All checks were successful
Build Heidi Docker image / build-docker (push) Successful in 15s
304 lines
11 KiB
Python
304 lines
11 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import re, random
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from textgen import textgen
|
|
from torch import nn, optim
|
|
|
|
from rich.traceback import install
|
|
install()
|
|
|
|
# Model =======================================================================================
|
|
# https://towardsdatascience.com/text-generation-with-bi-lstm-in-pytorch-5fda6e7cc22c
|
|
# Embedding -> Bi-LSTM -> LSTM -> Linear
|
|
|
|
class Model(nn.ModuleList):
|
|
|
|
def __init__(self, args, device):
|
|
super(Model, self).__init__()
|
|
|
|
self.device = device
|
|
|
|
self.batch_size = args["batch_size"]
|
|
self.hidden_dim = args["hidden_dim"]
|
|
self.input_size = args["vocab_size"]
|
|
self.num_classes = args["vocab_size"]
|
|
self.sequence_len = args["window"]
|
|
|
|
# Dropout
|
|
self.dropout = nn.Dropout(0.25) # Don't need to set device for the layers as we transfer the whole model later
|
|
|
|
# Embedding layer
|
|
self.embedding = nn.Embedding(self.input_size, self.hidden_dim, padding_idx=0)
|
|
|
|
# Bi-LSTM
|
|
# Forward and backward
|
|
self.lstm_cell_forward = nn.LSTMCell(self.hidden_dim, self.hidden_dim)
|
|
self.lstm_cell_backward = nn.LSTMCell(self.hidden_dim, self.hidden_dim)
|
|
|
|
# LSTM layer
|
|
self.lstm_cell = nn.LSTMCell(self.hidden_dim * 2, self.hidden_dim * 2)
|
|
|
|
# Linear layer
|
|
self.linear = nn.Linear(self.hidden_dim * 2, self.num_classes)
|
|
|
|
|
|
def forward(self, x):
|
|
# Bi-LSTM
|
|
# hs = [batch_size x hidden_size]
|
|
# cs = [batch_size x hidden_size]
|
|
hs_forward = torch.zeros(x.size(0), self.hidden_dim).to(self.device) # Need to specify device here as this is not part of the model directly
|
|
cs_forward = torch.zeros(x.size(0), self.hidden_dim).to(self.device)
|
|
hs_backward = torch.zeros(x.size(0), self.hidden_dim).to(self.device)
|
|
cs_backward = torch.zeros(x.size(0), self.hidden_dim).to(self.device)
|
|
|
|
# LSTM
|
|
# hs = [batch_size x (hidden_size * 2)]
|
|
# cs = [batch_size x (hidden_size * 2)]
|
|
hs_lstm = torch.zeros(x.size(0), self.hidden_dim * 2).to(self.device)
|
|
cs_lstm = torch.zeros(x.size(0), self.hidden_dim * 2).to(self.device)
|
|
|
|
# Weights initialization
|
|
torch.nn.init.kaiming_normal_(hs_forward)
|
|
torch.nn.init.kaiming_normal_(cs_forward)
|
|
torch.nn.init.kaiming_normal_(hs_backward)
|
|
torch.nn.init.kaiming_normal_(cs_backward)
|
|
torch.nn.init.kaiming_normal_(hs_lstm)
|
|
torch.nn.init.kaiming_normal_(cs_lstm)
|
|
|
|
# From idx to embedding
|
|
out = self.embedding(x)
|
|
|
|
# Prepare the shape for LSTM Cells
|
|
out = out.view(self.sequence_len, x.size(0), -1)
|
|
|
|
forward = []
|
|
backward = []
|
|
|
|
# Unfolding Bi-LSTM
|
|
# Forward
|
|
for i in range(self.sequence_len):
|
|
hs_forward, cs_forward = self.lstm_cell_forward(out[i], (hs_forward, cs_forward))
|
|
forward.append(hs_forward)
|
|
|
|
# Backward
|
|
for i in reversed(range(self.sequence_len)):
|
|
hs_backward, cs_backward = self.lstm_cell_backward(out[i], (hs_backward, cs_backward))
|
|
backward.append(hs_backward)
|
|
|
|
# LSTM
|
|
for fwd, bwd in zip(forward, backward):
|
|
input_tensor = torch.cat((fwd, bwd), 1)
|
|
hs_lstm, cs_lstm = self.lstm_cell(input_tensor, (hs_lstm, cs_lstm))
|
|
|
|
# Last hidden state is passed through a linear layer
|
|
out = self.linear(hs_lstm)
|
|
return out
|
|
|
|
|
|
# =============================================================================================
|
|
|
|
class LSTMTextGenerator(textgen):
|
|
|
|
def __init__(self, windowsize):
|
|
self.windowsize = windowsize # We slide a window over the character sequence and look at the next letter,
|
|
# similar to the Markov chain order
|
|
|
|
|
|
def init(self, filename):
|
|
self.filename = filename
|
|
|
|
# Use this to generate one hot vector and filter characters
|
|
self.letters = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m",
|
|
"n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "ä", "ö", "ü", ".", " "]
|
|
|
|
with open(f"./textfiles/{filename}.txt", "r") as file:
|
|
lines = [line.lower() for line in file.readlines()] # lowercase list
|
|
text = " ".join(lines) # single string
|
|
self.charbase = [char for char in text if char in self.letters] # list of characters
|
|
|
|
# Select device
|
|
if torch.cuda.is_available():
|
|
dev = "cuda:0"
|
|
print("Selected GPU for LSTM")
|
|
else:
|
|
dev = "cpu"
|
|
print("Selected CPU for LSTM")
|
|
self.device = torch.device(dev)
|
|
|
|
# Init model
|
|
self.args = {
|
|
"window": self.windowsize,
|
|
"hidden_dim": 128,
|
|
"vocab_size": len(self.letters),
|
|
"batch_size": 128,
|
|
"learning_rate": 0.0005,
|
|
"num_epochs": 100
|
|
}
|
|
self.model = Model(self.args, self.device)
|
|
self.model.to(self.device) # All model layers need to use the correct tensors (cpu/gpu)
|
|
|
|
# Needed for both training and generation
|
|
self.__generate_char_sequences()
|
|
|
|
# Helper shit
|
|
|
|
def __char_to_idx(self, char):
|
|
return self.letters.index(char)
|
|
|
|
def __idx_to_char(self, idx):
|
|
return self.letters[idx]
|
|
|
|
def __generate_char_sequences(self):
|
|
# Example
|
|
# [[21, 20, 15],
|
|
# [12, 12, 14]]
|
|
prefixes = []
|
|
|
|
# Example
|
|
# [[1],
|
|
# [4]]
|
|
suffixes = []
|
|
|
|
print("Generating LSTM char sequences...")
|
|
for i in range(len(self.charbase) - self.windowsize - 1):
|
|
prefixes.append([self.__char_to_idx(char) for char in self.charbase[i:i+self.windowsize]])
|
|
suffixes += [self.__char_to_idx(char) for char in self.charbase[i+self.windowsize+1]] # Bit stupid wrapping this in a list but removes possible type error
|
|
|
|
# Enter numpy terretory NOW
|
|
self.prefixes = np.array(prefixes)
|
|
self.suffixes = np.array(suffixes)
|
|
|
|
print(f"Prefixes shape: {self.prefixes.shape}")
|
|
print(f"Suffixes shape: {self.suffixes.shape}")
|
|
print("Completed.")
|
|
|
|
# Interface shit
|
|
|
|
# @todo Also save/load generated prefixes
|
|
def load(self):
|
|
print(f"Loading \"{self.filename}\" LSTM model with {len(self.charbase)} characters from file.")
|
|
|
|
self.model.load_state_dict(torch.load(f"weights/{self.filename}_lstm_model.pt"))
|
|
|
|
def train(self):
|
|
print(f"Training \"{self.filename}\" LSTM model with {len(self.charbase)} characters.")
|
|
|
|
# Optimizer initialization, RMSprop for RNN
|
|
optimizer = optim.RMSprop(self.model.parameters(), lr=self.args["learning_rate"])
|
|
|
|
# Defining number of batches
|
|
num_batches = int(len(self.prefixes) / self.args["batch_size"])
|
|
|
|
# Set model in training mode
|
|
self.model.train()
|
|
|
|
losses = []
|
|
|
|
# Training pahse
|
|
for epoch in range(self.args["num_epochs"]):
|
|
|
|
# Mini batches
|
|
for i in range(num_batches):
|
|
|
|
# Batch definition
|
|
try:
|
|
x_batch = self.prefixes[i * self.args["batch_size"]:(i + 1) * self.args["batch_size"]]
|
|
y_batch = self.suffixes[i * self.args["batch_size"]:(i + 1) * self.args["batch_size"]]
|
|
except:
|
|
x_batch = self.prefixes[i * self.args["batch_size"]:]
|
|
y_batch = self.suffixes[i * self.args["batch_size"]:]
|
|
|
|
# Convert numpy array into torch tensors
|
|
x = torch.from_numpy(x_batch).type(torch.long).to(self.device)
|
|
y = torch.from_numpy(y_batch).type(torch.long).to(self.device)
|
|
|
|
# Feed the model
|
|
y_pred = self.model(x)
|
|
|
|
# Loss calculation
|
|
loss = F.cross_entropy(y_pred, y.squeeze()).to(self.device)
|
|
losses += [loss.item()]
|
|
|
|
# Clean gradients
|
|
optimizer.zero_grad()
|
|
|
|
# Calculate gradientes
|
|
loss.backward()
|
|
|
|
# Updated parameters
|
|
optimizer.step()
|
|
|
|
print("Epoch: %d , loss: %.5f " % (epoch, loss.item()))
|
|
|
|
torch.save(self.model.state_dict(), f"weights/{self.filename}_lstm_model.pt")
|
|
print(f"Saved \"{self.filename}\" LSTM model to file")
|
|
|
|
plt.plot(np.arange(0, len(losses)), losses)
|
|
plt.title(self.filename)
|
|
plt.show()
|
|
|
|
|
|
def generate_sentence(self):
|
|
# Randomly is selected the index from the set of sequences
|
|
start = np.random.randint(0, len(self.prefixes)-1)
|
|
|
|
# Convert back to string to match complete_sentence
|
|
pattern = "".join([self.__idx_to_char(char) for char in self.prefixes[start]]) # random sequence from the training text
|
|
|
|
return self.complete_sentence(pattern)
|
|
|
|
def complete_sentence(self, prefix):
|
|
print("Prefix:", prefix)
|
|
|
|
# Convert to indexes np.array
|
|
pattern = np.array([self.__char_to_idx(char) for char in prefix])
|
|
|
|
# Set the model in evalulation mode
|
|
self.model.eval()
|
|
|
|
# Define the softmax function
|
|
softmax = nn.Softmax(dim=1).to(self.device)
|
|
|
|
# In full_prediction we will save the complete prediction
|
|
full_prediction = pattern.copy()
|
|
|
|
print("Generating sentence...")
|
|
|
|
# Predic the next characters one by one, append chars to the starting pattern until . is reached, max 500 iterations
|
|
for _ in range(500):
|
|
# the numpy patterns is transformed into a tesor-type and reshaped
|
|
pattern = torch.from_numpy(pattern).type(torch.long).to(self.device)
|
|
pattern = pattern.view(1,-1)
|
|
|
|
# make a prediction given the pattern
|
|
prediction = self.model(pattern)
|
|
# it is applied the softmax function to the predicted tensor
|
|
prediction = softmax(prediction)
|
|
|
|
# the prediction tensor is transformed into a numpy array
|
|
prediction = prediction.squeeze().detach().cpu().numpy()
|
|
# it is taken the idx with the highest probability
|
|
arg_max = np.argmax(prediction)
|
|
|
|
# the current pattern tensor is transformed into numpy array
|
|
pattern = pattern.squeeze().detach().cpu().numpy()
|
|
# the window is sliced 1 character to the right
|
|
pattern = pattern[1:]
|
|
# the new pattern is composed by the "old" pattern + the predicted character
|
|
pattern = np.append(pattern, arg_max)
|
|
|
|
# the full prediction is saved
|
|
full_prediction = np.append(full_prediction, arg_max)
|
|
|
|
# Stop on . character
|
|
if self.__idx_to_char(arg_max) == ".":
|
|
break
|
|
|
|
full_prediction = "".join([self.__idx_to_char(value) for value in full_prediction])
|
|
print("Generated:", full_prediction)
|
|
return full_prediction
|