice execution (defJumpInstructions()) : around()
{
bxInstruction_c* pInstr = *(tjp->arg<0>()); // bxInstruction_c-object
fail::simulator.onJumpEvent(true, pInstr->getIaOpcode());
/*
JoinPoint::That* pThis = tjp->that();
if(pThis == NULL)
pThis = BX_CPU(0);
assert(pThis != NULL && "FATAL ERROR: tjp->that() returned null ptr! (Maybe called on a static instance?)");
// According to the Intel-Spec (p. 3-329f), the following flags are relevant:
bool fZeroFlag = pThis->get_ZF();
bool fCarryFlag = pThis->get_CF();
bool fSignFlag = pThis->get_SF();
bool fOverflowFlag = pThis->get_OF();
bool fParityFlag = pThis->get_PF();
//
// Step-1: Modify one or more of the fxxxFlag according to the error you want to inject
// (using pThis->set_XX(new_val))
// Step-2: Call tjp->proceed();
// Step-3: Eventually, unwind the changes of Step-1
//
// Example:
if(g_fEnableInjection) // event fired?
{
g_fEnableInjection = false;
// Obviously, this advice matches *all* jump-instructions so that it is not clear
// which flag have to be modified in order to invert the jump. For simplification,
// we will invert *all* flags. This avoids a few case differentiations.
cout << ">>> Manipulating jump-destination (inverted)... \"" << tjp->signature() << "\" ";
pThis->set_ZF(!fZeroFlag);
pThis->set_SF(!fSignFlag);
pThis->set_CF(!fCarryFlag);
pThis->set_OF(!fOverflowFlag);
pThis->set_PF(!fParityFlag);
tjp->proceed();
pThis->set_ZF(fZeroFlag);
pThis->set_SF(fSignFlag);
pThis->set_CF(fCarryFlag);
pThis->set_OF(fOverflowFlag);
pThis->set_PF(fParityFlag);
cout << "finished (jump taken)!" << endl;
}
else
*/
tjp->proceed();
}
advice execution (regJumpInstructions()) : around ()
{
bxInstruction_c* pInstr = *(tjp->arg<0>()); // bxInstruction_c-object
fail::simulator.onJumpEvent(false, pInstr->getIaOpcode());
/*
JoinPoint::That* pThis = tjp->that();
assert(pThis != NULL && "Unexpected: tjp->that() returned null ptr! (Maybe called on a static instance?)");
// Note: Direct access to the registers using the bochs-macros (defined in
// bochs.h) is not possibly due to the fact that they are using the this-ptr.
Bit16u CX = (Bit16u)(pThis->gen_reg[1].word.rx);
Bit32u ECX = (Bit32u)(pThis->gen_reg[1].dword.erx);
#if BX_SUPPORT_X86_64
Bit64u RCX = (Bit64u)(pThis->gen_reg[1].rrx);
#endif
//
// Step-1: Modify CX, ECX or RCX according to the error you want to inject
// Step-2: Call tjp->proceed();
// Step-3: Eventually, unwind the changes of Step-1
//
*/
tjp->proceed();
}
};
#endif // CONFIG_EVENT_JUMP
#endif // __JUMP_AH__

View File

@ -0,0 +1,158 @@
#ifndef __MEM_ACCESS_AH__
#define __MEM_ACCESS_AH__
#include "config/FailConfig.hpp"
#if defined(CONFIG_EVENT_MEMREAD) || defined(CONFIG_EVENT_MEMWRITE)
#include <iostream>
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
#include "BochsHelpers.hpp"
// FIXME: We currently assume a "flat" memory model and ignore the segment
// parameter of all memory accesses.
// TODO: Instruction fetch?
// TODO: Warn on uncovered memory accesses.
aspect MemAccess {
fail::address_t rmw_address;
pointcut write_methods() =
"% ...::bx_cpu_c::write_virtual_%(...)" && // -> access32/64.cc
// not an actual memory access:
!"% ...::bx_cpu_c::write_virtual_checks(...)";
pointcut write_methods_RMW() =
"% ...::bx_cpu_c::write_RMW_virtual_%(...)";
pointcut write_methods_new_stack() =
"% ...::bx_cpu_c::write_new_stack_%(...)" && // -> access32.cc
!"% ...::bx_cpu_c::write_new_stack_%_64(...)";
pointcut write_methods_new_stack_64() =
"% ...::bx_cpu_c::write_new_stack_%_64(...)"; // -> access64.cc
pointcut write_methods_system() =
"% ...::bx_cpu_c::system_write_%(...)"; // -> access.cc
// FIXME not covered:
/* "% ...::bx_cpu_c::v2h_write_byte(...)"; // -> access.cc */
pointcut read_methods() =
"% ...::bx_cpu_c::read_virtual_%(...)" &&
// sizeof() doesn't work here (see next pointcut)
!"% ...::bx_cpu_c::read_virtual_dqword_%(...)" && // -> access32/64.cc
// not an actual memory access:
!"% ...::bx_cpu_c::read_virtual_checks(...)";
pointcut read_methods_dqword() =
"% ...::bx_cpu_c::read_virtual_dqword_%(...)"; // -> access32/64.cc
pointcut read_methods_RMW() =
"% ...::bx_cpu_c::read_RMW_virtual_%(...)";
pointcut read_methods_system() =
"% ...::bx_cpu_c::system_read_%(...)"; // -> access.cc
// FIXME not covered:
/* "% ...::bx_cpu_c::v2h_read_byte(...)"; // -> access.cc */
//
// Fire a memory-write-event each time the guest system requests
// to write data to RAM:
//
// Event source: "memory write access"
//
#ifdef CONFIG_EVENT_MEMWRITE
advice execution (write_methods()) : after ()
{
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->arg<2>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_RMW()) : after ()
{
fail::simulator.onMemoryAccessEvent(
rmw_address, sizeof(*(tjp->arg<0>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_new_stack()) : after ()
{
std::cerr << "WOOOOOT write_methods_new_stack" << std::endl;
// TODO: Log-level?
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->arg<3>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_new_stack_64()) : after ()
{
std::cerr << "WOOOOOT write_methods_new_stack_64" << std::endl;
// TODO: Log-level?
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->arg<2>())), true,
getCPU(tjp->that())->prev_rip);
}
advice execution (write_methods_system()) : after ()
{
// We don't do anything here for now: This type of memory
// access is used when the hardware itself needs to access
// memory (e.g., to read vectors from the interrupt vector
// table).
/*
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->arg<1>())), true,
getCPU(tjp->that())->prev_rip);
*/
}
#endif
//
// Fire a memory-read-event each time the guest system requests
// to read data in RAM:
//
// Event source: "memory read access"
//
#ifdef CONFIG_EVENT_MEMREAD
advice execution (read_methods()) : before ()
{
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
}
advice execution (read_methods_dqword()) : before ()
{
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), 16, false,
getCPU(tjp->that())->prev_rip);
}
#endif
advice execution (read_methods_RMW()) : before ()
{
rmw_address = *(tjp->arg<1>());
#ifdef CONFIG_EVENT_MEMREAD
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<1>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
#endif
}
#ifdef CONFIG_EVENT_MEMREAD
advice execution (read_methods_system()) : before ()
{
// We don't do anything here for now: This type of memory
// access is used when the hardware itself needs to access
// memory (e.g., to read vectors from the interrupt vector
// table).
/*
fail::simulator.onMemoryAccessEvent(
*(tjp->arg<0>()), sizeof(*(tjp->result())), false,
getCPU(tjp->that())->prev_rip);
*/
}
#endif
};
#endif // CONFIG_EVENT_MEMACCESS
#endif // __MEM_ACCESS_AH__

View File

@ -0,0 +1,29 @@
#ifndef __REBOOT_AH__
#define __REBOOT_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SR_REBOOT
#include "bochs.h"
#include "../SALInst.hpp"
aspect Reboot {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
advice execution (cpuLoop()) : after ()
{
if (!fail::reboot_bochs_request) {
return;
}
bx_gui_c::reset_handler();
std::cout << "[FAIL] Reboot finished" << std::endl;
// TODO: Log-level?
fail::simulator.rebootDone();
}
};
#endif // CONFIG_SR_REBOOT
#endif // __REBOOT_AH__

View File

@ -0,0 +1,27 @@
#ifndef __RESTORE_STATE_AH__
#define __RESTORE_STATE_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SR_RESTORE
#include <iostream>
#include "bochs.h"
#include "../SALInst.hpp"
aspect RestoreState {
pointcut restoreState() = "void bx_sr_after_restore_state()";
advice execution (restoreState()) : after ()
{
std::cout << "[FAIL] Restore finished" << std::endl;
// TODO: Log-Level?
fail::simulator.restoreDone();
}
};
#endif // CONFIG_SR_RESTORE
#endif // __RESTORE_STATE_AH__

View File

@ -0,0 +1,33 @@
#ifndef _SAVE_STATE_AH__
#define _SAVE_STATE_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_SR_SAVE
#include "bochs.h"
#include "../SALInst.hpp"
aspect SaveState {
pointcut cpuLoop() = "void defineCPULoopJoinPoint(...)";
// make sure the "SaveState" aspect comes *after* the breakpoint stuff: In
// an "after" advice this means it must get a *higher* precedence,
// therefore it's first in the order list.
advice execution (cpuLoop()) : order ("SaveState", "Breakpoints");
advice execution (cpuLoop()) : after () {
if (!fail::save_bochs_request)
return;
assert(fail::sr_path.size() > 0 && "FATAL ERROR: tried to save state without valid path");
SIM->save_state(fail::sr_path.c_str());
std::cout << "[FAIL] Save finished" << std::endl;
// TODO: Log-Level?
fail::simulator.saveDone();
}
};
#endif // CONFIG_SR_SAVE
#endif // _SAVE_STATE_AH__

View File

@ -0,0 +1,26 @@
#ifndef __TRAP_AH__
#define __TRAP_AH__
#include "config/FailConfig.hpp"
#ifdef CONFIG_EVENT_TRAP
#include "bochs.h"
#include "cpu/cpu.h"
#include "../SALInst.hpp"
aspect Trap {
pointcut exception_method() = "void bx_cpu_c::exception(...)";
advice execution (exception_method()) : before ()
{
fail::simulator.onTrapEvent(*(tjp->arg<0>()));
// TODO: There are some different types of exceptions at cpu.h (line 265-281)
// Which kind of a trap are these types?
}
};
#endif // CONFIG_EVENT_TRAP
#endif // __TRAP_AH__

View File

@ -0,0 +1,17 @@
#ifndef __OVPINIT_AH__
#define __OVPINIT_AH__
#include <iostream>
#include "../SALInst.hpp"
aspect FailOVPInit {
advice call("% ...::startSimulation(...)") : before ()
{
std::cout << "OVP init aspect!" << std::endl;
// TODO: Log-Level?
fail::simulator.startup();
}
};
#endif // __OVPINIT_AH__

View File

@ -0,0 +1,20 @@
/**
* \brief Type definitions and configuration settings for
* the OVP simulator.
*/
#ifndef __OVP_CONFIG_HPP__
#define __OVP_CONFIG_HPP__
#include <sys/types.h>
namespace fail {
typedef uint32_t guest_address_t; //!< the guest memory address type
typedef uint8_t* host_address_t; //!< the host memory address type
typedef uint32_t register_data_t; //!< register data type (32 bit)
typedef int timer_t; //!< type of timer IDs
} // end-of-namespace: fail
#endif // __OVP_CONFIG_HPP__

View File

@ -0,0 +1,131 @@
#include <iostream>
#include "OVPController.hpp"
#include "OVPMemory.hpp"
#include "OVPRegister.hpp"
#include "ovp/OVPStatusRegister.hpp"
namespace fail {
OVPController::OVPController()
: SimulatorController(new OVPRegisterManager(), new OVPMemoryManager())
{
// FIXME: This should be obsolete now...
// set = new UniformRegisterSet(RT_GP);
// setStatus = new UniformRegisterSet(RT_ST);
// setPC = new UniformRegisterSet(RT_PC);
}
OVPController::~OVPController()
{
// FIXME: This should be obsolete now...
// delete set;
// delete setStatus;
// delete setPC;
// Free memory of OVPRegister objects (actually allocated in make*Register):
for (RegisterManager::iterator it = m_Regs->begin(); it != m_Regs->end(); it++)
delete (*it); // free the memory, allocated in the constructor
}
void OVPController::makeGPRegister(int width, void *link, const string& name)
{
// Add general purpose register
OVPRegister *reg = new OVPRegister(m_currentRegId++, width, link, RT_GP);
reg->setName(name);
m_Regs->add(reg);
// Note: The RegisterManager (aka m_Regs) automatically assigns the
// added registers (herein typed OVPRegister) to their matching
// UniformRegisterSet (@see RegisterManager::add).
}
void OVPController::makeSTRegister(Register *reg, const string& name)
{
// Add status register
reg->setName(name);
cerr << "Add Status Register: " << reg << endl;
m_Regs->add(reg);
}
void OVPController::makePCRegister(int width, void *link, const string& name)
{
// Add general purpose register
OVPRegister *reg = new OVPRegister(m_currentRegId++, width, link, RT_PC);
reg->setName(name);
m_Regs->add(reg);
}
// FIXME: This should be obsolete now...
/*
void OVPController::finishedRegisterCreation()
{
m_Regs->add(*set);
m_Regs->add(*setStatus);
m_Regs->add(*setPC);
}
*/
void OVPController::onInstrPtrChanged(address_t instrPtr)
{
// make some funny outputs
unsigned int r0 = m_Regs->getSetOfType(RT_GP)->getRegister(0)->getData();
OVPRegisterManager *ovp_Regs = (OVPRegisterManager*) m_Regs;
// FIXME: This cast seems to be invalid: RT_GP vs. OVPStatusRegister (= RT_ST)?
OVPStatusRegister *rid_st = (OVPStatusRegister*) m_Regs->getSetOfType(RT_GP)->first();
// cerr << "Addr: " << rid_st << endl;
unsigned int st = rid_st->getData();
// save("/srv/scratch/sirozipp/test.txt");
// ovpplatform.setPC(0x123);
// restore("/srv/scratch/sirozipp/test.txt");
// cerr << "instrPtr: 0x" << hex << instrPtr << " SP: 0x" << hex << m_Regs->getStackPointer() \
// << " R0: 0x" << hex << r0 << " ST: 0x" << hex << st << endl;
// Check for active breakpoint-events:
EventList::iterator it = m_EvList.begin();
while (it != m_EvList.end()) {
// FIXME: Performance verbessern (dazu muss entsprechend auch die Speicherung
// in EventList(.cc|.hpp) angepasst bzw. verbessert werden).
BPSingleEvent* pEvBreakpt = dynamic_cast<BPSingleEvent*>(*it);
if (pEvBreakpt && (instrPtr == pEvBreakpt->getWatchInstructionPointer() ||
pEvBreakpt->getWatchInstructionPointer() == ANY_ADDR)) {
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
// "it" has already been set to the next element (by calling
// makeActive()):
continue; // -> skip iterator increment
}
BPRangeEvent* pEvRange = dynamic_cast<BPRangeEvent*>(*it);
if (pEvRange && pEvRange->isMatching(instrPtr)) {
pEvBreakpt->setTriggerInstructionPointer(instrPtr);
it = m_EvList.makeActive(it);
continue; // dito.
}
it++;
}
m_EvList.fireActiveEvents();
}
void OVPController::save(const string& path)
{
// TODO!
ovpplatform.save(path);
}
void OVPController::restore(const string& path)
{
//TODO!
assert(path.length() > 0 &&
"FATAL ERROR: Tried to restore state without valid path!");
ovpplatform.restore(path);
}
void OVPController::reboot()
{
// TODO!
}
} // end-of-namespace: fail

View File

@ -0,0 +1,72 @@
#ifndef __OVP_CONTROLLER_HPP__
#define __OVP_CONTROLLER_HPP__
#include <string>
#include <cassert>
#include <string.h>
#include <string>
#include "../SimulatorController.hpp"
#include "../Event.hpp"
#include "../Register.hpp"
#include "ovp/OVPPlatform.hpp"
namespace fail {
extern OVPPlatform ovpplatform;
/**
* \class OVPController
* OVP-specific implementation of a SimulatorController.
*/
class OVPController : public SimulatorController {
private:
// FIXME: This should be obsolete now...
// UniformRegisterSet *set; //(RT_GP);
// UniformRegisterSet *setStatus;//(RT_ST);
// UniformRegisterSet *setPC;//(RT_PC);
// FIXME: Perhaps this should be declared as a static member:
unsigned int m_currentRegId;
// NOTE: Constants (such as GPRegisterId in sal/bochs/BochsRegister.hpp)
// are much easier to read...
public:
/**
* Initialize the controller.
*/
OVPController();
virtual ~OVPController();
virtual void onInstrPtrChanged(address_t instrPtr);
/**
* Save simulator state.
* @param path Location to store state information
*/
virtual void save(const std::string& path);
/**
* Restore simulator state.
* @param path Location to previously saved state information
*/
virtual void restore(const std::string& path);
/**
* Reboot simulator.
*/
virtual void reboot();
/**
* Returns the current instruction pointer.
* @return the current eip
*/
void makeGPRegister(int, void*, const std::string&);
void makeSTRegister(Register *, const std::string&);
void makePCRegister(int, void*, const std::string&);
/**
* Due to empty RegisterSets are not allowed, OVP platform
* must tell OVPController when it is finished
*
* FIXME: This should be obsolete now...
*/
// void finishedRegisterCreation();
};
} // end-of-namespace: fail
#endif // __OVP_CONTROLLER_HPP__

View File

@ -0,0 +1,73 @@
#ifndef __OVP_MEMORY_HPP__
#define __OVP_MEMORY_HPP__
#include "../Memory.hpp"
namespace fail {
/**
* \class OVPMemoryManager
* Represents a concrete implemenation of the abstract
* MemoryManager to provide access to OVP's memory pool.
*/
class OVPMemoryManager : public MemoryManager {
public:
/**
* Constructs a new MemoryManager object and initializes
* it's attributes appropriately.
*/
OVPMemoryManager() : MemoryManager() { }
/**
* Retrieves the size of the available simulated memory.
* @return the size of the memory pool in bytes
*/
size_t getPoolSize() const { return 0; }
/**
* Retrieves the starting address of the host memory. This is the
* first valid address in memory.
* @return the starting address
*/
host_address_t getStartAddr() const { return 0; }
/**
* Retrieves the byte at address \a addr in the memory.
* @param addr The guest address where the byte is located.
* The address is expected to be valid.
* @return the byte at \a addr
*/
byte_t getByte(guest_address_t addr) { return 0; }
/**
* Retrieves \a cnt bytes at address \a addr in the memory.
* @param addr The guest address where the bytes are located.
* The address is expected to be valid.
* @param cnt the number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param dest Pointer to destination buffer to copy the data to.
*/
void getBytes(guest_address_t addr, size_t cnt, void *dest) { }
/**
* Writes the byte \a data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param data The new byte to write
*/
void setByte(guest_address_t addr, byte_t data) { }
/**
* Copies data to memory.
* @param addr The guest address to write.
* The address is expected to be valid.
* @param cnt The number of bytes to be retrieved. \a addr + \a cnt
* is expected to not exceed the memory limit.
* @param src Pointer to data to be copied.
*/
void setBytes(guest_address_t addr, size_t cnt, void const *src) { }
/**
* Transforms the guest address \a addr to a host address.
* @param addr The (logical) guest address to be transformed
* @return the transformed (host) address or \c ADDR_INV on errors
*/
host_address_t guestToHost(guest_address_t addr) { return 0; }
};
} // end-of-namespace: fail
#endif // __OVP_MEMORY_HPP__

View File

@ -0,0 +1,76 @@
#ifndef __OVP_REGISTER_HPP__
#define __OVP_REGISTER_HPP__
#include "../Register.hpp"
#include "ovp/OVPPlatform.hpp"
//#include "ovp/OVPStatusRegister.hpp"
extern OVPPlatform ovpplatform;
namespace fail {
/**
* \class OVPRegister
* OVP-specific implementation of x86 registers.
*/
class OVPRegister : public Register {
private:
void *reg;
public:
/**
* Constructs a new register object.
* @param id the unique id of this register (simulator specific)
* @param width width of the register (8, 16, 32 or 64 bit should suffice)
* @param link pointer to bochs internal register memory
* @param t type of the register
*/
OVPRegister(unsigned int id, regwidth_t width, void* link, RegisterType t)
: Register(id, t, width) { reg = link; }
/**
* Retrieves the data of the register.
* @return the current register data
*/
regdata_t getData() { return ovpplatform.getRegisterData(reg); }
/**
* Sets the content of the register.
* @param data the new register data to be written
*/
void setData(regdata_t data) { ovpplatform.setRegisterData(reg, data); }
};
/**
* \class OVPRegister
* OVP-specific implementation of the RegisterManager.
*/
class OVPRegisterManager : public RegisterManager {
public:
/**
* Returns the current instruction pointer.
* @return the current eip
*/
virtual address_t getInstructionPointer()
{
return ovpplatform.getPC();
}
/**
* Retruns the top address of the stack.
* @return the starting address of the stack
*/
virtual address_t getStackPointer()
{
return ovpplatform.getSP();
}
/**
* Retrieves the base ptr (holding the address of the
* current stack frame).
* @return the base pointer
*/
virtual address_t getBasePointer()
{
return 0;
}
};
} // end-of-namespace: fail
#endif // __OVP_REGISTER_HPP__